Geomicrobiology: Latest Advances and Prospects
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robbins, L.J.; Konhauser, K.O. Geobiology and Geomicrobiology. In Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias, S.A., Eds.; Academic Press: Oxford, UK, 2021; Volume 6, pp. 554–568. [Google Scholar]
- Ehrenberg, C.G. Die Infusionsthierchen als Vollkommene Organismen: Ein Blick in das Tiefere Organische Leben der Natur: Nebst einem Atlas von Vierundsechszig Colorirten Kupfertafeln, Gezeichnet vom Verfasser; Voss: Leipzig, Germany, 1838. [Google Scholar] [CrossRef]
- Dworkin, M. Sergei Winogradsky: A founder of modern microbiology and the first microbial ecologist. FEMS Microbiol. Rev. 2012, 36, 364–379. [Google Scholar] [CrossRef] [PubMed]
- Tothero, G.K.; Hoover, R.L.; Farag, I.F.; Kaplan, D.I.; Weisenhorn, P.; Emerson, D.; Chan, C.S. Leptothrix ochracea genomes reveal potential for mixotrophic growth on Fe(II) and organic carbon. Appl. Environ. Microbiol. 2024, 90, e0059924. [Google Scholar] [CrossRef] [PubMed]
- Quispel, A.; Lourens, G.M. Baas Becking (1895–1963), inspiratory for many (micro)biologists. Int. Microbiol. 1998, 1, 69–72. [Google Scholar] [PubMed]
- Ehrlich, H.L. Reminiscences from a career in Geomicrobiology. Annu. Rev. Earth Planet. Sci. 2012, 40, 1–21. [Google Scholar] [CrossRef]
- Ehrlich, H.L. Geomicrobiology; Marcel Dekker: New York, NY, USA, 1981. [Google Scholar]
- Krumbein, W.E. Environmental Biogeochemistry and Geomicrobiology. Vol. 1. The Aquatic Environment; Ann Arbor Science: Ann Arbor, MI, USA, 1978. [Google Scholar]
- Krumbein, W.E. Environmental Biogeochemistry and Geomicrobiology. Vol. 2. The Terrestrial Environment; Ann Arbor Science: Ann Arbor, MI, USA, 1978. [Google Scholar]
- Krumbein, W.E. Environmental Biogeochemistry and Geomicrobiology. Vol. 3.Methods, Metals and Assessment; Ann Arbor Science: Ann Arbor, MI, USA, 1978. [Google Scholar]
- Mascarelli, A.L. Low life. Nature 2009, 459, 770–773. [Google Scholar] [CrossRef]
- Magnabosco, C.; Lin, L.-H.; Dong, H.; Bomberg, M.; Ghiorse, W.; Stan-Lotter, H.; Pedersen, K.; Kieft, T.L.; van Heerden, E.; Onstott, T.C. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 2018, 11, 707–717. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 2019, 17, 247–260. [Google Scholar] [CrossRef]
- Ford, S.E.; Slater, G.F.; Engel, K.; Warr, O.; Lollar, G.S.; Brady, A.; Neufeld, J.D.; Lollar, B.S. Deep terrestrial indigenous microbial community dominated by Candidatus Frackibacter. Comm. Earth Environ. 2024, 5, 795. [Google Scholar] [CrossRef]
- Sánchez, O.; Stefanni, S.; Bhadury, P. The deep sea biodiversity and conservation collection. Sci. Rep. 2024, 14, 27559. [Google Scholar] [CrossRef]
- Amundson, K.K.; Borton, M.A.; Wilkins, M.J. Anthropogenic impacts on the terrestrial subsurface biosphere. Nat. Rev. Microbiol. 2025, 23, 147–161. [Google Scholar] [CrossRef]
- Nayfach, S.; Roux, S.; Seshadri, R.; Udwary, D.; Varghese, N.; Schulz, F.; Wu, D.; Paez-Espino, D.; Chen, I.-M.; Huntemann, M.; et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 2021, 39, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Long, P.E.; Williams, K.H.; Hubbard, S.S.; Baneld, J.F. Microbial metagenomics reveals climate-relevant subsurface biogeochemical processes. Trends Microbiol. 2016, 24, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Parmar, N.; Singh, A. Geobiotechnology. In Geomicrobiology and Biogeochemistry; Parmar, N., Singh, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–15. [Google Scholar] [CrossRef]
- Malik, P. Geo microbiology underground—Opportunities for geo biotechnology. J. Geosci. Insights 2024, 2, 15–19. [Google Scholar] [CrossRef]
- Bontemps, Z.; Moënne-Loccoz, Y.; Hugoni, M. Contributions of DNA sequencing technologies to the integrative monitoring of karstic caves. Appl. Sci. 2024, 14, 9438. [Google Scholar] [CrossRef]
- Medley, J.; Hathaway, J.; Spilde, M.; Northup, D. Looking for microbial biosignatures in all the right places: Clues for identifying extraterrestrial life in lava tubes. Appl. Sci. 2024, 14, 6500. [Google Scholar] [CrossRef]
- Gonzalez-Pimentel, J.; Martin-Pozas, T.; Jurado, V.; Laiz, L.; Fernandez-Cortes, A.; Sanchez-Moral, S.; Saiz-Jimenez, C. The marine bacterial genus Euzebya is distributed worldwide in terrestrial environments: A review. Appl. Sci. 2023, 13, 9644. [Google Scholar] [CrossRef]
- Casanova Municchia, A.; Giordani, P.; Taniguchi, Y.; Caneva, G. Assessing the impact of lichens on Saint Simeon Church, Paşabağ Valley (Cappadocia, Turkey): Potential damaging effects versus protection from rainfall and winds. Appl. Sci. 2024, 14, 6943. [Google Scholar] [CrossRef]
- Navarro, A.; del Moral, A.; de Pablos, I.; Delgado, R.; Párraga, J.; Martín-García, J.; Martínez-Checa, F. Microorganisms isolated from Saharan dust intrusions in the Canary Islands and processes of mineral atmospherogenesis. Appl. Sci. 2024, 14, 1862. [Google Scholar] [CrossRef]
- Jurado, V.; Gonzalez, J.M.; Laiz, L.; Saiz-Jimenez, C. Aurantimonas altamirensis sp. nov., a member of the order Rhizobiales isolated from Altamira Cave. Int. J. Syst. Evol. Microbiol. 2006, 56, 2583–2585. [Google Scholar] [CrossRef]
- Jurado, V.; Kroppenstedt, R.M.; Saiz-Jimenez, C.; Klenk, H.-P.; Mouniée, D.; Laiz, L.; Couble, A.; Pötter, G.; Boiron, P.; Rodríguez-Nava, V. Hoyosella altamirensis gen. nov., sp. nov., a new member of the order Actinomycetales isolated from a cave biofilm. Int. J. Syst. Evol. Microbiol. 2009, 59, 3105–3110. [Google Scholar] [CrossRef]
- Martin-Sanchez, P.M.; Nováková, A.; Bastian, F.; Alabouvette, C.; Saiz-Jimenez, C. Two new species of the genus Ochroconis, O. lascauxensis and O. anomala isolated from black stains in Lascaux Cave, France. Fungal Biol. 2012, 116, 574–589. [Google Scholar] [CrossRef] [PubMed]
- Martin-Sanchez, P.; Miller, A.Z.; Saiz-Jimenez, C. Lascaux Cave: An example of fragile ecological balance in subterranean environments. In Microbial Life of Cave Systems; Engel, A.S., Ed.; DeGruiter: Berlin, Germany, 2015; pp. 280–301. [Google Scholar]
- Alabouvette, C.; Saiz-Jimenez, C. Écologie microbienne de la Grotte de Lascaux. Notes Acad. Acad. Agric. Fr. 2016, 7, 1–21. [Google Scholar]
- De la Rosa, J.M.; Martin-Sanchez, P.M.; Sanchez-Cortes, S.; Hermosin, B.; Knicker, H.; Saiz-Jimenez, C. Structure of melanins from the fungi Ochroconis lascauxensis and Ochroconis anomala contaminating rock art in the Lascaux Cave. Sci. Rep. 2017, 7, 13441. [Google Scholar] [CrossRef]
- Alonso, L.; Creuzé-des-Châtelliers, C.; Trabac, T.; Dubost, A.; Moënne-Loccoz, Y.; Pommier, T. Rock substrate rather than black stain alterations drives microbial community structure in the passage of Lascaux Cave. Microbiome 2018, 6, 216. [Google Scholar] [CrossRef] [PubMed]
- Alonso, L.; Pommier, T.; Kaufmann, B.; Dubost, A.; Chapulliot, D.; Doré, J.; Douady, C.J.; Moënne-Loccoz, Y. Anthropization level of Lascaux Cave microbiome shown by regional-scale comparisons of pristine and anthropized caves. Mol. Ecol. 2019, 28, 3383–3394. [Google Scholar] [CrossRef]
- Bontemps, Z.; Alonso, L.; Pommier, T.; Hugoni, M.; Moënne-Loccoz, Y. Microbial ecology of tourist Paleolithic caves. Sci. Total Environ. 2021, 816, 151492. [Google Scholar] [CrossRef]
- Alonso, L.; Pommier, T.; Abrouk, D.; Hugoni, M.; Tran Van, V.; Minard, G.; Valiente Moro, C.; Moënne-Loccoz, Y. Microbiome analysis of new, insidious cave wall alterations in the Apse of Lascaux Cave. Microorganisms 2022, 10, 2449. [Google Scholar] [CrossRef]
- Alonso, L.; Pommier, T.; Simon, L.; Maucourt, F.; Doré, J.; Dubost, A.; Trân Van, V.; Minard, G.; Valiente Moro, C.; Douady, C.J.; et al. Microbiome analysis in Lascaux Cave in relation to black stain alterations of rock surfaces and collembola. Environ. Microbiol. Rep. 2022, 15, 80–91. [Google Scholar] [CrossRef]
- Buresova-Faitova, A.; Kopecky, J.; Sagova-Mareckova, M.; Alonso, L.; Vautrin, F.; Moënne-Loccoz, Y.; Rodriguez-Nava, V. Comparison of Actinobacteria communities from human-impacted and pristine karst caves. MicrobiologyOpen 2022, 11, e1276. [Google Scholar] [CrossRef]
- Bontemps, Z.; Prigent-Combaret, C.; Guillmot, A.; Hugoni, M.; Moënne-Loccoz, Y. Dark-zone alterations expand throughout Paleolithic Lascaux Cave despite spatial heterogeneity of the cave microbiome. Environ. Microbiome 2023, 18, 31. [Google Scholar] [CrossRef]
- Bontemps, Z.; Hugoni, M.; Moënne-Loccoz, Y. Microscale dynamics of dark zone alterations in anthropized karstic cave shows abrupt microbial community switch. Sci. Total Environ. 2023, 862, 160824. [Google Scholar] [CrossRef] [PubMed]
- Bontemps, Z.; Hugoni, M.; Moënne-Loccoz, Y. Ecological impact of mechanical cleaning method to curb black stain alterations on Paleolithic cave walls. Int. Biodeter. Biodegr. 2024, 191, 105797. [Google Scholar] [CrossRef]
- Bontemps, Z.; Abrouk, D.; Venier, S.; Vergne, P.; Michalet, S.; Comte, G.; Moënne-Loccoz, Y.; Hugoni, M. Microbial diversity and secondary metabolism potential in relation to dark alterations in Paleolithic Lascaux Cave. npj Biofilms Microbiomes 2024, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, K.H.; Winter, A.S.; Read, K.J.H.; Hughes, E.M.; Spilde, M.N.; Northup, D.E. Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USA. PLoS ONE 2017, 12, e0169339. [Google Scholar] [CrossRef]
- Nicolosi, G.; Gonzalez-Pimentel, J.L.; Piano, E.; Isaia, M.; Miller, A.Z. First insights into the bacterial diversity of Mount Etna volcanic caves. Microb. Ecol. 2023, 86, 1632–1645. [Google Scholar] [CrossRef]
- Boston, P.J.; Spilde, M.N.; Northup, D.E.; Melim, L.A.; Soroka, D.S.; Kleina, L.G.; Lavoie, K.; Hose, L.; Mallory, L.; Dahm, C.; et al. Cave biosignature suites: Microbes, minerals, and Mars. Astrobiology 2001, 1, 25–55. [Google Scholar] [CrossRef]
- Northup, D.E.; Melim, L.A.; Spilde, M.N.; Hathaway, J.J.M.; Garcia, M.G.; Moya, M.; Stone, F.D.; Boston, P.J.; Dapkevicius, M.L.N.E.; Riquelme, C. Lava cave microbial communities within mats and secondary mineral deposits: Implications for life detection on other planets. Astrobiology 2011, 11, 601–618. [Google Scholar] [CrossRef]
- Palma, V.; González-Pimentel, J.L.; Jimenez-Morillo, N.T.; Sauro, F.; Gutiérrez-Patricio, S.; De La Rosa, J.M.; Tomasi, I.; Massironi, M.; Onac, B.P.; Tiago, I.; et al. Connecting molecular biomarkers, mineralogical composition, and microbial diversity from Mars analog lava tubes. Sci. Total Environ. 2024, 913, 169583. [Google Scholar] [CrossRef]
- Devlin, M.G.; Hathaway, J.J.M.; Northup, D.E.; Spilde, M.N.; Moser, D.P.; Blank, J.G. Bacterial, archaeal, and eukaryotic life of volcanic cave features from Lava Beds National Monument, California, USA. Geomicrobiol. J. 2025, 42, 183–196. [Google Scholar] [CrossRef]
- Gogoleva, N.; Chervyatsova, O.; Balkin, A.; Kuzmina, L.; Shagimardanova, E.; Kiseleva, D.; Gogolev, Y. Microbial tapestry of the Shulgan-Tash cave (Southern Ural, Russia): Influences of environmental factors on the taxonomic composition of the cave biofilms. Environ. Microbiome 2023, 18, 82. [Google Scholar] [CrossRef]
- Martin-Pozas, T.; Jurado, V.; Fernandez-Cortes, A.; Calaforra, J.M.; Sanchez-Moral, S.; Saiz-Jimenez, C. Bacterial communities forming yellow biofilms in different cave types share a common core. Sci. Total Environ. 2024, 956, 177263. [Google Scholar] [CrossRef] [PubMed]
- Martin-Pozas, T.; Gonzalez-Pimentel, J.L.; Jurado, V.; Laiz, L.; Cañaveras, J.C.; Fernandez-Cortes, A.; Cuezva, S.; Sanchez-Moral, S.; Saiz-Jimenez, C. Crossiella, a rare Actinomycetota genus, abundant in the environment. Appl. Biosci. 2023, 2, 194–210. [Google Scholar] [CrossRef]
- Joseph, E. Microorganisms in the Deterioration and Preservation of Cultural Heritage; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Ranalli, G.; Zanardini, E. The role of microorganisms in the removal of nitrates and sulfates on artistic stoneworks. In Microorganisms in the Deterioration and Preservation of Cultural Heritage; Joseph, E., Ed.; Springer Nature: Cham, Switzerland, 2021; pp. 263–279. [Google Scholar]
- Sprocati, A.R.; Alisi, C.; Migliore, G.; Marconi, P.; Tasso, F. Sustainable restoration through biotechnological processes: A proof of concept. In Microorganisms in the Deterioration and Preservation of Cultural Heritage; Joseph, E., Ed.; Springer Nature: Cham, Switzerland, 2021; pp. 235–261. [Google Scholar]
- Jroundi, F.; Gonzalez-Muñoz, M.T.; Rodriguez-Navarro, C. Protection and consolidation of stone heritage by bacterial carbonatogenesis. In Microorganisms in the Deterioration and Preservation of Cultural Heritage; Joseph, E., Ed.; Springer Nature: Cham, Switzerland, 2021; pp. 281–299. [Google Scholar]
- Sparrius, L.B.; Aptroot, A.; van Herk, K. Diversity and ecology on churches in the Netherlands. Nova Hedwig. 2007, 85, 299–316. [Google Scholar] [CrossRef]
- Nimis, P.L.; Seaward, M.R.D.; Ariño, X.; Barreno, E. Lichen-induced chromatic changes on monuments: A case-study on the Roman amphitheater of Italica (S. Spain). Plant Biosyst. 1998, 132, 53–61. [Google Scholar] [CrossRef]
- Cozzolino, A.; Adamo, P.; Bonanomi, G.; Motti, R. The role of lichens, mosses, and vascular plants in the biodeterioration of historic buildings: A review. Plants 2022, 11, 3429. [Google Scholar] [CrossRef]
- Pinna, D. Biofilms and lichens on stone monuments; do they damage or protect. Front. Microbiol. 2014, 5, 133. [Google Scholar] [CrossRef]
- Gadd, G.M.; Dyer, T.D. Bioprotection of the built environment and cultural heritage. Microb. Biotechnol. 2017, 10, 1152–1156. [Google Scholar] [CrossRef]
- Favero-Longo, S.; Viles, H.A. A review of the nature, role and control of lithobionts on stone cultural heritage: Weighing-up and managing biodeterioration and bioprotection. World J. Microbiol. Biotechnol. 2020, 36, 100. [Google Scholar] [CrossRef]
- Shao, Y.; Wyrwoll, K.-H.; Chappell, A.; Huang, J.; Lin, Z.; McTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Sánchez de la Campa, A.; García-Salamanca, A.; Solano, J.; de la Rosa, J.; Ramos, J.L. Chemical and microbiological characterization of atmospheric particulate matter during an intense African dust event in Southern Spain. Environ. Sci. Technol. 2013, 47, 3630–3638. [Google Scholar] [CrossRef]
- Meola, M.; Lazzaro, A.; Zeyer, J. Bacterial composition and survival on Sahara dust particles transported to the European Alps. Front. Microbiol. 2015, 6, 1454. [Google Scholar] [CrossRef] [PubMed]
- Cáliz, J.; Menéndez-Serra, M.; Triadó-Margarit, X.; Avila, A.; Casamayor, E.O. Persistent desert microbiota in the Southern European sky. Environ. Microbiol. 2025, 27, e70046. [Google Scholar] [CrossRef]
- Federici, E.; Petroselli, C.; Montalbani, E.; Casagrande, C.; Ceci, E.; Moroni, B.; La Porta, G.; Castellini, S.; Selvaggi, R.; Sebastiani, B.; et al. Airborne bacteria and persistent organic pollutants associated with an intense Saharan dust event in the central Mediterranean. Sci. Total Environ. 2018, 645, 401–410. [Google Scholar] [CrossRef] [PubMed]
- González-Toril, E.; Osuna, S.; Viúdez-Moreiras, D.; Navarro-Cid, I.; Díaz del Toro, S.; Sor, S.; Bardera, R.; Puente-Sánchez, F.; de Diego-Castilla, G.; Aguilera, Á. Impacts of Saharan dust intrusions on bacterial communities of the low troposphere. Sci. Rep. 2020, 10, 6837. [Google Scholar] [CrossRef] [PubMed]
- Stern, R.A.; Mahmoudi, N.; Buckee, C.O.; Schartup, A.T.; Koutrakis, P.; Ferguson, S.T.; Wolfson, J.M.; Wofsy, S.C.; Daube, B.C.; Sunderland, E.M. The microbiome of size-fractionated airborne particles from the Sahara region. Environ. Sci. Technol. 2021, 55, 1487–1496. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saiz-Jimenez, C.; Jurado, V. Geomicrobiology: Latest Advances and Prospects. Appl. Sci. 2025, 15, 4321. https://doi.org/10.3390/app15084321
Saiz-Jimenez C, Jurado V. Geomicrobiology: Latest Advances and Prospects. Applied Sciences. 2025; 15(8):4321. https://doi.org/10.3390/app15084321
Chicago/Turabian StyleSaiz-Jimenez, Cesareo, and Valme Jurado. 2025. "Geomicrobiology: Latest Advances and Prospects" Applied Sciences 15, no. 8: 4321. https://doi.org/10.3390/app15084321
APA StyleSaiz-Jimenez, C., & Jurado, V. (2025). Geomicrobiology: Latest Advances and Prospects. Applied Sciences, 15(8), 4321. https://doi.org/10.3390/app15084321