Understanding Oxygen Concentrator Failures in Low Resource Settings: The Role of Dust and Humidity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zeolite Samples
2.2. Zeolite Characterization and Instrumentation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qadir, S.; Ganesan, S.; Canevesi, R.L.S.; Grande, C.A. A portable oxygen-concentrator for climbing to the death zone without oxygen canisters. Sep. Purif. Technol. 2025, 360, 131094. [Google Scholar] [CrossRef]
- Choudhury, R. Hypoxia and hyperbaric oxygen therapy: A review. Int. J. Gen. Med. 2018, 11, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Li, H. Study on Influencing Factors of Molecular Sieve Oxygen-Production System. Processes 2023, 11, 124. [Google Scholar] [CrossRef]
- Ramezani, K.; dehaj, F.M.; Hejazi, S.A.H. Optimizing medical oxygen concentrators: Efficiency, flexibility, and patient-centric solutions. Sep. Purif. Technol. 2025, 353, 128549. [Google Scholar] [CrossRef]
- Chin, C.; Kamin, Z.; Bahrun, M.H.V.; Bono, A. The Production of Industrial-Grade Oxygen from Air by Pressure Swing Adsorption. Int. J. Chem. Eng. 2023. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Li, Z.; Xiao, P.; Liu, W.; Yang, X.; Fu, Y.; Zhao, C.; Yang, R.T.; Webley, P.A. Experimental study on oxygen concentrator with wide product flow rate range: Individual parametric effect and process improvement strategy. Sep. Purif. Technol. 2021, 274, 118918. [Google Scholar] [CrossRef]
- Mazzeo, L.; Boscarino, T.; Falasconi, M.B.; Polvi, S.; Piemonte, V.; Pecchia, L. Zeolite Synthesis from Waste Materials for the Medical Field of Oxygen Concentrators: Focus on the African Scenario. Chem. Eng. Trans. 2023, 101, 163–168. [Google Scholar] [CrossRef]
- Yadav, V.K.; Choudhary, N.; Inwati, G.K.; Rai, A.; Singh, B.; Solanki, B.; Paital, B.; Sahoo, D.K. Recent trends in the nanozeolites-based oxygen concentrators and their application in respiratory disorders. Front. Med. 2023, 10, 1–13. [Google Scholar] [CrossRef]
- Nowadly, C.D.; Portillo, D.J.; Davis, M.L.; Hood, R.L.; De Lorenzo, R.A. The Use of Portable Oxygen Concentrators in Low-Resource Settings: A Systematic Review. Prehosp. Disaster Med. 2022, 37, 247–254. [Google Scholar] [CrossRef]
- Maccaro, A.; Piaggio, D.; Leesurakarn, S.; Husen, N.; Sekalala, S.; Rai, S.; Pecchia, L. On the universality of medical device regulations: The case of Benin. BMC Health Serv. Res. 2022, 22, 1031. [Google Scholar] [CrossRef]
- Europe, M. The European Medical Technology Industry in Figures 2020 Table of Contents. MedTech Europe. 2021, Volume 5, pp. 1–44. Available online: https://www.medtecheurope.org/resource-library/the-european-medical-technology-industry-in-figures-2019/ (accessed on 13 May 2024).
- Ibrahim, N.H.; Wallace, J.; Piaggio, D.; Pecchia, L. Design and maintenance of medical oxygen concentrators in Sub-Saharan Africa: A systematic review. BMC Health Serv. Res. 2025, 25, 171. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.; Shrivastava, R.; Juvekar, S.; McKinstry, B.; Fairhurst, K. Specialist to non-specialist teleconsultations in chronic respiratory disease management: A systematic review. J. Glob. Health 2021, 11, 04019. [Google Scholar] [CrossRef] [PubMed]
- Piaggio, D.; Castaldo, R.; Cinelli, M.; Cinelli, S.; Maccaro, A.; Pecchia, L. A framework for designing medical devices resilient to low-resource settings. Global. Health 2021, 17, 64. [Google Scholar] [CrossRef]
- Nduhuura, P.; Zerga, A.; Garschagen, M. Power Outages in Africa—An Assessment Based on Regional Power Pools. SSRN Electron. J. 2018. [Google Scholar] [CrossRef]
- Peake, D.; Black, J.; Kumbakumba, E.; Bagayana, S.; Barigye, C.; Moschovis, P.; Muhumuza, I.; Kiwanuka, F.; Semata, P.; Rassool, K.; et al. Technical results from a trial of the FREO2 low-pressure oxygen storage system, mbarara regional referral hospital, Uganda. PLoS ONE 2021, 16, e0248101. [Google Scholar] [CrossRef]
- Rassool, R.P.; Sobott, B.A.; Peake, D.J.; Mutetire, B.S.; Moschovis, P.P.; Black, J.F. A low-pressure oxygen storage system for oxygen supply in low-resource settings. Respir. Care 2017, 62, 1582–1587. [Google Scholar] [CrossRef]
- Calderon, R.; Morgan, M.C.; Kuiper, M.; Nambuya, H.; Wangwe, N.; Somoskovi, A.; Lieberman, D. Assessment of a storage system to deliver uninterrupted therapeutic oxygen during power outages in resource-limited settings. PLoS ONE 2019, 14, e0211027. [Google Scholar] [CrossRef]
- Otiangala, D.; Agai, N.O.; Olayo, B.; Adudans, S.; Ng, C.H.; Calderon, R.; Forgie, E.; Bachman, C.; Lieberman, D.; Bell, D.; et al. A feasibility study evaluating a reservoir storage system for continuous oxygen delivery for children with hypoxemia in Kenya. BMC Pulm. Med. 2021, 21, 1–9. [Google Scholar] [CrossRef]
- Santos, J.C.; Magalhães, F.D.; Mendes, A. Contamination of zeolites used in oxygen production by PSA: Effects of water and carbon dioxide. Ind. Eng. Chem. Res. 2008, 47, 6197–6203. [Google Scholar] [CrossRef]
- La Vincente, S.F.; Peel, D.; Carai, S.; Weber, M.W.; Enarson, P.; Maganga, E.; Soyolgerel, G.; Duke, T. The functioning of oxygen concentrators in resource-limited settings: A situation assessment in two countries. Int. J. Tuberc. Lung Dis. 2011, 15, 693–699. [Google Scholar] [CrossRef]
- Bradley, B.D.; Chow, S.; Nyassi, E.; Cheng, Y.L.; Peel, D.; Howie, S.R.C. A retrospective analysis of oxygen concentrator maintenance needs and costs in a low-resource setting: Experience from The Gambia. Health Technol. 2015, 4, 319–328. [Google Scholar] [CrossRef]
- Williams, E.; Piaggio, D.; Andellini, M.; Pecchia, L. 3D-printed activated charcoal inlet filters for oxygen concentrators: A circular economy approach. Dev. Eng. 2022, 7, 100094. [Google Scholar] [CrossRef] [PubMed]
- Peel, D.; Neighbour, R.; Eltringham, R.J. Evaluation of oxygen concentrators for use in countries with limited resources. Anaesthesia 2013, 68, 706–712. [Google Scholar] [CrossRef]
- World Health Organization. Increasing Access to Medical Oxygen. In EB152/CONF./4; 2012; pp. 1–6. Available online: https://apps.who.int/gb/ebwha/pdf_files/EB152/B152_CONF4-en.pdf (accessed on 5 September 2024).
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Scheuvens, D.; Schütz, L.; Kandler, K.; Ebert, M.; Weinbruch, S. Bulk composition of northern African dust and its source sediments-A compilation. Earth-Sci. Rev. 2013, 116, 170–194. [Google Scholar] [CrossRef]
- Warzybok, M. Synthesis of Kaolin-Based Zeolite Y and Its Application for Adsorption of Two Carbonyl Compound Gases. J. Civ. Eng. Environ. Archit. 2018, 65, 13–26. [Google Scholar] [CrossRef]
- Shrotri, A.R.; Birje, A.R.; Niphadkar, P.S.; Bokade, V.V.; Mali, N.A.; Nandanwar, S.U. Performance of Li exchange hierarchical X zeolite for CO2 adsorption and H2 separation. J. Ind. Eng. Chem. 2023, 133, 505–514. [Google Scholar] [CrossRef]
- Ackley, M.W. Medical Oxygen Concentrators: A Review of Progress in Air Separation Technology; Springer: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Ivanova, E.N.; Averin, A.A.; Alekhina, M.B.; Sokolova, N.P.; Kon’kova, T.V. Thermal Activation of Type X Zeolites in the Presence of Carbon Dioxide. Prot. Met. Phys. Chem. Surf. 2016, 52, 267–272. [Google Scholar] [CrossRef]
- Julbe, A.; Drobek, M. Zeolite X: Type. In Encyclopedia of Membranes; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Bülow, M. Complex sorption kinetics of carbon dioxide in NaX-zeolite crystals. Adsorption 2002, 8, 9–14. [Google Scholar] [CrossRef]
- Tishin, A.A. Study of Adsorption Properties of Zeolites NaX, CaA, and CaNaA in Separation of Air Components. Pet. Chem. 2020, 60, 964–970. [Google Scholar] [CrossRef]
- Lee, Y.; Carr, S.W.; Parise, J.B. Phase Transition upon K+ Ion Exchange into Na-Low Silica X: Combined NMR and Synchrotron X-ray Powder Diffraction Study. Chem. Mater. 1998, 10, 2561–2570. [Google Scholar] [CrossRef]
- Siriwardane, R.V.; Shen, M.S.; Fisher, E.P.; Poston, J.A. Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 2001, 15, 279–284. [Google Scholar] [CrossRef]
- Rocha, L.C.C.; Zuquette, L.V. Evaluation of zeolite as a potential reactive medium in a permeable reactive barrier (PRB): Batch and column studies. Geosciences 2020, 10, 59. [Google Scholar] [CrossRef]
- Mfoumou, C.M.; Mignard, S.; Belin, T. The preferential adsorption sites of H2O on adsorption sites of CO2 at low temperature onto NaX and BaX zeolites. Adsorpt. Sci. Technol. 2018, 36, 1246–1259. [Google Scholar] [CrossRef]
- Hammoudi, H.; Bendenia, S.; Marouf-Khelifa, K.; Marouf, R.; Schott, J.; Khelifa, A. Effect of the binary and ternary exchanges on crystallinity and textural properties of X zeolites. Microporous Mesoporous Mater. 2008, 113, 343–351. [Google Scholar] [CrossRef]
- Sowunmi, A.R.; Folayan, C.O.; Anafi, F.O.; Ajayi, O.A.; Omisanya, N.O.; Obada, D.O.; Dodoo-Arhin, D. Dataset on the comparison of synthesized and commercial zeolites for potential solar adsorption refrigerating system. Data Brief 2018, 20, 90–95. [Google Scholar] [CrossRef]
- El Hadi, Z.; Nibou, D. High-Pressure CO2 Adsorption onto NaX Zeolite: Effect of Li+, K+, Mg2+, and Zn2+ and Equilibrium Isotherms Study. Iran. J. Chem. Chem. Eng. 2021, 40, 1195–1215. [Google Scholar]
- Romero, M.D.; Ovejero, G.; Rodríguez, A.; Gómez, J.M.; Águeda, I. O methylation of phenol in liquid phase over basic zeolites. Ind. Eng. Chem. Res. 2004, 43, 8194–8199. [Google Scholar] [CrossRef]
- Kosawatthanakun, S.; Pansakdanon, C.; Sosa, N.; Chanlek, N.; Roessner, F.; Prayoonpokarach, S.; Wittayakun, J. Comparative Properties of K/NaX and K/NaY from Ultrasound-Assisted Impregnation and Performance in Transesterification of Palm Oil. ACS Omega 2022, 7, 9130–9141. [Google Scholar] [CrossRef]
- Peterson, D. Influence of presorbed water on the sorption of nitrogen by zeolites at ambient temperatures. Zeolites 1981, 1, 105–112. [Google Scholar] [CrossRef]
Country | Acronym | OC Model | Working Time (h) | Oxygen Purity (% v/v) |
---|---|---|---|---|
Ethiopia | E-1 | JAY 10 L | N.S. | 41 |
E-2 | Yuwell 7F-10 | 14,360 | 33 | |
Uganda | U-1 | DeVilbiss | N.S. | 40 |
U-2 | Drive DeVilbiss | 17,842 | 50 | |
South Africa | SA | N.A. | N.S. | 85 |
Country | Acronym | Si/Al (mol/mol) | BET Area (m2/g) | Pore Volume (cm3/g) |
---|---|---|---|---|
Ethiopia | E-1 | 1.18 | 561.99 | 0.228 |
E-2 | 1.20 | 538.99 | 0.220 | |
Uganda | U-1 | 1.22 | 410.12 | 0.231 |
U-2 | 1.20 | 518.19 | 0.298 | |
South Africa | SA | 1.16 | 560.40 | 0.285 |
n.a. | C-X | 1.24 | 338.48 | 0.193 |
Country | Acronym | Temperature (°C) | (wt%) | |
---|---|---|---|---|
Ethiopia | E-1 | 156.9 | 22.28 | 0.286 |
E-2 | 158.1 | 23.00 | 0.298 | |
Uganda | U-1 | 141.5 | 21.28 | 0.270 |
U-2 | 144.0 | 21.30 | 0.270 | |
South Africa | SA | 144.3 | 20.15 | 0.252 |
n.a. | C-X | 132.6 | 19.00 | 0.234 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzeo, L.; Ibrahim, N.H.; Pickering, K.S.; Oyarzabal, J.A.; Bwogi, E.; Piemonte, V.; Walton, R.I.; Piaggio, D.; Pecchia, L. Understanding Oxygen Concentrator Failures in Low Resource Settings: The Role of Dust and Humidity. Appl. Sci. 2025, 15, 4311. https://doi.org/10.3390/app15084311
Mazzeo L, Ibrahim NH, Pickering KS, Oyarzabal JA, Bwogi E, Piemonte V, Walton RI, Piaggio D, Pecchia L. Understanding Oxygen Concentrator Failures in Low Resource Settings: The Role of Dust and Humidity. Applied Sciences. 2025; 15(8):4311. https://doi.org/10.3390/app15084311
Chicago/Turabian StyleMazzeo, Leone, Nahimiya Husen Ibrahim, Katie S. Pickering, Jacob A. Oyarzabal, Ernest Bwogi, Vincenzo Piemonte, Richard I. Walton, Davide Piaggio, and Leandro Pecchia. 2025. "Understanding Oxygen Concentrator Failures in Low Resource Settings: The Role of Dust and Humidity" Applied Sciences 15, no. 8: 4311. https://doi.org/10.3390/app15084311
APA StyleMazzeo, L., Ibrahim, N. H., Pickering, K. S., Oyarzabal, J. A., Bwogi, E., Piemonte, V., Walton, R. I., Piaggio, D., & Pecchia, L. (2025). Understanding Oxygen Concentrator Failures in Low Resource Settings: The Role of Dust and Humidity. Applied Sciences, 15(8), 4311. https://doi.org/10.3390/app15084311