Object-Based Downscaling Method for Land Surface Temperature with High-Spatial-Resolution Multispectral Data
Abstract
:1. Introduction
2. Methodology
2.1. Study Area and Datasets
2.2. Theoretical Principle of OBD
2.3. Thermal Radiance Estimation of Objects
2.4. Objects Generated from the High-Resolution Multispectral Data
2.5. Initial LST Estimated by High-Resolution Multispectral Data
2.6. BBE Estimated by Different Thermal Infrared Bands
2.7. Estimation of LST in High Spatial Resolution
2.8. Validation of the Approach
3. Results and Discussion
3.1. Downscaling of MODIS LST with ASTER and ETM+ VNIR Data
3.2. The Influence of the Object’s Weight in the OBD Method
3.3. A Discussion of the Influential Elements on the OBD Results
3.4. A Discussion of the Adjacency Effect in LST Downscaling
3.5. Discussion on Applicability in Other Regions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cristóbal, J.; Jiménez-Muñoz, J.C.; Sobrino, J.A.; Ninyerola, M.; Pons, X. Improvements in Land Surface Temperature Retrieval from the Landsat Series Thermal Band Using Water Vapor and Air Temperature. J. Geophys. Res. 2009, 114, D08103. [Google Scholar] [CrossRef]
- Li, Z.-L.; Wu, H.; Wang, N.; Qiu, S.; Sobrino, J.A.; Wan, Z.; Tang, B.-H.; Yan, G. Land Surface Emissivity Retrieval from Satellite Data. Int. J. Remote Sens. 2013, 34, 3084–3127. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A Climatological Study of Evapotranspiration and Moisture Stress across the Continental United States Based on Thermal Remote Sensing: 1. Model Formulation. J. Geophys. Res. 2007, 112, D10117. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, P.; Li, X. Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index Products for Monitoring Drought in the Southern Great Plains, USA. Int. J. Remote Sens. 2004, 25, 61–72. [Google Scholar] [CrossRef]
- Zhan, W.; Chen, Y.; Zhou, J.; Wang, J.; Liu, W.; Voogt, J.; Zhu, X.; Quan, J.; Li, J. Disaggregation of Remotely Sensed Land Surface Temperature: Literature Survey, Taxonomy, Issues, and Caveats. Remote Sens. Environ. 2013, 131, 119–139. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. Examining the Impacts of Urban Biophysical Compositions on Surface Urban Heat Island: A Spectral Unmixing and Thermal Mixing Approach. Remote Sens. Environ. 2013, 131, 262–274. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S.; Yao, Y.; Zhang, X. Estimating the Optimal Broadband Emissivity Spectral Range for Calculating Surface Longwave Net Radiation. IEEE Geosci. Remote Sens. Lett. 2013, 10, 401–405. [Google Scholar] [CrossRef]
- Essa, W.; Van Der Kwast, J.; Verbeiren, B.; Batelaan, O. Downscaling of Thermal Images over Urban Areas Using the Land Surface Temperature–Impervious Percentage Relationship. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 95–108. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Neale, C.M.U. A Vegetation Index Based Technique for Spatial Sharpening of Thermal Imagery. Remote Sens. Environ. 2007, 107, 545–558. [Google Scholar] [CrossRef]
- Zhan, W.; Chen, Y.; Zhou, J.; Li, J.; Liu, W. Sharpening Thermal Imageries: A Generalized Theoretical Framework From an Assimilation Perspective. IEEE Trans. Geosci. Remote Sens. 2011, 49, 773–789. [Google Scholar] [CrossRef]
- Baatz, M.; Hoffmann, C.; Willhauck, G. Progressing from Object-Based to Object-Oriented Image Analysis. In Object-Based Image Analysis; Blaschke, T., Lang, S., Hay, G.J., Eds.; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2008; pp. 29–42. ISBN 978-3-540-77057-2. [Google Scholar]
- Pohl, C.; Van Genderen, J.L. Review Article Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications. Int. J. Remote Sens. 1998, 19, 823–854. [Google Scholar] [CrossRef]
- Zhu, S.; Guan, H.; Millington, A.C.; Zhang, G. Disaggregation of Land Surface Temperature over a Heterogeneous Urban and Surrounding Suburban Area: A Case Study in Shanghai, China. Int. J. Remote Sens. 2013, 34, 1707–1723. [Google Scholar] [CrossRef]
- Dang, L.; Kim, S. An Analysis of the Spatial and Temporal Evolution of the Urban Heat Island in the City of Zhengzhou Using MODIS Data. Appl. Sci. 2023, 13, 7013. [Google Scholar] [CrossRef]
- Rodrigues De Almeida, C.; Garcia, N.; Campos, J.C.; Alírio, J.; Arenas-Castro, S.; Gonçalves, A.; Sillero, N.; Teodoro, A.C. Time-Series Analyses of Land Surface Temperature Changes with Google Earth Engine in a Mountainous Region. Heliyon 2023, 9, e18846. [Google Scholar] [CrossRef]
- Hasan Karaman, Ç.; Akyürek, Z. Evaluation of Near-Surface Air Temperature Reanalysis Datasets and Downscaling with Machine Learning Based Random Forest Method for Complex Terrain of Turkey. Adv. Space Res. 2023, 71, 5256–5281. [Google Scholar] [CrossRef]
- Darmanin, G.C.; Gauci, A.; Giona Bucci, M.; Deidun, A. Monitoring Sea Surface Temperature and Sea Surface Salinity Around the Maltese Islands Using Sentinel-2 Imagery and the Random Forest Algorithm. Appl. Sci. 2025, 15, 929. [Google Scholar] [CrossRef]
- Rocca, M.T.; Franzini, M.; Casella, V.M. Calibration and Validation of MODIS-Derived Ground-Level Air Temperature Models by Means of Ground Measurements. Appl. Sci. 2024, 15, 184. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Wang, X.; Wu, Z.; Prodhan, F.A. Incorporating Multi-Temporal Remote Sensing and a Pixel-Based Deep Learning Classification Algorithm to Map Multiple-Crop Cultivated Areas. Appl. Sci. 2024, 14, 3545. [Google Scholar] [CrossRef]
- Güngör Şahin, O.; Gündüz, O. A Novel Land Surface Temperature Reconstruction Method and Its Application for Downscaling Surface Soil Moisture with Machine Learning. J. Hydrol. 2024, 634, 131051. [Google Scholar] [CrossRef]
- Afshari, A.; Vogel, J.; Chockalingam, G. Statistical Downscaling of SEVIRI Land Surface Temperature to WRF Near-Surface Air Temperature Using a Deep Learning Model. Remote Sens. 2023, 15, 4447. [Google Scholar] [CrossRef]
- Sun, M.; Zhao, X.; Zhao, J.; Liu, N.; Zhao, S.; Guo, Y.; Shi, W.; Si, L. A New Spatial Downscaling Method for Long-Term AVHRR NDVI by Multiscale Residual Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7068–7088. [Google Scholar] [CrossRef]
- Wu, J.; Zhong, B.; Tian, S.; Tian, S.; Yang, A.; Wu, J. Downscaling of Urban Land Surface Temperature Based on Multi-Factor Geographically Weighted Regression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2897–2911. [Google Scholar] [CrossRef]
- Ji, Z.; Shaomin, L.; Mingsong, L.; Wenfeng, Z.; Ziwei, X.; Tongren, X. Quantification of the Scale Effect in Downscaling Remotely Sensed Land Surface Temperature. Remote Sens. 2016, 8, 975. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Essa, W.; Verbeiren, B.; Van Der Kwast, J.; Van De Voorde, T.; Batelaan, O. Evaluation of the DisTrad Thermal Sharpening Methodology for Urban Areas. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 163–172. [Google Scholar] [CrossRef]
- Zakšek, K.; Oštir, K. Downscaling Land Surface Temperature for Urban Heat Island Diurnal Cycle Analysis. Remote Sens. Environ. 2012, 117, 114–124. [Google Scholar] [CrossRef]
- Gao, L.; Zhan, W.; Huang, F.; Quan, J.; Lu, X.; Wang, F.; Ju, W.; Zhou, J. Localization or Globalization? Determination of the Optimal Regression Window for Disaggregation of Land Surface Temperature. IEEE Trans. Geosci. Remote Sens. 2017, 55, 477–490. [Google Scholar] [CrossRef]
- Liu, D.; Pu, R. Downscaling Thermal Infrared Radiance for Subpixel Land Surface Temperature Retrieval. Sensors 2008, 8, 2695–2706. [Google Scholar] [CrossRef]
- Mukherjee, F.; Singh, D. Assessing Land Use–Land Cover Change and Its Impact on Land Surface Temperature Using LANDSAT Data: A Comparison of Two Urban Areas in India. Earth Syst. Environ. 2020, 4, 385–407. [Google Scholar] [CrossRef]
- Segl, K.; Roessner, S.; Heiden, U.; Kaufmann, H. Fusion of Spectral and Shape Features for Identification of Urban Surface Cover Types Using Reflective and Thermal Hyperspectral Data. ISPRS J. Photogramm. Remote Sens. 2003, 58, 99–112. [Google Scholar] [CrossRef]
- Yang, G.; Pu, R.; Zhao, C.; Huang, W.; Wang, J. Estimation of Subpixel Land Surface Temperature Using an Endmember Index Based Technique: A Case Examination on ASTER and MODIS Temperature Products over a Heterogeneous Area. Remote Sens. Environ. 2011, 115, 1202–1219. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L. Spatial Downscaling of MODIS Land Surface Temperatures Using Geographically Weighted Regression: Case Study in Northern China. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6458–6469. [Google Scholar] [CrossRef]
- Jing, L.; Cheng, Q. A Technique Based on Non-Linear Transform and Multivariate Analysis to Merge Thermal Infrared Data and Higher-Resolution Multispectral Data. Int. J. Remote Sens. 2010, 31, 6459–6471. [Google Scholar] [CrossRef]
- Wang, F.; Qin, Z.; Li, W.; Song, C.; Karnieli, A.; Zhao, S. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data. Sensors 2014, 15, 304–330. [Google Scholar] [CrossRef]
- Hutengs, C.; Vohland, M. Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens. Environ. 2016, 178, 127–141. [Google Scholar] [CrossRef]
- Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data. Remote Sens. 2015, 7, 4268–4289. [Google Scholar] [CrossRef]
- Shackelford, A.K.; Davis, C.H. A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2354–2363. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; Van Der Meer, F.; Van Der Werff, H.; Van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a New Paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef]
- Blaschke, T. Object Based Image Analysis for Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Hu, P.; Wang, A.; Yang, Y.; Pan, X.; Hu, X.; Chen, Y.; Kong, X.; Bao, Y.; Meng, X.; Dai, Y. Spatiotemporal Downscaling Method of Land Surface Temperature Based on Daily Change Model of Temperature. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8360–8377. [Google Scholar] [CrossRef]
- Xie, W.; Liu, T.; Gu, Y. Intrinsic Hyperspectral Image Recovery for UAV Strips Stitching. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5527013. [Google Scholar] [CrossRef]
- Hay, G.J.; Castilla, G. Geographic Object-Based Image Analysis (GEOBIA): A New Name for a New Discipline. In Object-Based Image Analysis; Blaschke, T., Lang, S., Hay, G.J., Eds.; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2008; pp. 75–89. ISBN 978-3-540-77057-2. [Google Scholar]
- Lang, S. Object-Based Image Analysis for Remote Sensing Applications: Modeling Reality—Dealing with Complexity. In Object-Based Image Analysis; Blaschke, T., Lang, S., Hay, G.J., Eds.; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2008; pp. 3–27. ISBN 978-3-540-77057-2. [Google Scholar]
- Brodský, L.; Borůvka, L. Object-Oriented Fuzzy Analysis of Remote Sensing Data for Bare Soil Brightness Mapping. Soil Water Res. 2006, 1, 79–84. [Google Scholar] [CrossRef]
- Flanders, D.; Hall-Beyer, M.; Pereverzoff, J. Preliminary Evaluation of eCognition Object-Based Software for Cut Block Delineation and Feature Extraction. Can. J. Remote Sens. 2003, 29, 441–452. [Google Scholar] [CrossRef]
- Wuest, B.; Zhang, Y. Region Based Segmentation of QuickBird Multispectral Imagery through Band Ratios and Fuzzy Comparison. ISPRS J. Photogramm. Remote Sens. 2009, 64, 55–64. [Google Scholar] [CrossRef]
- Li, H.; Jing, L.; Tang, Y.; Wang, L. An Image Fusion Method Based on Image Segmentation for High-Resolution Remotely-Sensed Imagery. Remote Sens. 2018, 10, 790. [Google Scholar] [CrossRef]
- Gamanya, R.; De Maeyer, P.; De Dapper, M. Object-Oriented Change Detection for the City of Harare, Zimbabwe. Expert Syst. Appl. 2009, 36, 571–588. [Google Scholar] [CrossRef]
- Gergel, S.E.; Stange, Y.; Coops, N.C.; Johansen, K.; Kirby, K.R. What Is the Value of a Good Map? An Example Using High Spatial Resolution Imagery to Aid Riparian Restoration. Ecosystems 2007, 10, 688–702. [Google Scholar] [CrossRef]
- Radoux, J.; Defourny, P. A Quantitative Assessment of Boundaries in Automated Forest Stand Delineation Using Very High Resolution Imagery. Remote Sens. Environ. 2007, 110, 468–475. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, P.; Fung, T.; Wang, J.; Li, X. Object-oriented Classification for Urban Land Cover Mapping with ASTER Imagery. Int. J. Remote Sens. 2007, 28, 4645–4651. [Google Scholar] [CrossRef]
- Su, W.; Li, J.; Chen, Y.; Liu, Z.; Zhang, J.; Low, T.M.; Suppiah, I.; Hashim, S.A.M. Textural and Local Spatial Statistics for the Object-oriented Classification of Urban Areas Using High Resolution Imagery. Int. J. Remote Sens. 2008, 29, 3105–3117. [Google Scholar] [CrossRef]
- Gusella, L.; Adams, B.J.; Bitelli, G.; Huyck, C.K.; Mognol, A. Object-Oriented Image Understanding and Post-Earthquake Damage Assessment for the 2003 Bam, Iran, Earthquake. Earthq. Spectra 2005, 21, 225–238. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Cheng, J.; Leng, P. Cross-Satellite Comparison of Operational Land Surface Temperature Products Derived from MODIS and ASTER Data over Bare Soil Surfaces. ISPRS J. Photogramm. Remote Sens. 2017, 126, 1–10. [Google Scholar] [CrossRef]
- Kustura, K.; Conti, D.; Sammer, M.; Riffler, M. Harnessing Multi-Source Data and Deep Learning for High-Resolution Land Surface Temperature Gap-Filling Supporting Climate Change Adaptation Activities. Remote Sens. 2025, 17, 318. [Google Scholar] [CrossRef]
- Sola-Caraballo, J.; Serrano-Jiménez, A.; Rivera-Gomez, C.; Galan-Marin, C. Multi-Criteria Assessment of Urban Thermal Hotspots: A GIS-Based Remote Sensing Approach in a Mediterranean Climate City. Remote Sens. 2025, 17, 231. [Google Scholar] [CrossRef]
- Khan, M.; Chen, R. Assessing the Impact of Land Use and Land Cover Change on Environmental Parameters in Khyber Pakhtunkhwa, Pakistan: A Comprehensive Study and Future Projections. Remote Sens. 2025, 17, 170. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Liu, S.; Xie, F.; Ding, J.; Li, G.; Su, H. Quantifying Spatiotemporal Changes in Supraglacial Debris Cover in Eastern Pamir from 1994 to 2024 Based on the Google Earth Engine. Remote Sens. 2025, 17, 144. [Google Scholar] [CrossRef]
- Hurduc, A.; Ermida, S.L.; DaCamara, C.C. A Multi-Layer Perceptron Approach to Downscaling Geostationary Land Surface Temperature in Urban Areas. Remote Sens. 2024, 17, 45. [Google Scholar] [CrossRef]
RSI | RSI Calculation | LST-RSI Relationship | Studies |
---|---|---|---|
NDVI | Kustas et al. [26]; Zhan et al. [11] | ||
fv | Agam et al. [10] | ||
NDBI | Essa et al. [9]; Wang et al. [36] | ||
ISA | Essa et al. [9] | ||
Fi | Subject to: and | Deng and Wu [7] |
Landcover | Grass | Tree | Soil | Building | Water |
---|---|---|---|---|---|
BBE | 0.982 | 0.983 | 0.928 | 0.942 | 0.991 |
Cases | OBD Method | PBA Method | |||||
---|---|---|---|---|---|---|---|
ME | STD | RMSE | ME | STD | RMSE | ||
ASTER | Natural terrain | −0.96 | 2.94 | 2.12 | 3.13 | 3.34 | 2.48 |
Urban surface | −1.94 | 2.54 | 3.59 | 3.27 | 2.35 | 4.15 | |
Water bodies | −1.08 | 1.12 | 0.31 | 1.32 | 0.94 | 3.04 | |
ETM+ B | Natural terrain | −1.34 | 2.99 | 2.31 | −4.28 | 3.05 | 2.66 |
Urban surface | −0.86 | 2.44 | 4.13 | 2.14 | 2.35 | 5.15 | |
Water bodies | 0.14 | 0.64 | 0.36 | −1.28 | 0.62 | 2.08 | |
ETM+ C | Natural terrain | −1.16 | 2.74 | 2.57 | −2.52 | 2.98 | 3.06 |
Urban surface | 0.84 | 3.55 | 3.39 | 3.08 | 3.35 | 3.88 | |
Water bodies | −0.48 | 0.55 | 0.91 | 1.22 | 0.54 | 1.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Zhang, S.; Wang, F. Object-Based Downscaling Method for Land Surface Temperature with High-Spatial-Resolution Multispectral Data. Appl. Sci. 2025, 15, 4211. https://doi.org/10.3390/app15084211
Wu S, Zhang S, Wang F. Object-Based Downscaling Method for Land Surface Temperature with High-Spatial-Resolution Multispectral Data. Applied Sciences. 2025; 15(8):4211. https://doi.org/10.3390/app15084211
Chicago/Turabian StyleWu, Siyao, Shengmao Zhang, and Fei Wang. 2025. "Object-Based Downscaling Method for Land Surface Temperature with High-Spatial-Resolution Multispectral Data" Applied Sciences 15, no. 8: 4211. https://doi.org/10.3390/app15084211
APA StyleWu, S., Zhang, S., & Wang, F. (2025). Object-Based Downscaling Method for Land Surface Temperature with High-Spatial-Resolution Multispectral Data. Applied Sciences, 15(8), 4211. https://doi.org/10.3390/app15084211