Classifying Raman Spectra of Colon Cells by Principal Component Analysis—Linear Discriminant Analysis and Partial Least Squares—Linear Discriminant Analysis Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Preparation
2.2. Raman Spectroscopy
2.3. Spectral Processing and Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Agency for Research on Cancer. Available online: https://www.iarc.who.int/cancer-type/colorectal-cancer/ (accessed on 11 June 2024).
- Nass, S.J.; Cohen, M.B.; Nayar, R.; Zutter, M.M.; Balogh, E.P.; Schilsky, R.L.; Hricak, H.; Elenitoba-Johnson, K.S.J. Improving Cancer Diagnosis and Care: Patient Access to High-Quality Oncologic Pathology. Oncologist 2019, 24, 1287–1290. [Google Scholar] [CrossRef] [PubMed]
- Ruddon, R.W. What Makes a Cancer Cell a Cancer Cell? In Holland-Frei Cancer Medicine, 6th ed.; Kufe, D.W., Pollock, R.E., Weichselbaum, R.R., Bast, R.C., Gansler, T.S., Holland, J.F., Frei, E., Eds.; BC Decker: Hamilton, ON, USA, 2003. [Google Scholar]
- Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 2007, 3, 413–438. [Google Scholar] [CrossRef] [PubMed]
- Beloribi-Djefaflia, S.; Vasseur, S.; Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis 2016, 5, e189. [Google Scholar] [CrossRef]
- Jelski, W.; Mroczko, B. Biochemical Markers of Colorectal Cancer-Present and Future. Cancer Manag. Res. 2020, 22, 4789–4797. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhang, B.; Li, P.; Zhao, Y. Methods and biomarkers for early detection, prediction, and diagnosis of colorectal cancer. Biomed. Pharmacother. 2023, 163, 114786. [Google Scholar] [CrossRef]
- Abramczyk, H.; Brozek-Pluska, B.; Jarota, A.; Surmacki, J.; Imiela, A.; Kopec, M. A look into the use of Raman spectroscopy for brain and breast cancer diagnostics: Linear and non-linear optics in cancer research as a gateway to tumor cell identity. Expert Rev. Mol. Diagn. 2020, 20, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, S.; Managó, S.; De Luca, A.C. Raman Microscopy: Progress in Research on Cancer Cell Sensing. Sensors 2020, 20, 5525. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy Can Detect and Monitor Cancer at Cellular Level: Analysis of Resistant and Sensitive Subtypes of Testicular Cancer Cell Lines. Appl. Spectrosc. Rev. 2012, 47, 571–581. [Google Scholar] [CrossRef]
- Gautam, R.; Vanga, S.; Ariese, F.; Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2015, 2, 8. [Google Scholar] [CrossRef]
- Morais, C.L.M.; Lima, K.M.G.; Singh, M.; Martin, F.L. Tutorial: Multivariate classification for vibrational spectroscopy in biological samples. Nat. Protoc. 2020, 15, 2143–2162. [Google Scholar] [CrossRef]
- Guo, S.; Popp, J.; Bocklitz, T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning–based modelling. Nat. Protoc. 2021, 16, 5426–5459. [Google Scholar] [CrossRef] [PubMed]
- Lasalvia, M.; Gallo, C.; Capozzi, V.; Perna, G. Classifying Raman Spectra of Colon Cells Based on Machine Learning Algorithms. Photonics 2024, 11, 275. [Google Scholar] [CrossRef]
- Lasalvia, M.; Gallo, C.; Capozzi, V.; Perna, G. Discrimination of Healthy and Cancerous Colon Cells Based on FTIR Spectroscopy and Machine Learning Algorithms. Appl. Sci. 2023, 13, 10325. [Google Scholar] [CrossRef]
- Lasalvia, M.; Capozzi, V.; Perna, G. A comparison of PCA-LDA and PLS-DA techniques for classification of vibrational spectra. Appl. Sci. 2022, 12, 5345. [Google Scholar] [CrossRef]
- Ning, T.; Li, H.; Chen, Y.; Zhang, B.; Zhang, F.; Wang, S. Raman spectroscopy based pathological analysis and discrimination of formalin fixed paraffin embedded breast cancer tissue. Vib. Spectrosc. 2021, 115, 103260. [Google Scholar] [CrossRef]
- Menges, F. Spectragryph, version 1.2.16; Optical Spectroscopy Software; Spectragryph: Oberstdorf, Germany, 2023. Available online: http://www.effemm2.de/spectragryph/ (accessed on 15 March 2024).
- Talari, A.C.S.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2015, 50, 46–111. [Google Scholar] [CrossRef]
- Beton, K.; Brozek-Płuska, B. Biochemistry and Nanomechanical Properties of Human Colon Cells upon Simvastatin, Lovastatin, and Mevastatin Supplementations: Raman Imaging and AFM Studies. J. Phys. Chem. B 2022, 126, 7088–7103. [Google Scholar] [CrossRef]
- Brozek-Pluska, B.; Beton, K. Oxidative stress induced by tBHP in human normal colon cells by label free Raman spectroscopy and imaging. The protective role of natural antioxidants in the form of β-carotene. RSC Adv. 2021, 11, 16419–16434. [Google Scholar] [CrossRef]
- Brozek-Pluska, B.; Jarota, A.; Kania, R.; Abramczyk, H. Zinc Phthalocyanine Photochemistry by Raman Imaging, Fluorescence Spectroscopy and Femtosecond Spectroscopy in Normal and Cancerous Human Colon Tissues and Single Cells. Molecules 2020, 25, 2688. [Google Scholar] [CrossRef]
- Beton-Mysur, K.; Brozek-Pluska, B. Raman Spectroscopy and Imaging Studies of Human Digestive Tract Cells and Tissues—Impact of Vitamin C and E Supplementation. Molecules 2023, 28, 137. [Google Scholar] [CrossRef]
- Dong, L.; Sun, X.; Chao, Z.; Zhang, S.; Zheng, J.; Gurung, R.; Du, J.; Shi, J.; Xu, Y.; Zhang, Y.; et al. Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 122, 288–294. [Google Scholar] [CrossRef]
- Beton, K.; Wysocki, P.; Brozek-Pluska, B. Mevastatin in colon cancer by spectroscopic and microscopic methods-Raman imaging and AFM studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 5, 120726. [Google Scholar] [CrossRef] [PubMed]
- Varmuza, K.; Filzmoser, P. Introduction to Multivariate Statistical Analysis in Chemometrics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- You, R.; Li, J.; Wang, H.; Wu, Y.; Weng, J.; Lu, Y. High-performance SERS biosensor based on in-situ reduction of silver nanoparticles in an ultra-filtration centrifuge device for label-free detection of colon cancer in serum. J. Membr. Sci. 2023, 678, 121688. [Google Scholar] [CrossRef]
- Li, J.; She, Q.; Wang, W.; Liu, R.; You, R.; Wu, Y.; Weng, J.; Liu, Y.; Lu, Y. Label-Free SERS Analysis of Serum Using Ag NPs/Cellulose Nanocrystal/Graphene Oxide Nanocomposite Film Substrate in Screening Colon Cancer. Nanomaterials 2023, 13, 334. [Google Scholar] [CrossRef]
- Blake, N.; Gaifulina, R.; Griffin, L.D.; Bell, I.M.; Rodriguez-Justo, M.; Thomas, G.M.H. Deep Learning Applied to Raman Spectroscopy for the Detection of Microsatellite Instability/MMR Deficient Colorectal Cancer. Cancers 2023, 15, 1720. [Google Scholar] [CrossRef]
- Peng, S.; Lu, D.; Zhang, B.; You, R.; Chen, J.; Xu, H.; Lu, Y. Machine learning-assisted internal standard calibration label-free SERS strategy for colon cancer detection. Anal. Bioanal. Chem. 2023, 415, 1699–1707. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.C.; Liong, C.Y.; Jemain, A.A. Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: A review of contemporary practice strategies and knowledge gaps. Analyst 2018, 143, 3526–3539. [Google Scholar] [CrossRef] [PubMed]
- Bergholt, M.S.; Zheng, W.; Lin, K.; Wang, J.; Xu, H.; Ren, J.L.; Ho, K.Y.; Teh, M.; Yeoh, K.G.; Huang, Z. Characterizing variability of in vivo Raman spectroscopic properties of different anatomical sites of normal colorectal tissue towards cancer diagnosis at colonoscopy. Anal. Chem. 2015, 87, 960–966. [Google Scholar] [CrossRef]
- Liu, W.; Wang, H.; Du, J.; Jing, C. Raman microspectroscopy of nucleus and cytoplasm for human colon cancer diagnosis. Biosens. Bioelectron. 2017, 97, 70–74. [Google Scholar] [CrossRef]
- Brozek-Pluska, B. Statistics assisted analysis of Raman spectra and imaging of human colon cell lines—Label free, spectroscopic diagnostics of colorectal cancer. J. Mol. Struct. 2020, 1218, 128524. [Google Scholar] [CrossRef]
Spectral Position (cm−1) | Assignment |
---|---|
1004 | C-C symmetric ring breathing of phenylalanine (p.) |
1031 | C-H in plane bending of phenylalanine (p.) |
1064 | C-C stretching (l.) |
1088 (cytoplasm spectra) | C-N stretching (p.) and C-C stretching (l.) |
1097 (nucleus spectra) | Symmetric PO2¯ stretching of DNA (n.a.) |
1129 | C-N stretching (p.), C-O stretching (c.) and C-C stretching (l.) |
1174 | C-H bending amino acids (p.) |
1210 | C-C6H5 stretching amino acids (p.) |
1250 | Amide III (p.) |
1272 | Amide III (p.) |
1326 | CH3CH2 wagging mode in purine bases of DNA (n.a.) and collagen (p.) |
1340 | Nucleic acid modes (n.a.) |
1406 | (C=O)O¯ stretching of amino acids (p.) |
1450 | CH2 bending modes (p., l.) |
1580 | Ring breathing modes in DNA bases (n.a.) |
1657 | Amide I (p.) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasalvia, M.; Capozzi, V.; Perna, G. Classifying Raman Spectra of Colon Cells by Principal Component Analysis—Linear Discriminant Analysis and Partial Least Squares—Linear Discriminant Analysis Methods. Appl. Sci. 2025, 15, 4193. https://doi.org/10.3390/app15084193
Lasalvia M, Capozzi V, Perna G. Classifying Raman Spectra of Colon Cells by Principal Component Analysis—Linear Discriminant Analysis and Partial Least Squares—Linear Discriminant Analysis Methods. Applied Sciences. 2025; 15(8):4193. https://doi.org/10.3390/app15084193
Chicago/Turabian StyleLasalvia, Maria, Vito Capozzi, and Giuseppe Perna. 2025. "Classifying Raman Spectra of Colon Cells by Principal Component Analysis—Linear Discriminant Analysis and Partial Least Squares—Linear Discriminant Analysis Methods" Applied Sciences 15, no. 8: 4193. https://doi.org/10.3390/app15084193
APA StyleLasalvia, M., Capozzi, V., & Perna, G. (2025). Classifying Raman Spectra of Colon Cells by Principal Component Analysis—Linear Discriminant Analysis and Partial Least Squares—Linear Discriminant Analysis Methods. Applied Sciences, 15(8), 4193. https://doi.org/10.3390/app15084193