Monitoring the Internal Conditions of Road Structures by Smart Sensing and In Situ Monitoring Technology: A Review
Abstract
:1. Introduction
2. Research Progress in In Situ Road Health Monitoring Technology
2.1. Fiber-Optic Grating Sensors
2.2. Resistance-Type Strain Gauges
2.3. Conductive Concrete Composite Materials
2.4. Piezoelectric Sensing Elements
2.5. Wireless Sensing Elements
3. Pavement Self-Sensing Technology Based on Conductive Polymer Composite Materials
3.1. Factors Affecting the Electrical Conductivity of Polymer Composites
3.1.1. Polymer Matrix
3.1.2. Conductive Fillers
3.2. Preparation Methods of Conductive Polymer Composite Materials
3.3. Research on Epoxy Resin-Based Conductive Composites
4. Future Research Directions for Smart Sensing Technologies in Civil Engineering
- (1)
- Multi-Modal Sensor Fusion and Hybrid Sensing Architectures
- (2)
- Self-Powered and Energy-Harvesting Sensors
- (3)
- Edge Computing and Distributed Intelligence
5. Conclusions and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Su, P.; Li, M.; You, Z.; Zhao, M. Review on evolution and evaluation of asphalt pavement structures and materials. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 7, 573–599. [Google Scholar]
- Liang, M.; Liang, P.; Fan, W.; Qian, C.; Xin, X.; Shi, J.; Nan, G. Thermo-rheological behavior and compatibility of modified asphalt with various styrene–butadiene structures in SBS copolymers. Mater. Des. 2015, 88, 177–185. [Google Scholar]
- Abdo, M. Structural Health Monitoring, History, Applications and Future. A Review Book; Open Science: Charlottesville, VA, USA, 2014. [Google Scholar]
- Liu, G. Review and Prospect of Research on Structural Health Monitoring Technology for Bridges. J. Arch. Res. Dev. 2024, 8, 156–161. [Google Scholar]
- Dong, Z.; Ma, X.; Shao, X. Airport pavement responses obtained from wireless sensing network upon digital signal processing. Int. J. Pavement Eng. 2018, 19, 381–390. [Google Scholar]
- Ko, J.M.; Ni, Y.Q. Technology developments in structural health monitoring of large-scale bridges. Eng. Struct. 2005, 27, 1715–1725. [Google Scholar]
- Han, W.; Yang, G.; Chen, S.; Zhou, K.; Xu, X. Research progress on intelligent operation and maintenance of bridges. J. Traffic Transp. Eng. (Engl. Ed.) 2024, 11, 173–187. [Google Scholar]
- Liu, H.; Ge, W.; Pan, Q.; Hu, R.; Lv, S.; Huang, T. Characteristics and analysis of dynamic strain response on typical asphalt pavement using Fiber Bragg Grating sensing technology. Constr. Build. Mater. 2021, 310, 125242. [Google Scholar]
- Soong, T.T.; Cimellaro, G.P. Future directions in structural control. Struct. Control Health Monit. 2009, 16, 7–16. [Google Scholar]
- Rana, S.; Fangueiro, R.; Correia, A.G. A review on smart self-sensing composite materials for civil engineering applications. AIMS Mater. Sci. 2016, 3, 357–379. [Google Scholar]
- Barriera, M.; Pouget, S.; Lebental, B.; Van Rompu, J. In situ pavement monitoring: A review. Infrastructures 2020, 5, 18. [Google Scholar] [CrossRef]
- Alavi, A.H.; Hasni, H.; Lajnef, N.; Chatti, K. Continuous health monitoring of pavement systems using smart sensing technology. Constr. Build. Mater. 2016, 114, 719–736. [Google Scholar]
- Moghaddam, T.B.; Karim, M.R.; Abdelaziz, M. A review on fatigue and rutting performance of asphalt mixes. Sci. Res. Essays 2011, 6, 670–682. [Google Scholar]
- Selvaraj, S.I. Review on the use of instrumented pavement test data in validating flexible pavement mechanistic load response models. Procedia-Soc. Behav. Sci. 2012, 43, 819–831. [Google Scholar] [CrossRef]
- Wang, N.; Han, T.; Cheng, H.; Li, T.; Fu, J.; Ma, T.; Fu, Y.; Chen, F.; Zhang, Y. Monitoring structural health status of asphalt pavement using intelligent sensing technology. Constr. Build. Mater. 2022, 352, 129025. [Google Scholar]
- Chu, W.; Xiong, L.H. A review on pavement distress and structural defects detection and quantification technologies using imaging approaches. J. Traffic Transp. Eng. (Engl. Ed.) 2022, 9, 135–150. [Google Scholar] [CrossRef]
- Friebele, E.J. Fiber Bragg grating strain sensors: Present and future applications in smart structures. Opt. Photonics News 1998, 9, 33. [Google Scholar] [CrossRef]
- Fu, D.; Zhang, Y.N.; Zhang, A.; Han, B.; Wu, Q.; Zhao, Y. Novel fiber grating for sensing applications. Phys. Status Solidi A 2019, 216, 1800820. [Google Scholar]
- Grattan, K.T.; Sun, T. Fiber optic sensor technology: An overview. Sens. Actuators A Phys. 2000, 82, 40–61. [Google Scholar] [CrossRef]
- Wang, J.; Han, Y.; Cao, Z.; Xu, X.; Zhang, J.; Xiao, F. Applications of optical fiber sensor in pavement Engineering: A review. Constr. Build. Mater. 2023, 400, 132713. [Google Scholar] [CrossRef]
- Di Graziano, A.; Marchetta, V.; Cafiso, S. Structural health monitoring of asphalt pavements using smart sensor networks: A comprehensive review. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 7, 639–651. [Google Scholar] [CrossRef]
- Deng, L.; Cai, C.S. Applications of fiber optic sensors in civil engineering. Struct. Eng. Mech. 2007, 25, 577–596. [Google Scholar]
- Mustafa, S.; Sekiya, H.; Maeda, I.; Takaba, S.; Hamajima, A. Identification of external load information using distributed optical fiber sensors embedded in an existing road pavement. Opt. Fiber Technol. 2021, 67, 102705. [Google Scholar]
- Mustafa, S.; Sekiya, H.; Morichika, S.; Maeda, I.; Takaba, S.; Hamajima, A. Monitoring internal strains in asphalt pavements under static loads using embedded distributed optical fibers. Opt. Fiber Technol. 2022, 68, 102829. [Google Scholar]
- De Maeijer, P.K.; Van den bergh, W.; Vuye, C. Fiber Bragg grating sensors in three asphalt pavement layers. Infrastructures 2018, 3, 16. [Google Scholar] [CrossRef]
- Grakovski, A.; Pilipovec, A.; Kabashkin, I.; Petersons, E. Weight-in-motion estimation based on reconstruction of tyre footprint’s geometry by group of fibre optic sensors. Transp. Telecommun. J. 2014, 15, 97–110. [Google Scholar]
- Dong, Z.; Tan, Y.; Cao, L.; Liu, H. Combining strain measurement and FEM simulation to obtain dynamic response of asphalt pavement. Int. J. Pavement Res. Technol. 2009, 2, 231–235. [Google Scholar]
- Tan, Y.; Wang, H.; Ma, S.; Xu, H. Quality control of asphalt pavement compaction using fibre Bragg grating sensing technology. Constr. Build. Mater. 2014, 54, 53–59. [Google Scholar]
- Tan, Y.; Wang, H.; Sun, Z.; Li, Y.; Shi, X. Calibration method of FBG sensor based on asphalt pavement indoor small size test. In Proceedings of the 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), Beijing, China, 23–24 October 2011. [Google Scholar]
- Tan, Y.; Chen, F.C.; Dong, Z.; Liu, H. Calculation method of permanent deformation for asphalt pavement based on fiber bragg grating sensing technology. J. Dalian Marit. Univ. 2008, 11, 119–122. [Google Scholar]
- Dong, Z.; Tan, Y.; Chen, F. Preliminary design of testing segment for Accelerated Loading Facility based on Finite Element Simulation Analysis. Asphalt Material Characterization, Accelerated Testing, and Highway Management. In Proceedings of the 2009 GeoHunan International Conference, Changsha, China, 16–18 October 2009. [Google Scholar]
- Dong, Z.; Ma, X.; Gong, X.; Oeser, M. Theoretical evaluation of the measurement accuracy of fiber Bragg grating strain sensors within randomly filled asphalt mixtures based on finite element simulation. Struct. Control Health Monit. 2018, 25, 2057. [Google Scholar]
- Tan, Y.; Liang, Z.; Xu, H.; Xing, C. Research on rutting deformation monitoring method based on intelligent aggregate. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22116–22126. [Google Scholar]
- Li, R. Research and development status of intelligent sensing materials, sensors and health monitoring systems for civil engineering structures. Archit. Eng. Technol. Des. 2016, 1, 72–76. [Google Scholar]
- Qian, Z.; Huang; Guan, Y.; Han, G. BOTDA Application in the crack monitoring of asphalt concrete pavement layer. J. Southeast Univ. (Nat. Sci. Ed.) 2008, 38, 799–803. [Google Scholar]
- Qian, Z.; Han, G.; Huang; Guan, Y.; Yin, Z. Study on crack fatigue expansion of steel bridge deck pavement based on BOTDA. J. Civ. Eng. 2009, 42, 132–136. [Google Scholar]
- Hu, J.; Qian, Z.; Chen, L. Fracture behavior of epoxy asphalt pavement on steel bridges based on optical fiber sensing technology and numerical simulation. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2014, 29, 858–862. [Google Scholar]
- Xiang, P.; Wang, H. Optical fibre-based sensors for distributed strain monitoring of asphalt pavements. Int. J. Pavement Eng. 2016, 19, 842–850. [Google Scholar]
- Liu, Z.; Gu, X.; Wu, C.; Ren, H.; Zhou, Z.; Tang, S. Studies on the validity of strain sensors for pavement monitoring: A case study for a fiber Bragg grating sensor and resistive sensor. Constr. Build. Mater. 2022, 321, 126085. [Google Scholar]
- Al-Tarawneh, M.A. Traffic Monitoring System Using in-Pavement Fiber Bragg Grating Sensors. Ph.D. Dissertation, North Dakota State University, Fargo, ND, USA, 2019. [Google Scholar]
- Bado, M.F.; Casas, J.R. A review of recent distributed optical fiber sensors applications for civil engineering structural health monitoring. Sensors 2021, 21, 1818. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Li, Y.; Hao, Q. Development and application of resistance strain force sensors. Sensors 2020, 20, 5826. [Google Scholar] [CrossRef]
- Ni, Y.; Xia, H.; Wong, K.; Ko, J. In-service condition assessment of bridge deck using long-term monitoring data of strain response. J. Bridge Eng. 2012, 17, 876–885. [Google Scholar]
- Regier, R.; Hoult, N. Distributed strain behavior of a reinforced concrete bridge: Case study. J. Bridge Eng. 2014, 19, 05014007. [Google Scholar]
- Li, Q.; Cary, C.; Combs, S.; Garg, N. Evaluation of asphalt concrete layer response using asphalt strain gauges and fiber optic strain gauges. In Proceedings of the International Conference on Transportation and Development 2016, Houston, TX, USA, 26–29 June 2016. [Google Scholar]
- Swett, L.; Mallick, R.B.; Humphrey, D.N. A study of temperature and traffic load related response in different layers in an instrumented flexible pavement. Int. J. Pavement Eng. 2008, 9, 303–316. [Google Scholar] [CrossRef]
- Islam, M.R.; Tarefder, R.A. Field measurement of vertical strain in asphalt concrete. Int. J. Sci. Eng. Res. 2013, 4, 1–6. [Google Scholar]
- Al-Qadi, I.L.; Loulizi, A.; Elseifi, M.; Lahouar, S. The Virginia Smart Road: The impact of pavement instrumentation on understanding pavement performance. J. Assoc. Asph. Paving Technol. 2004, 73, 427–465. [Google Scholar]
- Cook, K.; Garg, N.; Singh, A.; Flynn, M. Detection of delamination in the HMA layer of runway pavement structure using asphalt strain gauges. J. Transp. Eng. 2016, 142, 04016047. [Google Scholar] [CrossRef]
- Correia, N.S.; Zornberg, J.G. Mechanical response of flexible pavements enhanced with geogrid-reinforced asphalt overlays. Geosynth. Int. 2016, 23, 183–193. [Google Scholar] [CrossRef]
- Duong, N.S.; Blanc, J.; Hornych, P.; Bouveret, B.; Carroget, J.; Le Feuvre, Y. Continuous strain monitoring of an instrumented pavement section. Int. J. Pavement Eng. 2019, 20, 1435–1450. [Google Scholar] [CrossRef]
- Gaborit, P.; Sauzéat, C.; Di Benedetto, H.; Pouget, S.; Olard, F.; Claude, A. Investigation of highway pavements using in-situ strain sensors. In Sustainability, Eco-Efficiency, and Conservation in Transportation Infrastructure Asset Management; Academia.edu: San Francisco, CA, USA, 2014; pp. 331–337. [Google Scholar]
- Wang, L.; Wei, J.; Wu, W.; Zhang, X.; Xu, X.; Yan, X. Technical development and long-term performance observations of long-life asphalt pavement: A case study of Shandong Province. J. Road Eng. 2022, 2, 369–389. [Google Scholar] [CrossRef]
- Ai, C.; Rahman, A.; Xiao, C.; Yang, E.; Qiu, Y. Analysis of measured strain response of asphalt pavements and relevant prediction models. Int. J. Pavement Eng. 2017, 18, 1089–1097. [Google Scholar] [CrossRef]
- Luan, L.; Guo, Z.; Lu, X. Loading response analysis of the pavement of Fuzhou freeway test road. Highw. Eng. 2012, 37, 229–233. [Google Scholar]
- Lin, S.; Ling, Y. Adaptation of buried strain gages for asphalt concrete pavement. Shanghai Highw. 2019, 1, 25–29. [Google Scholar]
- Yang, Y.; Wang, L.; Gao, X.; Jia, H.; Wei, J. Analysis of perpetual pavement strain distribution and fatigue damage. J. Shandong Univ. (Eng. Sci.) 2009, 39, 118–124. [Google Scholar]
- Chuan, X. Evaluation of measured strain responses to in situ vehicular loading for typical asphalt pavements. Eng. Trans. 2019, 67, 55–73. [Google Scholar]
- Nie, M.; Ren, X.; Wen, L.; Han, L.; Wang, J.; Su, S. Highly sensitive and large range strain sensor based on synergetic effects with double conductive layer structures. Sens. Actuators A Phys. 2021, 318, 112515. [Google Scholar] [CrossRef]
- Han, M.; Muhammad, Y.; Wei, Y.; Zhu, Z.; Huang, J.; Li, J. A review on the development and application of graphene based materials for the fabrication of modified asphalt and cement. Constr. Build. Mater. 2021, 285, 122885. [Google Scholar] [CrossRef]
- Ding, S.; Ruan, Y.; Yu, X.; Han, B.; Ni, Y. Self-monitoring of smart concrete column incorporating CNT/NCB composite fillers modified cementitious sensors. Constr. Build. Mater. 2019, 201, 127–137. [Google Scholar] [CrossRef]
- Yu, X.; Kwon, E. A carbon nanotube/cement composite with piezoresistive properties. Smart Mater. Struct. 2009, 18, 055010. [Google Scholar] [CrossRef]
- Parveen, S.; Rana, S.; Fangueiro, R. A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J. Nanomater. 2013, 2013, 710175. [Google Scholar] [CrossRef]
- Han, B.; Yu, X.; Kwon, E. A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology 2009, 20, 445501. [Google Scholar] [CrossRef]
- Sun, M.Q.; Liew, R.J.; Zhang, M.H.; Li, W. Development of cement-based strain sensor for health monitoring of ultra high strength concrete. Constr. Build. Mater. 2014, 65, 630–637. [Google Scholar] [CrossRef]
- Baeza, F.J.; Galao, O.; Zornoza, E.; Garcés, P. Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites. Mater. Des. 2013, 51, 1085–1094. [Google Scholar] [CrossRef]
- Nalon, G.H.; Ribeiro, J.C.L.; de Araújo, E.N.D.; Pedroti, L.G.; de Carvalho, J.M.F.; Santos, R.F.; Aparecido-Ferreira, A. Aparecido-Ferreira. Effects of different kinds of carbon black nanoparticles on the piezoresistive and mechanical properties of cement-based composites. J. Build. Eng. 2020, 32, 101724. [Google Scholar]
- Han, B.; Guan, X.; Ou, J. Experimental research of electrical conductivity and pressure sensitivity of carbon fiber reinforced cement. Mater. Sci. Technol. 2006, 14, 1–4. [Google Scholar]
- Chen, Z.; Liu, R.; Hao, P.; Li, G.; Su, J. Developments of conductive materials and characteristics on asphalt concrete: A review. J. Test. Eval. 2020, 48, 2144–2161. [Google Scholar]
- García, Á.; Schlangen, E.; van de Ven, M.; Liu, Q. Electrical conductivity of asphalt mortar containing conductive fibers and fillers. Constr. Build. Mater. 2009, 23, 3175–3181. [Google Scholar]
- Liu, X.; Wu, S. Study on the piezoresistivity character of electrically conductive asphalt concrete. Adv. Mater. Res. 2011, 233, 1756–1761. [Google Scholar]
- Liu, X.; Wu, S. Research on the conductive asphalt concrete’s piezoresistivity effect and its mechanism. Constr. Build. Mater. 2009, 23, 2752–2756. [Google Scholar]
- Liu, X.; Liu, W.; Wu, S.; Wang, C. Effect of carbon fillers on electrical and road properties of conductive asphalt materials. Constr. Build. Mater. 2014, 68, 301–306. [Google Scholar]
- Yan, D. Study of road performance and force-electrical sensitivity characteristics of conducting asphalt concretes. Highway 2019, 64, 33–37. [Google Scholar]
- Yao, Z.; Han, J.; Shang, Q.; Ge, Z.; Zhang, X.; Cui, H. Research on pressure sensitivity of the conductive asphalt mortar with carbon fiber and graphite powders. J. Shandong Univ. (Eng. Sci.) 2013, 43, 80–85. [Google Scholar]
- Wang, Y.; Fu, Y.; Meng, Z.; Wan, B.; Han, B. Experimental study and piezoresistive mechanism of electrostatic self-assembly of carbon nanotubes–carbon black/epoxy nanocomposites for structural health monitoring. J. Mater. Sci. 2022, 57, 12416–12437. [Google Scholar]
- Han, J.; Pan, J.; Wang, X.; Cai, J.; Gu, L.; Yang, J. Conductive behavior of engineered geopolymer composite with addition of carbon fiber and nano-carbon black. Ceram. Int. 2023, 49, 32035–32048. [Google Scholar] [CrossRef]
- Bai, S. PVDF’s Dynamic Strain Sensing Properties and Their Applications in Structural Monitoring; Harbin Institute of Technology: Harbin, China, 2006. [Google Scholar]
- Ding, B.; Wu, X.; Han, X. Studies on sensing properties of PVDF piezoelectric films. Piezoelectric Acoust.-Opt. 2018, 40, 170–173. [Google Scholar]
- Ju, D.; Zhou, Z.; Ou, J. Study on strain sensing of PVDF films. Funct. Mater. 2004, 35, 450–456. [Google Scholar]
- Du, Y.; Wang, R.; Zeng, M.; Xu, S.; Saeidi-Javash, M.; Wu, W.; Zhang, Y. Hybrid printing of wearable piezoelectric sensors. Nano Energy 2021, 90, 106522. [Google Scholar] [CrossRef]
- Li, P.; Jiang, W.; Lu, R.; Yuan, D.; Shan, J.; Xiao, J. Design and durability of PZT/PVDF composites based on pavement perception. Constr. Build. Mater. 2022, 323, 126621. [Google Scholar] [CrossRef]
- Sha, A.; Jiang, W.; Wang, W.; Lou, B.; Jia, M.; Cao, Y. Design and prospect of new pavement materials for smart road. Chin. Sci. Bull. 2020, 65, 3259–3269. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, Y.L.; Hsu, T.T.C.; Dhonde, H. Concrete structural health monitoring using embedded piezoceramic transducers. Smart Mater. Struct. 2007, 16, 959. [Google Scholar] [CrossRef]
- Mishra, M.; Lourenço, P.B.; Ramana, G.V. Structural health monitoring of civil engineering structures by using the internet of things: A review. J. Build. Eng. 2022, 48, 103954. [Google Scholar] [CrossRef]
- Lajnef, N.; Chatti, K.; Chakrabartty, S.; Rhimi, M.; Sarkar, P. Smart Pavement Monitoring System. No. FHWA-HRT-12-072. United States; Federal Highway Administration: Washington, DC, USA, 2013.
- Abdulkarem, M.; Samsudin, K.; Rokhani, F.Z.; ARasid, M.F. Wireless sensor network for structural health monitoring: A contemporary review of technologies, challenges, and future direction. Struct. Health Monit. 2020, 19, 693–735. [Google Scholar] [CrossRef]
- Oladele, I.O.; Omotosho, T.F.; Adediran, A.A. Polymer-based composites: An indispensable material for present and future applications. Int. J. Polym. Sci. 2020, 2020, 8834518. [Google Scholar]
- Park, K.; Scaccabarozzi, D.; Sbarufatti, C.; Jimenez-Suarez, A.; Ureña, A.; Ryu, S.; Libonati, F. Coupled health monitoring system for CNT-doped self-sensing composites. Carbon 2020, 166, 193–204. [Google Scholar]
- Yue, L.; Pircheraghi, G.; Monemian, S.A.; Manas-Zloczowe, I. Epoxy composites with carbon nanotubes and graphene nanoplatelets–Dispersion and synergy effects. Carbon 2014, 78, 268–278. [Google Scholar]
- Rocker, S.N. Piezoresistivity Characterization of Polymer Bonded Energetic Nanocomposites under Cyclic Load Cases for Structural Health Monitoring Applications. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2019. [Google Scholar]
- Shin, M.K.; Oh, J.; Lima, M.; Kozlov, M.E.; Kim, S.J.; Baughman, R.H. Elastomeric conductive composites based on carbon nanotube forests. Adv. Mater. 2010, 22, 2663–2667. [Google Scholar]
- Hu, N.; Karube, Y.; Arai, M.; Watanabe, T.; Yan, C.; Li, Y.; Liu, Y.; Fukunaga, H. Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 2010, 48, 680–687. [Google Scholar]
- Qi, F.; Gao, J.; Wu, B.; Yang, H.; Qi, F.; Zhao, N.; Zhang, B.; Ouyang, X. Study on mechanical properties and high-speed impact resistance of carbon nanofibers/polyurethane composites modified by polydopamine. Polymers 2022, 14, 4177. [Google Scholar] [CrossRef]
- Qu, S.; Gong, W.; Sun, X. On-line damage monitoring of composite materials based on carbon nanotube film. Aviation 2022, 43, 586–598. [Google Scholar]
- Zhang, X.; Yao, Z.; Zhang, S.; Yao, K.; Yu, T. Tensile piezoresistive behavior of polyethylene terephthalate/carbon black composite. J. Mater. Civ. Eng. 2018, 30, 04018107. [Google Scholar]
- Yao, Z.; Zhang, X.; Ge, Z.; Han, Z.J.; Pan, X. Mix proportion design and mechanical properties of recycled PET concrete. J. Test. Eval. 2015, 43, 344–352. [Google Scholar]
- Kranauskaitė, I.; Macutkevič, J.; Borisova, A.; Martone, A.; Zarrelli, M.; Selskis, A.; Aniskevich, A.; Banys, J. Enhancing electrical conductivity of multiwalled carbon nanotube/epoxy composites by graphene nanoplatelets. Lith. J. Phys. 2017, 57, 232–242. [Google Scholar]
- Niu, H.; Ren, Y.; Guo, H.; Małycha, K.; Orzechowski, K.; Bai, S.L. Recent progress on thermally conductive and electrical insulating rubber composites: Design, processing and applications. Compos. Commun. 2020, 22, 100430. [Google Scholar]
- Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D.N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301. [Google Scholar] [PubMed]
- Liu, J.; An, L. Synthesis and properties of graphene/carbon nanotube/epoxy resin composites. Chem. Eng. Trans. 2018, 71, 949–954. [Google Scholar]
- Spitalsky, Z.; Tasis, D.; Papagelis, K. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401. [Google Scholar]
- Dong, L.; Hou, F.; Li, Y.; Wang, L.; Gao, H.; Tang, Y. Preparation of continuous carbon nanotube networks in carbon fiber/epoxy composite. Compos. Part A Appl. Sci. Manuf. 2014, 56, 248–255. [Google Scholar]
- Chung, D.D.L. Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 2012, 50, 3342–3353. [Google Scholar]
- Wu, J.; Guo, J.; Zhang, Q.; Gao, L.; Li, H.; Deng, H.; Jiang, W.; Sui, G.; Yang, X. Effect of different amino functionalized carbon nanotubes on curing behavior and mechanical properties of carbon fiber/epoxy composites. Polym. Compos. 2018, 39, E733–E744. [Google Scholar]
- Nazarpour-Fard, H.; Rad-Moghadam, K.; Shirini, F.; Beheshty, M.H.; Asghari, G.H. Reinforcement of epoxy resin/carbon fiber composites by carboxylated carbon nanotubes: A dynamic mechanical study. Polimery 2018, 63, 254–263. [Google Scholar]
- Nadler, M.; Werner, J.; Mahrholz, T.; Riedel, U.; Hufenbach, W. Effect of CNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 932–937. [Google Scholar]
- Qu, Z.; Wang, G. A comparative study on the properties of the different amino-functionalized multiwall carbon nanotubes reinforced epoxy resin composites. J. Appl. Polym. Sci. 2012, 124, 403–411. [Google Scholar]
- Wang, J.; Fang, Z.; Gu, A.; Xu, L.; Liu, F. Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix. J. Appl. Polym. Sci. 2006, 100, 97–104. [Google Scholar]
- Li, W.; Dichiara, A.; Bai, J. Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos. Sci. Technol. 2013, 74, 221–227. [Google Scholar]
- Bisht, A.; Dasgupta, K.; Lahiri, D. Evaluating the effect of addition of nanodiamond on the synergistic effect of graphene-carbon nanotube hybrid on the mechanical properties of epoxy based composites. Polym. Test. 2020, 81, 106274. [Google Scholar]
- Zakaria, M.R.; Kudus, M.H.A.; Akil, H.M.; Thirmizir, M.Z.M. Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties. Compos. Part B Eng. 2017, 119, 57–66. [Google Scholar]
- Tanabi, H.; Erdal, M. Effect of CNTs dispersion on electrical, mechanical and strain sensing properties of CNT/epoxy nanocomposites. Results Phys. 2019, 12, 486–503. [Google Scholar]
- Chen, H.; Jacobs, O.; Wu, W.; Rüdiger, G.; Schädel, B. Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites. Polym. Test. 2007, 26, 351–360. [Google Scholar]
- Li, W.; He, D.; Bai, J. The influence of nano/micro hybrid structure on the mechanical and self-sensing properties of carbon nanotube-microparticle reinforced epoxy matrix composite. Compos. Part A Appl. Sci. Manuf. 2013, 54, 28–36. [Google Scholar]
- Sharma, K.; Shukla, M. Molecular modeling of the mechanical behavior of carbon fiber-amine functionalized multiwall carbon nanotube/epoxy composites. New Carbon Mater. 2014, 29, 132–142. [Google Scholar]
- Zhang, J.; Liu, J.; Zhuang, R.; Mäder, E.; Heinrich, G.; Gao, S. Single MWNT-glass fiber as strain sensor and switch. Adv. Mater. 2011, 23, 3392. [Google Scholar]
- Lachman, N.; Wagner, H.D. Correlation between interfacial molecular structure and mechanics in CNT/epoxy nano-composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1093–1098. [Google Scholar]
- Chang, J.; Liang, G.; Gu, A.; Cai, S.; Yuan, L. The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 2012, 50, 689–698. [Google Scholar]
- Monti, M.; Armentano, I.; Faiella, G.; Antonucci, V.; Kenny, J.M.; Torre, L.; Giordano, M. Toward the microstructure–properties relationship in MWCNT/epoxy composites: Percolation behavior and dielectric spectroscopy. Compos. Sci. Technol. 2014, 96, 38–46. [Google Scholar] [CrossRef]
- Earp, B.; Hubbard, J.; Tracy, A.; Sakoda, D.; Luhrs, C. Electrical behavior of CNT epoxy composites under in-situ simulated space environments. Compos. Part B Eng. 2021, 219, 108874. [Google Scholar] [CrossRef]
- Schilde, C.; Schlömann, M.; Overbeck, A.; Linke, S.; Thermal, A.K. mechanical and electrical properties of highly loaded CNT-epoxy composites–A model for the electric conductivity. Compos. Sci. Technol. 2015, 117, 183–190. [Google Scholar] [CrossRef]
- Dai, H.; Thostenson, E.T.; Schumacher, T. Comparative study of the thermoresistive behavior of carbon nanotube-based nanocomposites and multiscale hybrid composites. Compos. Part B Eng. 2021, 222, 109068. [Google Scholar]
- Earp, B.; Phillips, J.; Grbovic, D.; Vidmar, S.; Porter, M.; Luhrs, C.C. Impact of current and temperature on extremely low loading epoxy-CNT conductive composites. Polymers 2020, 12, 867. [Google Scholar] [CrossRef]
- Al-Bahrani, M.; Gombos, Z.J.; Cree, A. Investigation of the constancy of the MWCNTs on the fibres surface for manufactured self-sensing composites. Compos. Part B Eng. 2019, 173, 106998. [Google Scholar] [CrossRef]
- Al-Bahrani, M.; Cree, A. Micro-scale damage sensing in self-sensing nanocomposite material based CNTs. Compos. Part B Eng. 2021, 205, 108479. [Google Scholar] [CrossRef]
- Hu, N.; Itoi, T.; Akagi, T.; Kojima, T.; Xue, J.; Yan, C.; Atobe, S.; Fukunaga, H.; Yuan, W.; Ning, H.; et al. Ultrasensitive strain sensors made from metal-coated carbon nanofiller/epoxy composites. Carbon 2013, 51, 202–212. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, Y.J. High performance flexible piezoelectric pressure sensor based on CNTs-doped 0-3 ceramic-epoxy nanocomposites. Mater. Des. 2018, 151, 133–140. [Google Scholar] [CrossRef]
- Liang, M.; Wang, J.; Su, L.; Xin, X.; Chen, Z.; Zhang, Y.; Jiao, Y.; Luan, X.; Chen, L.; Yao, Z. Versatile lamellar wrap-structured PVDF/PZT/CNTs piezoelectric sensor for road traffic information sensing, monitoring, and energy harvesting. Chem. Eng. J. 2024, 497, 154554. [Google Scholar] [CrossRef]
Brand | PAST | ASG | ASG—3000 HT | KM100HAS |
---|---|---|---|---|
Country | Denmark | America | America | Japan |
City | Copenhagen | Texas | Texas | Tokyo |
Manufacturer | Dynatest | CTL | Jewell | TML |
Monitoring range/με | ±1500 | ±1500 | ±3000 | ±5000 |
Temperature range/°C | −30~150 | −34~204 | −34~200 | −20~180 |
Resistance value/Ω | 120 | 350 | 350 | 350 |
Circuit form | 1/4 Bridge | Wheelstone All Bridge | Wheelstone All Bridge | Wheelstone All Bridge |
Modulus/MPa | 2200 | 2340 | Not provided | 40 |
Technology Type | Initial Cost | Long-Term Maintenance Cost | Deployment Flexibility | Environmental Adaptability | Data Dimensions |
---|---|---|---|---|---|
Fiber-optic sensors | High | Low | Low | Extremely High | Strain, temperature, and vibration |
Wireless sensors | Low | Medium–High | High | Medium | Temperature, humidity, and pressure |
Cameras/radars | Medium | Medium | Medium | Low | External transportation information |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, X.; Hui, J.; Chen, L.; Liang, M.; Yao, Z. Monitoring the Internal Conditions of Road Structures by Smart Sensing and In Situ Monitoring Technology: A Review. Appl. Sci. 2025, 15, 3945. https://doi.org/10.3390/app15073945
Xin X, Hui J, Chen L, Liang M, Yao Z. Monitoring the Internal Conditions of Road Structures by Smart Sensing and In Situ Monitoring Technology: A Review. Applied Sciences. 2025; 15(7):3945. https://doi.org/10.3390/app15073945
Chicago/Turabian StyleXin, Xue, Junyao Hui, Lin Chen, Ming Liang, and Zhanyong Yao. 2025. "Monitoring the Internal Conditions of Road Structures by Smart Sensing and In Situ Monitoring Technology: A Review" Applied Sciences 15, no. 7: 3945. https://doi.org/10.3390/app15073945
APA StyleXin, X., Hui, J., Chen, L., Liang, M., & Yao, Z. (2025). Monitoring the Internal Conditions of Road Structures by Smart Sensing and In Situ Monitoring Technology: A Review. Applied Sciences, 15(7), 3945. https://doi.org/10.3390/app15073945