Electro-Optic Fabry-Perot Etalon for Frequency Stabilization in in Single-Longitudinal Mode Nd:YVO4 Laser
Abstract
:1. Introduction
2. Methodology for Frequency Correction and Design for EO FP Etalon
2.1. Principle of EO Frequency Modulation
2.2. Design for the EO Crystal Used in This Study
3. Experimental Schemes for a SLM Laser and Its Frequency Correction
4. Experimental Results and Discussion
4.1. Output Power of the SLM Nd:YVO4 Laser
4.2. Output Power Fluctuation and Longitudinal Mode Shift of the SLM Laser
4.2.1. Results About Output Power Fluctuation and Longitudinal Mode Drift
4.2.2. Qualitative Analysis of Output Power Fluctuation and Longitudinal Mode Drift
4.2.3. Experimental Verification About Optical Path-Length Change and Heat Deposition
4.2.4. LT Etalon’s Compensation for Optical Path-Length Change
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Q.; Zhang, B.; Wang, H.; Peng, J. On the Communication Performance of Airborne Distributed Coherent Radar. Appl. Sci. 2022, 12, 6351. [Google Scholar] [CrossRef]
- Wei, T.W.; Xia, H.Y.; Wu, K.N.; Yang, Y.J.; Liu, Q.; Ding, W.D. Dark/bright band of a melting layer detected by coherent Doppler lidar and micro rain radar. Opt. Express 2022, 30, 3654–3663. [Google Scholar] [CrossRef]
- Liang, C.; Wang, C.; Xue, X.H.; Dou, X.K.; Chen, T.D. Meter-scale and sub-second-resolution coherent Doppler wind LIDAR and hyperfine wind observation. Opt. Lett. 2022, 47, 3179–3182. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Y.; Yu, R.N.; Yang, Z.; Wang, Z.J.; Zhang, J.L. Pose Measurement and Motion Estimation of Space On-Orbit CubeSats Based on Micro-Doppler Effect Using Laser Coherent Radar. Appl. Sci. 2022, 12, 4021. [Google Scholar] [CrossRef]
- Ding, Y.C.; Wu, B.; Shen, Y.H. Acousto-optic frequency shifted comb laser-based micro-Doppler detection for moving target identification. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 2021, 38, 844–854. [Google Scholar] [CrossRef]
- Ramachandra Kurup, A.; Rozban, D.; Abramovich, A.; Yitzhaky, Y.; Kopeika, N. Millimeter-Wave Imaging with Range-Resolved 3D Depth Extraction Using Glow Discharge Detection and Frequency-Modulated Continuous Wave Radar. Appl. Sci. 2025, 15, 2248. [Google Scholar] [CrossRef]
- Schulz, P.A.; Henion, S.R. Frequency-modulated Nd-YAG Laser. Opt. Lett. 1991, 16, 578–580. [Google Scholar] [CrossRef]
- Freitag, I.; Kropke, I.; Tunnerman, A.; Welling, H. Electrooptically fast tunable miniature diode pumped Nd:YAG ring laser. Opt. Commun. 1993, 101, 371–376. [Google Scholar] [CrossRef]
- Guo, X.M.; Wang, X.Y.; Li, Y.M.; Zhang, K.S. Quantum noise limited tunable single-frequency Nd:YLF/LBO laser at 526:5 nm. Appl. Opt. 2009, 48, 6475–6478. [Google Scholar] [CrossRef]
- Xu, X.R.; Li, X.D.; Yan, R.P.; Ma, Y.F.; Dong, Z.W.; Fan, R.W.; Chen, D.Y. 2.4 THz/s continuously linearly frequencymodulated Nd: YVO4 laser. Opt. Express 2017, 25, 23199–23206. [Google Scholar] [CrossRef]
- Xu, X.; Fan, R.; Li, X.; Ma, Y.; Yan, R.; Wang, X.; Chen, Z.; Zhou, Z.; Chen, D. 14 GHz broadband and continuously frequency-tuned Nd:YVO4 laser with an RTP etalon. Appl. Opt. 2018, 57, 2287–2291. [Google Scholar] [CrossRef]
- Zheng, Y.; Lu, H.; Li, Y.; Zhang, K.; Peng, K. Broadband and rapid tuning of an all-solid-state single-frequency Nd:YVO4 laser. Appl. Phys. B-Lasers Opt. 2008, 90, 485–488. [Google Scholar] [CrossRef]
- Lin, J.; Farajollahi, S.; Fang, Z.; Yao, N.; Gao, R.; Guan, J.; Deng, L.; Lu, T.; Wang, M.; Zhang, H.; et al. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser. Adv. Photonics 2022, 4, 036001. [Google Scholar] [CrossRef]
- Li, J.H.; Chen, K.X. Electro-optic tunable grating-assisted optical waveguide directional coupler in lithium niobate. Appl. Phys. B 2023, 129, 39. [Google Scholar] [CrossRef]
- Xiong, J.; Deng, C.; Fu, X. Tunable continuous-wave Yb: GdCOB laser with an electro-optic crystal. Laser Phys. 2023, 33, 055003. [Google Scholar] [CrossRef]
- Deng, L.-M.; Lin, S.-S.; Pham, T.-D.; Chen, Y.-H. Optimized domain-engineered lithium niobate for electro-optic spectral tuning in a multi-wavelength optical parametric oscillator. Opt. Commun. 2025, 574, 131129. [Google Scholar] [CrossRef]
- Yang, H.; Jin, P.; Su, J.; Xu, X.; Xu, J.; Lu, H. Realization of a continuous-wave single-frequency tunable Nd:CYA laser. Chin. Opt. Lett. 2022, 20, 031403. [Google Scholar] [CrossRef]
- Jin, P.; Xie, Y.; Cao, X.; Su, J.; Lu, H.; Peng, K. Modulation-Noise-Free Continuously Tunable Single-Frequency CW Ti:Sapphire Laser With Intracavity-Locked Birefringent Etalon. IEEE J. Quantum Electron. 2022, 58, 1700106. [Google Scholar] [CrossRef]
- Jin, P.; Cui, Y.; Su, J.; Lu, H.; Peng, K. Continuously tunable CW single-frequency Nd:YAP/LBO laser with dual-wavelength output. Chin. Opt. Lett. 2023, 21, 021403. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Riemensberger, J.; Lihachev, G.; Churaev, M.; Kao, W.; Ji, X.; Zhang, J.; Blesin, T.; Davydova, A.; et al. Lithium tantalate photonic integrated circuits for volume manufacturing. Nature 2024, 629, 784–790. [Google Scholar] [CrossRef]
- Qiao, S.; He, Y.; Sun, H.; Patimisco, P.; Sampaolo, A.; Spagnolo, V.; Ma, Y. Ultra-highly sensitive dual gases detection based on photoacoustic spectroscopy by exploiting a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser. Light Sci. Appl. 2024, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Gao, C.; Wang, Q. Injection-seeded 10 kHz repetition rate Er:YAG solid-state laser with single-frequency pulse energy more than 1 mJ. Opt. Express 2022, 30, 16044–16052. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Yan, R.; Liu, Z.; Jiang, Y.; Fan, R.; Li, X. Electro-Optic Fabry-Perot Etalon for Frequency Stabilization in in Single-Longitudinal Mode Nd:YVO4 Laser. Appl. Sci. 2025, 15, 3813. https://doi.org/10.3390/app15073813
Chen X, Yan R, Liu Z, Jiang Y, Fan R, Li X. Electro-Optic Fabry-Perot Etalon for Frequency Stabilization in in Single-Longitudinal Mode Nd:YVO4 Laser. Applied Sciences. 2025; 15(7):3813. https://doi.org/10.3390/app15073813
Chicago/Turabian StyleChen, Xiaojie, Renpeng Yan, Zelong Liu, Yugang Jiang, Rongwei Fan, and Xudong Li. 2025. "Electro-Optic Fabry-Perot Etalon for Frequency Stabilization in in Single-Longitudinal Mode Nd:YVO4 Laser" Applied Sciences 15, no. 7: 3813. https://doi.org/10.3390/app15073813
APA StyleChen, X., Yan, R., Liu, Z., Jiang, Y., Fan, R., & Li, X. (2025). Electro-Optic Fabry-Perot Etalon for Frequency Stabilization in in Single-Longitudinal Mode Nd:YVO4 Laser. Applied Sciences, 15(7), 3813. https://doi.org/10.3390/app15073813