Microalgal Microbial Fuel Cells: A Comprehensive Review of Mechanisms and Electrochemical Performance
Abstract
:1. Introduction
2. Bioelectrochemical Systems’ Configurations
- Microbial Fuel Cells (MFCs) can generate electricity by performing oxidation and reduction reactions; usually, the reduction reaction is based on the oxygen reduction to water due to its high redox potential [34,35]. A typical MFC consists of an anodic and a cathodic chamber, separated by a proton exchange membrane (PEM). In the anodic chamber, microorganisms metabolize organic substrates to produce electrons and protons. The redox potential difference between the electron donor, usually an organic substrate at the anode, and the electron acceptor, typically oxygen at the cathode, causes electrons to move to the surface of the anode and then flow to the cathode through an external electrical circuit. Meanwhile, protons migrate to the cathode through the PEM [36]. In the cathode chamber, electrons and protons combine to reduce oxygen to water [37]. MFCs are among the most studied types of BES. For instance, a single-chamber MFC with a carbon brush anode and a platinum (Pt) cathode was used with a 1:1 ratio of wood to domestic wastewater [38]. The results were significant, showing an 85% removal of Chemical Oxygen Demand (COD), an 18% Coulombic Efficiency (CE), and a power density (PD) of 360 mW m−2 with a current density (CD) of 1.3 A m−2. Additionally, this setup allowed for a comprehensive analysis of biological diversity within the system [38]. Double-chamber MFCs utilized rice husk charcoal electrodes in wastewater from poultry droppings. This configuration achieved a PD of 287 mW m−2 and a CD of 0.51 A m−2, with a 40% reduction in COD. The use of new materials and real wastewater further validated the practical applications of this setup [39].
- Microalgal Microbial Fuel Cells (mMFCs) could be described as a type of MFC that uses microalgae as a biocatalyst in the anodic or cathodic chamber. These devices will be discussed in detail in the next sections.
- Microbial Electrosynthesis Cells (MES) can reduce chemical compounds to generate different value-added chemicals. In this configuration, the anodic oxidation reaction is similar to the MFC’s; however, the cathodic reaction in a MEC requires additional energy to drive the non-spontaneous overall reaction to obtain the desired products. Several studies on MES systems demonstrated the versatility of this technology. For example, a two-chamber MES with polished graphite plate electrodes and 35 mM acetate at −0.8 V showed that sulfate-reducing bacteria could enhance electron transfer within the cathode biofilm, leading to a symbiotic effect among the bacteria [40]. A two-chambered planar carbon felt electrode setup with 2.7 mM acetic acid at −0.8 V led to higher specialization within the biofilm, which improved acetate generation and demonstrated an important symbiotic relationship with bacteria [41].
- Microbial electrolysis cells (MECs) can produce hydrogen gas and/or enrich metabolites through the electrolysis of water with externally applied voltage [15]. MECs have demonstrated potential in both single- and two-chamber configurations. For instance, a single-chamber MEC with a carbon fiber brush anode and a carbon cloth cathode coated with platinum (Pt) achieved hydrogen production of 38 L H2 m−2 d−1 and a COD removal efficiency of 44.92%. The system also reached a power density of 0.012 A at 0.9 V and a CE of 75.60% [42]. In a two-chamber MEC, a Pt-deposited carbon cathode and a carbon felt anode resulted in hydrogen production of 4.3 L H2 d−1, with a COD removal efficiency of 61.5% [43].
- Sediment Microbial Fuel Cells (SMFCs), also known as benthic MFCs, generate energy by reducing oxygen in the water column and oxidizing organic substrates in anoxic sediments. These systems typically feature a cathode placed in the oxygen-rich water above and an anode embedded in the anaerobic sediments below, such as those found in paddy soils and benthic environments. Detailed construction and operational guidelines are described in the literature [33,44].
- Plant-Type Microbial Fuel Cells (PMFCs) feature an anode located in the soil, in contact with the plant rhizosphere, while the cathode is exposed to atmospheric oxygen in order to facilitate the reduction reactions [45].
- Microbial Desalination Cells (MDCs) utilize bioenergy from the oxidation of organic wastes to achieve desalination by integrating electrodialysis into MFCs. Unlike traditional electrodialysis, the desalination process in an MDC offers relevant energy benefits, as it does not require external energy input for ion separation [46]. MDCs have been investigated in both laboratory and pilot-scale setups. For example, a study using a carbon brush anode and carbon cathode demonstrated a notable desalination rate of 31.5 mg L−1 h−1, achieving a 90% removal of organic compounds and 75% removal of ammonium (NH4) [47]. In a pilot-scale study using a 10 L MDC, the system achieved a removal rate of 154 mg L−1 h−1, showcasing the scalability and effectiveness of MDC technology in real-world applications [48].
- Constructed Wetlands Microbial Fuel Cells (CWMFCs) combine constructed wetlands and MFC technology to control water pollution with coupled energy generation. The effect of the anode material on system performance has been studied. The results indicated an 18% COD retention and a power density of 1730 mW m−2 (346 mW m−3), underscoring the importance of selecting appropriate anode materials to enhance the efficiency and output of CWMFC systems [49,50,51,52,53].
3. Microalgae Microbial Fuel Cell (mMFC)
3.1. Microalgae
3.2. Microalgae and MFC
3.3. Light Effect on mMFC
3.4. CO2 and Trace Minerals Effects on mMFC
3.5. mMFC Configurations
3.6. Electrodic Materials and Membranes
3.7. Electron Transfer Mechanisms
- Direct CO2 reduction: Carbon dioxide is reduced without the involvement of microalgae or their metabolic products.
- Direct electron transfer from cathode to algae: Algae directly receive electrons from the cathode, with CO2 acting as the electron acceptor. In this process, microorganisms may participate in reactions involving cytochrome C and indirect transfer mediators such as pyrroloquinolinequinone (PQQ) [153].
- Mediator-assisted electron transfer: This can occur with endogenous mediators produced by the microalgae or when using external mediators. In the literature, it has been proposed that when a mediator is utilized in the cathode compartment for electron transfer, electrons travel from the anode to the catholyte, where the oxidized mediator is reduced. The mediator then enters the microalgal cells, releasing its electrons, and returning to its oxidized state. The cultivated microalgae consume these transferred electrons in their metabolic pathways, enabling the conversion of CO2 into biomass and oxygen. The oxidized mediator is released back into the liquid bulk, beginning the cycle anew [37,55,84,154]. For example, C. vulgaris cultivated in a cathodic chamber acts as a final electron acceptor through electron transfer mediated by methylene blue and thionine blue [116]. In some cases, extracellular electron transfer may be supported by autonomous mediators, such as c-type cytochromes found in the outer membrane of algal cells [77].
- Oxygen reduction or indirect electron transfer: This occurs due to the reduction of oxygen produced during photosynthesis. Photosynthetic oxygenation of the cathode can happen in two ways: microalgae can be grown in separate photobioreactors, with oxygen transferred to the cathode chamber, or the algae can grow directly in the cathode chamber, generating oxygen in situ [154].
- Improve carbon fixation through the modification of key enzymes such as RUbisco, SBPase, pseudoheptulose 1.7 bisphosphatase and Phosphoenolpyruvate carboxylase [162].
3.8. Scale-Up and Economic Feasibility
4. Perspectives in mMFC
4.1. Geometry
4.2. Electrodes and Cathodic Reaction
4.3. Physicochemical Influence of Membrane and pH
4.4. Microalgae Harvesting and Scale-Up
4.5. Selection of Microalgal Strains
4.6. Modeling and Metabolic Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A | Ampere |
BES | Bioelectrochemical system |
CD | Current density |
CE | Coulombic Efficiency |
COD | Chemical Oxygen Demand |
CWMFC | Constructed Wetlands |
DO | Dissolved oxygen |
h | Hour |
kg | Kilogram |
kWh | Kilowatt hour |
L | Liter |
MDC | Microbial Desalination Cell |
MEC | Microbial electrolysis cell |
MES | Microbial Electrosynthesis Cell |
MET | Microbial Electrochemical Technology |
MFC | Microbial Fuel Cell |
mg | Milligram |
mM | Millimolar |
mMFC | Microalgae Microbial Fuel Cell |
mW | Milliwatt |
ORR | Oxygen reduction reaction |
PBR | Photobioreactor |
PD | Power density |
PEM | Proton exchange membrane |
PMFC | Plant-Type Microbial Fuel Cell |
PSMFC | Photosynthetic Sedimentary Microbial Fuel Cell |
MFC | Microbial Fuel Cell |
ROS | Reactive Oxygen Species |
RVC | Reticulated vitreous carbon |
SMFC | Sediment Microbial Fuel Cell |
V | Volt |
References
- Luo, S.; Berges, J.A.; He, Z.; Young, E.B. Algal-Microbial Community Collaboration for Energy Recovery and Nutrient Remediation from Wastewater in Integrated Photobioelectrochemical Systems. Algal Res. 2017, 24, 527–539. [Google Scholar] [CrossRef]
- Raimi, D.; Campbell, E.; Newell, R.G.; Prest, B.; Villanueva, S.; Wingenroth, J. Global Energy Outlook 2022: Turning Points and Tension in the Energy Transition. IEA 2022, 22, 1–47. [Google Scholar]
- Deshmukh, M.K.G.; Sameeroddin, M.; Abdul, D.; Abdul Sattar, M. Renewable Energy in the 21st Century: A Review. Mater. Today Proc. 2023, 80, 1756–1759. [Google Scholar] [CrossRef]
- Serrano-Ruiz, J.C. Biomass: A Renewable Source of Fuels, Chemicals and Carbon Materials. Molecules 2020, 25, 5217. [Google Scholar] [CrossRef]
- Hasan, M.M.F.; Rossi, L.M.; Debecker, D.P.; Leonard, K.C.; Li, Z.; Makhubela, B.C.E.; Zhao, C.; Kleij, A. Can CO2 and Renewable Carbon Be Primary Resources for Sustainable Fuels and Chemicals? ACS Sustain. Chem. Eng. 2021, 9, 12427–12430. [Google Scholar] [CrossRef]
- Singh, R.; Das, R.; Sangwan, S.; Rohatgi, B.; Khanam, R.; Peera, S.K.P.G.; Das, S.; Lyngdoh, Y.A.; Langyan, S.; Shukla, A.; et al. Utilisation of Agro-Industrial Waste for Sustainable Green Production: A Review. Environ. Sustain. 2021, 4, 619–636. [Google Scholar] [CrossRef]
- Jones, E.R.; Van Vliet, M.T.H.; Qadir, M.; Bierkens, M.F.P. Country-Level and Gridded Estimates of Wastewater Production, Collection, Treatment and Reuse. Earth Syst. Sci. Data 2021, 13, 237–254. [Google Scholar] [CrossRef]
- Gonzalez Del Campo, A.; Cañizares, P.; Lobato, J.; Rodrigo, M.A.; Fernandez, F.J. Electricity Production by Integration of Acidogenic Fermentation of Fruit Juice Wastewater and Fuel Cells. Int. J. Hydrogen Energy 2012, 37, 9028–9037. [Google Scholar] [CrossRef]
- Raheem, A.; Prinsen, P.; Vuppaladadiyam, A.K.; Zhao, M.; Luque, R. A Review on Sustainable Microalgae Based Biofuel and Bioenergy Production: Recent Developments. J. Clean. Prod. 2018, 181, 42–59. [Google Scholar] [CrossRef]
- Dahiya, S.; Kumar, A.N.; Shanthi Sravan, J.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Food Waste Biorefinery: Sustainable Strategy for Circular Bioeconomy. Bioresour. Technol. 2018, 248, 2–12. [Google Scholar] [CrossRef]
- He, L.; Du, P.; Chen, Y.; Lu, H.; Cheng, X.; Chang, B.; Wang, Z. Advances in Microbial Fuel Cells for Wastewater Treatment. Renew. Sustain. Energy Rev. 2016, 71, 388–403. [Google Scholar] [CrossRef]
- Khan, M.D.; Khan, N.; Sultana, S.; Joshi, R.; Ahmed, S.; Yu, E.; Scott, K.; Ahmad, A.; Khan, M.Z. Bioelectrochemical Conversion of Waste to Energy Using Microbial Fuel Cell Technology. Process Biochem. 2017, 57, 141–158. [Google Scholar] [CrossRef]
- Zou, Y.J.; Sun, L.X.; Xu, F.; Yang, L.N. E. coli Microbial Fuel Cell Using New Methylene Blue as Electron Mediator. Gaodeng Xuexiao Huaxue Xuebao/Chem. J. Chin. Univ. 2007, 28, 510–513. [Google Scholar]
- Dhanya, B.S.; Mishra, A.; Chandel, A.K.; Verma, M.L. Development of Sustainable Approaches for Converting the Organic Waste to Bioenergy. Sci. Total Environ. 2020, 723, 138109. [Google Scholar] [CrossRef]
- Cusick, R.D.; Kiely, P.D.; Logan, B.E. A Monetary Comparison of Energy Recovered from Microbial Fuel Cells and Microbial Electrolysis Cells Fed Winery or Domestic Wastewaters. Int. J. Hydrogen Energy 2010, 35, 8855–8861. [Google Scholar] [CrossRef]
- Tay, Z.H.-Y.; Ng, F.-L.; Ling, T.-C.; Iwamoto, M.; Phang, S.-M. The Use of Marine Microalgae in Microbial Fuel Cells, Photosynthetic Microbial Fuel Cells and Biophotovoltaic Platforms for Bioelectricity Generation. 3 Biotech. 2022, 12, 148. [Google Scholar] [CrossRef]
- García Mogollón, C.; Carlos Quintero Díaz, J.; Omar Gil Posada, J. Production of Acetone, Butanol, and Ethanol by Electro-Fermentation with Clostridium saccharoperbutylacetonicum N1-4. Bioelectrochemistry 2023, 152, 108414. [Google Scholar] [CrossRef]
- Garcia-Mogollon, C.; Avignone-Rossa, C.; Arrieta, A.A.; Díaz, J.C.Q. C. saccharoperbutylacetonicum N1-4 electroactivity and CO2 fixation under different electrochemical conditions. Rasayan J. Chem. 2023, 16, 2057–2063. [Google Scholar] [CrossRef]
- Afsharian, Y.P.; Rahimnejad, M. Functional Dynamics of Microbial Communities in Bioelectrochemical Systems: The Importance of Eco-Electrogenic Treatment of Complex Substrates. Curr. Opin. Electrochem. 2022, 31, 100816. [Google Scholar] [CrossRef]
- Zou, S.; He, Z. Efficiently “Pumping out” Value-Added Resources from Wastewater by Bioelectrochemical Systems: A Review from Energy Perspectives. Water Res. 2018, 131, 62–73. [Google Scholar] [CrossRef]
- Gonzalez Del Campo, A.; Perez, J.F.; Cañizares, P.; Rodrigo, M.A.; Fernandez, F.J.; Lobato, J. Characterization of Light/Dark Cycle and Long-Term Performance Test in a Photosynthetic Microbial Fuel Cell. Fuel 2015, 140, 209–216. [Google Scholar] [CrossRef]
- Huggins, T.; Fallgren, P.H.; Jin, S.; Ren, Z.J. Energy and Performance Comparison of Microbial Fuel Cell and Conventional Aeration Treating of Wastewater. Microb. Biochem. Technol. 2013, S6, 2. [Google Scholar] [CrossRef]
- Jung, S.; Lee, J.; Park, Y.K.; Kwon, E.E. Bioelectrochemical Systems for a Circular Bioeconomy. Bioresour. Technol. 2020, 300, 122748. [Google Scholar] [CrossRef]
- de los Ángeles Fernandez, M.; de los Ángeles Sanromán, M.; Marks, S.; Makinia, J.; Gonzalez del Campo, A.; Rodrigo, M.; Fernandez, F.J. A Grey Box Model of Glucose Fermentation and Syntrophic Oxidation in Microbial Fuel Cells. Bioresour. Technol. 2016, 200, 396–404. [Google Scholar] [CrossRef]
- Li, X.; Abu-Reesh, I.; He, Z. Development of Bioelectrochemical Systems to Promote Sustainable Agriculture. Agriculture 2015, 5, 367–388. [Google Scholar] [CrossRef]
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and Challenges in Sustainable Treatment and Resource Reuse of Sewage Sludge: A Review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Sharma, S.; Gyeltshen, T.; Sevda, S.; Garlapati, V.K. Microalgae in Bioelectrochemical Systems: Technologic Interventions. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels; Elsevier: Amsterdam, The Netherlands, 2020; pp. 361–371. [Google Scholar] [CrossRef]
- Gonzalez del Campo, A.; Perez, J.F.; Cañizares, P.; Rodrigo, M.A.; Fernandez, F.J.; Lobato, J. Study of a Photosynthetic MFC for Energy Recovery from Synthetic Industrial Fruit Juice Wastewater. Int. J. Hydrogen Energy 2014, 39, 21828–21836. [Google Scholar] [CrossRef]
- Ghangrekar, M.M.; Chatterjee, P. A Systematic Review on Bioelectrochemical Systems Research. Curr. Pollut. Rep. 2017, 3, 281–288. [Google Scholar] [CrossRef]
- Thapa, B.S.; Kim, T.; Pandit, S.; Song, Y.E.; Afsharian, Y.P.; Rahimnejad, M.; Kim, J.R.; Oh, S.E. Overview of Electroactive Microorganisms and Electron Transfer Mechanisms in Microbial Electrochemistry. Bioresour. Technol. 2022, 347, 126579. [Google Scholar] [CrossRef]
- Potter, M.C. Electrical Effects Accompanying the Decomposition of Organic Compounds. Proc. R. Soc. 1911, 84, 260–276. [Google Scholar] [CrossRef]
- Harnisch, F.; Aulenta, F.; Schröder, U. Microbial Fuel Cells and Bioelectrochemical Systems: Industrial and Environmental Biotechnologies Based on Extracellular Electron Transfer. In Comprehensive Biotechnology, 2nd ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2011; pp. 643–659. ISBN 9780080885049. [Google Scholar]
- Fernández, F.J.; Lobato, J.; Villaseñor, J.; Rodrigo, M.A.; Cañizares, P. Microbial Fuel Cell: The Definitive Technological Approach for Valorizing Organic Wastes. In Environment, Energy and Climate Change I: Environmental Chemistry of Pollutants and Wastes; Jiménez, E., Cabañas, B., Lefebvre, G., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 287–316. ISBN 978-3-319-12907-5. [Google Scholar]
- Montoya-Vallejo, C.; Omar, J.; Posada, G.; Carlos, J. Effect of Glucose and Methylene Blue in Microbial Fuel Cells Using E. coli. Energies 2023, 16, 7901. [Google Scholar] [CrossRef]
- Mateo, S.; Rodrigo, M.; Fonseca, L.P.; Cañizares, P.; Fernandez-Morales, F.J. Oxygen Availability Effect on the Performance of Air-Breathing Cathode Microbial Fuel Cell. Biotechnol. Prog. 2015, 31, 900–907. [Google Scholar] [CrossRef]
- Montoya-Vallejo, C.; Gil Posada, J.O.; Quintero-diaz, J.C.; Quintero-Díaz, J.C. Enhancement of Electricity Production in Microbial Fuel Cells Using a Biosurfactant-Producing Co-Culture. Molecules 2023, 28, 10. [Google Scholar] [CrossRef]
- Elmekawy, A.; Hegab, H.M.; Vanbroekhoven, K.; Pant, D. Techno-Productive Potential of Photosynthetic Microbial Fuel Cells through Different Configurations. Renew. Sustain. Energy Rev. 2014, 39, 617–627. [Google Scholar] [CrossRef]
- Toczyłowska-Mamińska, R.; Szymona, K.; Kloch, M. Bioelectricity Production from Wood Hydrothermal-Treatment Wastewater: Enhanced Power Generation in MFC-Fed Mixed Wastewaters. Sci. Total Environ. 2018, 634, 586–594. [Google Scholar] [CrossRef]
- Oyiwona, G.E.; Ogbonna, J.C.; Anyanwu, C.U.; Okabe, S. Electricity Generation Potential of Poultry Droppings Wastewater in Microbial Fuel Cell Using Rice Husk Charcoal Electrodes. Bioresour. Bioprocess. 2018, 5, 13. [Google Scholar] [CrossRef]
- Kumar, S.S.; Basu, S.; Gupta, S.; Sharma, J.; Bishnoi, N.R. Bioelectricity Generation Using Sulphate-Reducing Bacteria as Anodic and Microalgae as Cathodic Biocatalysts. Biofuels 2018, 10, 81–86. [Google Scholar] [CrossRef]
- Mateos, R.; Sotres, A.; Alonso, R.M.; Escapa, A.; Morán, A. Impact of the Start-up Process on the Microbial Communities in Biocathodes for Electrosynthesis. Bioelectrochemistry 2018, 121, 27–37. [Google Scholar] [CrossRef]
- Hu, K.; Xu, L.; Chen, W.; Jia, S.-q.; Wang, W.; Han, F. Degradation of Organics Extracted from Dewatered Sludge by Alkaline Pretreatment in Microbial Electrolysis Cell. Environ. Sci. Pollut. Res. 2018, 25, 8715–8724. [Google Scholar] [CrossRef]
- Park, L.K.E.; Satinover, S.J.; Yiacoumi, S.; Mayes, R.T.; Borole, A.P.; Tsouris, C. Electrosorption of Organic Acids from Aqueous Bio-Oil and Conversion into Hydrogen via Microbial Electrolysis Cells. Renew. Energy 2018, 125, 21–31. [Google Scholar] [CrossRef]
- Yang, X.; Chen, S. Microorganisms in Sediment Microbial Fuel Cells: Ecological Niche, Microbial Response, and Environmental Function. Sci. Total Environ. 2021, 756, 144145. [Google Scholar] [CrossRef] [PubMed]
- Sayed, E.T.; Abdelkareem, M.A.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Maghrabie, H.M.; Olabi, A.G. Progress in Plant-Based Bioelectrochemical Systems and Their Connection with Sustainable Development Goals. Carbon. Resour. Convers. 2021, 4, 169–183. [Google Scholar] [CrossRef]
- Al-Mamun, A.; Ahmad, W.; Baawain, M.S.; Khadem, M.; Dhar, B.R. A Review of Microbial Desalination Cell Technology: Configurations, Optimization and Applications. J. Clean. Prod. 2018, 183, 458–480. [Google Scholar] [CrossRef]
- Lu, Y.; Abu-Reesh, I.M.; He, Z. Treatment and Desalination of Domestic Wastewater for Water Reuse in a Four-Chamber Microbial Desalination Cell. Environ. Sci. Pollut. Res. 2016, 23, 17236–17245. [Google Scholar] [CrossRef]
- Zhang, F.; He, Z. Scaling up Microbial Desalination Cell System with a Post-Aerobic Process for Simultaneous Wastewater Treatment and Seawater Desalination. Desalination 2015, 360, 28–34. [Google Scholar] [CrossRef]
- Corbella, C.; Puigagut, J. Improving Domestic Wastewater Treatment Efficiency with Constructed Wetland Microbial Fuel Cells: Influence of Anode Material and External Resistance. Sci. Total Environ. 2018, 631–632, 1406–1414. [Google Scholar] [CrossRef]
- Villaseñor Camacho, J.; Rodríguez Romero, L.; Fernández Marchante, C.M.; Fernández Morales, F.J.; Rodrigo Rodrigo, M.A. The Salinity Effects on the Performance of a Constructed Wetland-Microbial Fuel Cell. Ecol. Eng. 2017, 107, 1–7. [Google Scholar] [CrossRef]
- Fernandez-Gatell, M.; Corbella, C.; Sanchez-Vila, X.; Puigagut, J. Microbial Activity Enhancement in Constructed Wetlands Operated as Bioelectrochemical Systems. Chemosphere 2022, 287, 132383. [Google Scholar] [CrossRef]
- Villaseñor, J.; Capilla, P.; Rodrigo, M.A.; Cañizares, P.; Fernández, F.J. Operation of a Horizontal Subsurface Flow Constructed Wetland—Microbial Fuel Cell Treating Wastewater under Different Organic Loading Rates. Water Res. 2013, 47, 6731–6738. [Google Scholar] [CrossRef]
- Patel, D.; Bapodra, S.L.; Madamwar, D.; Desai, C. Electroactive Bacterial Community Augmentation Enhances the Performance of a Pilot Scale Constructed Wetland Microbial Fuel Cell for Treatment of Textile Dye Wastewater. Bioresour. Technol. 2021, 332, 125088. [Google Scholar] [CrossRef]
- Saba, B.; Christy, A.D.; Yu, Z.; Co, A.C. Sustainable Power Generation from Bacterio-Algal Microbial Fuel Cells (MFCs): An Overview. Renew. Sustain. Energy Rev. 2017, 73, 75–84. [Google Scholar] [CrossRef]
- ElMekawy, A.; Hegab, H.M.; Mohanakrishna, G.; Elbaz, A.F.; Bulut, M.; Pant, D. Technological Advances in CO2 Conversion Electro-Biorefinery: A Step toward Commercialization. Bioresour. Technol. 2016, 215, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Marks, S.; Makinia, J.; Fernandez-Morales, F.J. Performance of Microbial Fuel Cells Operated under Anoxic Conditions. Appl. Energy 2019, 250, 1–6. [Google Scholar] [CrossRef]
- Gikas, P. Towards Energy Positive Wastewater Treatment Plants. J. Environ. Manag. 2017, 203, 621–629. [Google Scholar] [CrossRef]
- Chen, P.; Guo, X.; Li, S.; Li, F. A Review of the Bioelectrochemical System as an Emerging Versatile Technology for Reduction of Antibiotic Resistance Genes. Environ. Int. 2021, 156, 106689. [Google Scholar] [CrossRef]
- Science for Environment Policy. Bioelectrochemical Systems: Wastewater Treatment, Bioenergy and Valuable Chemicals Delivered by Bacteria; Future Brief 5 produced for the European Commission, DG Environment; Science Communication Unit: Bristol, UK, 2013; Available online: https://wayback.archive-it.org/12090/20220804185223/https://ec.europa.eu/environment/integration/research/newsalert/pdf/FB5_en.pdf (accessed on 10 January 2025).
- Montoya-Vallejo, C.; Acosta-cárdenas, A. Crecimiento de Tetraselmis sp. Empleando Fertilizante Como Medio de Cultivo. Rev. Ion 2021, 5, 53–64. [Google Scholar] [CrossRef]
- Gouveia, L.; Neves, C.; Sebastião, D.; Nobre, B.P.; Matos, C.T. Effect of Light on the Production of Bioelectricity and Added-Value Microalgae Biomass in a Photosynthetic Alga Microbial Fuel Cell. Bioresour. Technol. 2014, 154, 171–177. [Google Scholar] [CrossRef]
- Lee, D.J.; Chang, J.S.; Lai, J.Y. Microalgae-Microbial Fuel Cell: A Mini Review. Bioresour. Technol. 2015, 198, 891–895. [Google Scholar] [CrossRef]
- Lobato, J.; González del Campo, A.; Fernández, F.J.; Cañizares, P.; Rodrigo, M.A. Lagooning Microbial Fuel Cells: A First Approach by Coupling Electricity-Producing Microorganisms and Algae. Appl. Energy 2013, 110, 220–226. [Google Scholar] [CrossRef]
- Huang, C.H.; Tan, C.S. A Review: CO2 Utilization. Aerosol Air Qual. Res. 2014, 14, 480–499. [Google Scholar] [CrossRef]
- Sayre, R. Microalgae: The Potential for Carbon Capture. BioScience 2010, 60, 722–727. [Google Scholar] [CrossRef]
- Olguín, E.J. Dual Purpose Microalgae-Bacteria-Based Systems That Treat Wastewater and Produce Biodiesel and Chemical Products within a Biorefinery. Biotechnol. Adv. 2012, 30, 1031–1046. [Google Scholar] [CrossRef] [PubMed]
- Montoya-Vallejo, C.; Guzmán Duque, F.L.; Quintero Díaz, J.C. Biomass and Lipid Production by the Native Green Microalgae Chlorella sorokiniana in Response to Nutrients, Light Intensity, and Carbon Dioxide: Experimental and Modeling Approach. Front. Bioeng. Biotechnol. 2023, 11, 1149762. [Google Scholar] [CrossRef] [PubMed]
- Raeesossadati, M.J.; Ahmadzadeh, H.; McHenry, M.P.; Moheimani, N.R. CO2 Bioremediation by Microalgae in Photobioreactors: Impacts of Biomass and CO2 Concentrations, Light, and Temperature. Algal Res. 2014, 6, 78–85. [Google Scholar] [CrossRef]
- Kasiri, S.; Abdulsalam, S.; Ulrich, A.; Prasad, V. Optimization of CO2 Fixation by Chlorella kessleri Using Response Surface Methodology. Chem. Eng. Sci. 2015, 127, 31–39. [Google Scholar] [CrossRef]
- Binnal, P.; Babu, P.N. Statistical Optimization of Parameters Affecting Lipid Productivity of Microalga Chlorella Protothecoides Cultivated in Photobioreactor under Nitrogen Starvation. S. Afr. J. Chem. Eng. 2017, 23, 26–37. [Google Scholar] [CrossRef]
- Metsoviti, M.N.; Papapolymerou, G.; Karapanagiotidis, I.T.; Katsoulas, N. Effect of Light Intensity and Quality on Growth Rate and Composition of Chlorella vulgaris. Plants 2020, 9, 31. [Google Scholar] [CrossRef]
- Singh, P.; Kumari, S.; Guldhe, A.; Misra, R.; Rawat, I.; Bux, F. Trends and Novel Strategies for Enhancing Lipid Accumulation and Quality in Microalgae. Renew. Sustain. Energy Rev. 2016, 55, 1–16. [Google Scholar] [CrossRef]
- Thawechai, T.; Cheirsilp, B.; Louhasakul, Y.; Boonsawang, P.; Prasertsan, P. Mitigation of Carbon Dioxide by Oleaginous Microalgae for Lipids and Pigments Production: Effect of Light Illumination and Carbon Dioxide Feeding Strategies. Bioresour. Technol. 2016, 219, 139–149. [Google Scholar] [CrossRef]
- Gajda, I.; Greenman, J.; Melhuish, C.; Ieropoulos, I. Photosynthetic Cathodes for Microbial Fuel Cells. Int. J. Hydrogen Energy 2013, 38, 11559–11564. [Google Scholar] [CrossRef]
- Rahimnejad, M.; Adhami, A.; Darvari, S.; Zirepour, A.; Oh, S.E. Microbial Fuel Cell as New Technol Ogy for Bioelectricity Generation: A Review. Alex. Eng. J. 2015, 54, 745–756. [Google Scholar] [CrossRef]
- Sarma, P.J.; Malakar, B.; Mohanty, K. Self-Sustaining Bioelectricity Generation in Plant-Based Microbial Fuel Cells (PMFCs) with Microalgae-Assisted Oxygen-Reducing Biocathode. Biomass Convers. Biorefin 2023, 14, 16973–16986. [Google Scholar] [CrossRef]
- Arun, S.; Sinharoy, A.; Pakshirajan, K.; Lens, P.N.L. Algae Based Microbial Fuel Cells for Wastewater Treatment and Recovery of Value-Added Products. Renew. Sustain. Energy Rev. 2020, 132, 110041. [Google Scholar] [CrossRef]
- Mateo, S.; Gonzalez del Campo, A.; Cañizares, P.; Lobato, J.; Rodrigo, M.A.; Fernandez, F.J. Bioelectricity Generation in a Self-Sustainable Microbial Solar Cell. Bioresour. Technol. 2014, 159, 451–454. [Google Scholar] [CrossRef]
- Wang, H.; Qian, F.; Li, Y. Solar-Assisted Microbial Fuel Cells for Bioelectricity and Chemical Fuel Generation. Nano Energy 2014, 8, 264–273. [Google Scholar] [CrossRef]
- Gajda, I. Self Sustainable Cathodes for Microbial Fuel Cells. Ph.D. Thesis, University of the West of England, Bristol, UK, 2016. [Google Scholar]
- Gajda, I.; Stinchcombe, A.; Greenman, J.; Melhuish, C.; Ieropoulos, I. Algal “lagoon” Effect for Oxygenating MFC Cathodes. Int. J. Hydrogen Energy 2014, 39, 21857–21863. [Google Scholar] [CrossRef]
- Cui, Y.; Rashid, N.; Hu, N.; Rehman, M.S.U.; Han, J.I. Electricity Generation and Microalgae Cultivation in Microbial Fuel Cell Using Microalgae-Enriched Anode and Bio-Cathode. Energy Convers. Manag. 2014, 79, 674–680. [Google Scholar] [CrossRef]
- Zou, Y.; Pisciotta, J.; Billmyre, R.B.; Baskakov, I.V. Photosynthetic Microbial Fuel Cells with Positive Light Response. Biotechnol. Bioeng. 2009, 104, 939–946. [Google Scholar] [CrossRef]
- Powell, E.E.; Mapiour, M.L.; Evitts, R.W.; Hill, G.A. Growth Kinetics of Chlorella vulgaris and Its Use as a Cathodic Half Cell. Bioresour. Technol. 2009, 100, 269–274. [Google Scholar] [CrossRef]
- Fu, C.C.; Hung, T.C.; Wu, W.T.; Wen, T.C.; Su, C.H. Current and Voltage Responses in Instant Photosynthetic Microbial Cells with Spirulina platensis. Biochem. Eng. J. 2010, 52, 175–180. [Google Scholar] [CrossRef]
- González Del Campo, A.; Cañizares, P.; Rodrigo, M.A.; Fernández, F.J.; Lobato, J. Microbial Fuel Cell with an Algae-Assisted Cathode: A Preliminary Assessment. J. Power Sources 2013, 242, 638–645. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Srikanth, S.; Chiranjeevi, P.; Arora, S.; Chandra, R. Algal Biocathode for in Situ Terminal Electron Acceptor (TEA) Production: Synergetic Association of Bacteria-Microalgae Metabolism for the Functioning of Biofuel Cell. Bioresour. Technol. 2014, 166, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Gajda, I.; Greenman, J.; Melhuish, C.; Ieropoulos, I. Self-Sustainable Electricity Production from Algae Grown in a Microbial Fuel Cell System. Biomass Bioenergy 2015, 82, 87–93. [Google Scholar] [CrossRef]
- Tse, H.T.; Luo, S.; Li, J.; He, Z. Coupling Microbial Fuel Cells with a Membrane Photobioreactor for Wastewater Treatment and Bioenergy Production. Bioprocess. Biosyst. Eng. 2016, 39, 1703–1710. [Google Scholar] [CrossRef]
- Uggetti, E.; Puigagut, J. Photosynthetic Membrane-Less Microbial Fuel Cells to Enhance Microalgal Biomass Concentration. Bioresour. Technol. 2016, 218, 1016–1020. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Z.; Zhang, J.; Waite, T.D.; Wu, Z. Cost-Effective Chlorella Biomass Production from Dilute Wastewater Using a Novel Photosynthetic Microbial Fuel Cell (PMFC). Water Res. 2017, 108, 356–364. [Google Scholar] [CrossRef]
- Colombo, A.; Marzorati, S.; Lucchini, G.; Cristiani, P.; Pant, D.; Schievano, A. Assisting Cultivation of Photosynthetic Microorganisms by Microbial Fuel Cells to Enhance Nutrients Recovery from Wastewater. Bioresour. Technol. 2017, 237, 240–248. [Google Scholar] [CrossRef]
- Logroño, W.; Pérez, M.; Urquizo, G.; Kadier, A.; Echeverría, M.; Recalde, C.; Rákhely, G. Single Chamber Microbial Fuel Cell (SCMFC) with a Cathodic Microalgal Biofilm: A Preliminary Assessment of the Generation of Bioelectricity and Biodegradation of Real Dye Textile Wastewater. Chemosphere 2017, 176, 378–388. [Google Scholar] [CrossRef]
- Huarachi-Olivera, R.; Dueñas-Gonza, A.; Yapo-Pari, U.; Vega, P.; Romero-Ugarte, M.; Tapia, J.; Molina, L.; Lazarte-Rivera, A.; Pacheco-Salazar, D.G.; Esparza, M. Bioelectrogenesis with Microbial Fuel Cells (MFCs) Using the Microalga Chlorella vulgaris and Bacterial Communities. Electron. J. Biotechnol. 2018, 31, 34–43. [Google Scholar] [CrossRef]
- Pei, H.; Yang, Z.; Nie, C.; Hou, Q.; Zhang, L.; Wang, Y.; Zhang, S. Using a Tubular Photosynthetic Microbial Fuel Cell to Treat Anaerobically Digested Effluent from Kitchen Waste: Mechanisms of Organics and Ammonium Removal. Bioresour. Technol. 2018, 256, 11–16. [Google Scholar] [CrossRef]
- Angioni, S.; Millia, L.; Mustarelli, P.; Doria, E.; Temporiti, M.E.; Mannucci, B.; Corana, F.; Quartarone, E. Photosynthetic Microbial Fuel Cell with Polybenzimidazole Membrane: Synergy between Bacteria and Algae for Wastewater Removal and Biorefinery. Heliyon 2018, 4, e00560. [Google Scholar] [CrossRef] [PubMed]
- Elakkiya, E.; Niju, S. Simultaneous Treatment of Lipid Rich Ghee Industry Wastewater and Power Production in Algal Biocathode Based Microbial Fuel Cell. Energy Sources Part. A Recovery Util. Environ. Eff. 2020, 47, 252–262. [Google Scholar] [CrossRef]
- Khandelwal, A.; Chhabra, M.; Yadav, P. Performance Evaluation of Algae Assisted Microbial Fuel Cell under Outdoor Conditions. Bioresour. Technol. 2020, 310, 123418. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.; Sharma, I.; Ghangrekar, M.; Sen, R. A Live Bio-Cathode to Enhance Power Output Steered by Bacteria-Microalgae Synergistic Metabolism in Microbial Fuel Cell. J. Power Sources 2020, 449, 227560. [Google Scholar] [CrossRef]
- Polontalo, N.F.; Joelyna, F.A.; Hadiyanto, H. Production of Bioelectricity from Microalgae Microbial Fuel Cell (MMFC) Using Chlorella pyrenoidosa and Batik Wastewater. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1053, 012096. [Google Scholar] [CrossRef]
- Yahampath Arachchige Don, C.D.Y.; Babel, S. Circulation of Anodic Effluent to the Cathode Chamber for Subsequent Treatment of Wastewater in Photosynthetic Microbial Fuel Cell with Generation of Bioelectricity and Algal Biomass. Chemosphere 2021, 278, 130455. [Google Scholar] [CrossRef]
- Bolognesi, S.; Cecconet, D.; Callegari, A.; Capodaglio, A.G. Combined Microalgal Photobioreactor/Microbial Fuel Cell System: Performance Analysis under Different Process Conditions. Environ. Res. 2021, 192, 110263. [Google Scholar] [CrossRef]
- Ribeiro, V.R.; Osório, H.D.D.; Ulrich, A.C.; Rizzetti, T.M.; Barrios, A.S.; de Cassia de Souza Schneider, R.; Benitez, L.B. The Use of Microalgae-Microbial Fuel Cells in Wastewater Bioremediation and Bioelectricity Generation. J. Water Process Eng. 2022, 48, 102882. [Google Scholar] [CrossRef]
- Hadiyanto, H.; Christwardana, M.; Pratiwi, W.Z.; Purwanto, P.; Sudarno, S.; Haryani, K.; Hoang, A.T. Response Surface Optimization of Microalgae Microbial Fuel Cell (MMFC) Enhanced by Yeast Immobilization for Bioelectricity Production. Chemosphere 2022, 287, 132275. [Google Scholar] [CrossRef]
- Arun, S.; Ramasamy, S.; Pakshirajan, K.; Pugazhenthi, G. Bioelectricity Production and Shortcut Nitrogen Removal by Microalgal-Bacterial Consortia Using Membrane Photosynthetic Microbial Fuel Cell. J. Environ. Manag. 2022, 301, 113871. [Google Scholar] [CrossRef]
- Lakshmidevi, R.; Nagendra Gandhi, N.; Muthukumar, K. Bioelectricity and Bioactive Compound Productionin an Algal-Assisted Microbial Fuel Cell with Immobilized Bioanode. Biomass Convers. Biorefin 2022, 12, 3457–3473. [Google Scholar] [CrossRef]
- Ash-Shalehah, L.M.Z.; Anggraeni, C.; Gloria, E. Dianursanti Development of Microalgae-Microbial Fuel Cell (MmFC) Technology Using Microalgae Consortium of Chlorella vulgaris and Spirulina platensis. Evergreen 2022, 9, 476–483. [Google Scholar] [CrossRef]
- Taşkan, B.; Taşkan, E. Sustainable Bioelectricity Generation Using Cladophora sp. as a Biocathode in Membrane-Less Microbial Fuel Cell. Bioresour. Technol. 2022, 347, 126704. [Google Scholar] [CrossRef] [PubMed]
- Ullah, Z.; Sheikh, Z.; Zaman, W.Q.; Zeeshan, M.; Miran, W.; Li, J.; Khan, M.A.N.; Saleem, S.; Shabbir, S. Performance Comparison of a Photosynthetic and Mechanically Aerated Microbial Fuel Cell for Wastewater Treatment and Bioenergy Generation Using Different Anolytes. J. Water Process Eng. 2023, 56, 104358. [Google Scholar] [CrossRef]
- Yanga, Y.-W.; Lib, M.-J.; Hung, T.-C. The Study on Coupled CO2 Fixation and Power Generation in Microalgae-Microbial Fuel Cells Embedded with Oxygen-Consuming Biofilms. Fuel 2023, 367, 131410. [Google Scholar] [CrossRef]
- Rojas-Villacorta, W.; Rojas-Flores, S.; Benites, S.M.; Delfín-Narciso, D.; Cruz-Noriega, M.D.L.; Cabanillas-Chirinos, L.; Rodríguez-Serin, H.; Rebaza-Araujo, S. Potential Use of Pepper Waste and Microalgae Spirulina sp. for Bioelectricity Generation. Energy Rep. 2023, 9, 253–261. [Google Scholar] [CrossRef]
- Verma, M.; Singh, V.; Mishra, V. Bioelectricity Generation by Using Cellulosic Waste and Spent Engine Oil in a Concentric Photobioreactor-Microbial Fuel Cell. J. Environ. Chem. Eng. 2023, 11, 110566. [Google Scholar] [CrossRef]
- Kumar, T.; Jujjavarapu, S.E. Carbon Dioxide Sequestration and Wastewater Treatment via an Innovative Self-Sustaining Algal Microbial Fuel Cell. J. Clean. Prod. 2023, 415, 137836. [Google Scholar] [CrossRef]
- Angelov, A.; Bratkova, S.; Ivanov, R.; Velichkova, P. Removal of H2S and CO2 from biogas by algae-assisted bioelectrochemical system with oxygenic and anoxygenic photosynthesis. J. Chem. Technol. Metall. 2023, 58, 682–689. [Google Scholar] [CrossRef]
- Mansoor, B.; Ashraf, S.; Rehman, U.; Ullah, Z.; Sheikh, Z. Integration of Microalgae-Microbial Fuel Cell with Microbial Electrolysis Cell for Wastewater Treatment and Energy Production. Environ. Sci. Proc. 2023, 25, 72. [Google Scholar] [CrossRef]
- Powell, E.E.; Hill, G.A. Economic Assessment of an Integrated Bioethanol-Biodiesel-Microbial Fuel Cell Facility Utilizing Yeast and Photosynthetic Algae. Chem. Eng. Res. Des. 2009, 87, 1340–1348. [Google Scholar] [CrossRef]
- Luo, S.; Wang, Z.-W.; He, Z. Mathematical Modeling of the Dynamic Behavior of an Integrated Photo-Bioelectrochemical System for Simultaneous Wastewater Treatment and Bioenergy Recovery. Energy 2017, 124, 227–237. [Google Scholar] [CrossRef]
- Powell, E.E.; Hill, G.A. Carbon Dioxide Neutral, Integrated Biofuel Facility. Energy 2010, 35, 4582–4586. [Google Scholar] [CrossRef]
- Powell, E.E.; Evitts, R.W.; Hill, G.A.; Bolster, J.C. A Microbial Fuel Cell with a Photosynthetic Microalgae Cathodic Half Cell Coupled to a Yeast Anodic Half Cell. Energy Sources Part A Recovery Util. Environ. Eff. 2011, 33, 440–448. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, Z.; Wu, X.; Miao, X. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through in Situ Transesterification. Biomed. Res. Int. 2013, 2013, 930686. [Google Scholar] [CrossRef]
- Christwardana, M.; Hadiyanto, H.; Motto, S.A.; Sudarno, S.; Haryani, K. Performance Evaluation of Yeast-Assisted Microalgal Microbial Fuel Cells on Bioremediation of Cafeteria Wastewater for Electricity Generation and Microalgae Biomass Production. Biomass Bioenergy 2020, 139, 105617. [Google Scholar] [CrossRef]
- Leister, D. Enhancing the light reactions of photosynthesis: Strategies, controversies, and perspectives. Mol. Plant 2023, 16, 4–22. [Google Scholar] [CrossRef]
- Rosenbaum, M.; Zhao, F.; Schröder, U.; Scholz, F. Interfacing Electrocatalysis and Biocatalysis with Tungsten Carbide: A High-Performance, Noble-Metal-Free Microbial Fuel Cell. Angew. Chem. Int. Ed. 2006, 45, 6658–6661. [Google Scholar] [CrossRef]
- Cho, Y.K.; Donohue, T.J.; Tejedor, I.; Anderson, M.A.; McMahon, K.D.; Noguera, D.R. Development of a Solar-Powered Microbial Fuel Cell. J. Appl. Microbiol. 2008, 104, 640–650. [Google Scholar] [CrossRef]
- Sharma, M.; Salama, E.-S.E.S.; Zhang, P.; Zhang, L.; Xing, X.; Yue, J.; Song, Z.; Nan, L.; Yujun, S.S.; Li, X. Microalgae-Assisted Microbial Fuel Cells for Electricity Generation Coupled with Wastewater Treatment: Biotechnological Perspective. J. Water Process Eng. 2022, 49, 102966. [Google Scholar] [CrossRef]
- Elshobary, M.E.; Zabed, H.M.; Yun, J.; Zhang, G.; Qi, X. Recent Insights into Microalgae-Assisted Microbial Fuel Cells for Generating Sustainable Bioelectricity. Int. J. Hydrogen Energy 2021, 46, 3135–3159. [Google Scholar] [CrossRef]
- Sekar, N.; Ramasamy, R.P. Recent Advances in Photosynthetic Energy Conversion. J. Photochem. Photobiol. C Photochem. Rev. 2014, 22, 19–33. [Google Scholar] [CrossRef]
- Kusmayadi, A.; Leong, Y.K.; Yen, H.W.; Huang, C.Y.; Dong, C.-D.; Chang, J.S. Microalgae-Microbial Fuel Cell (MMFC): An Integrated Process for Electricity Generation, Wastewater Treatment, CO2 Sequestration and Biomass Production. Int. J. Energy Res. 2020, 44, 9254–9265. [Google Scholar] [CrossRef]
- Lan, J.C.W.; Raman, K.; Huang, C.M.; Chang, C.M. The Impact of Monochromatic Blue and Red LED Light upon Performance of Photo Microbial Fuel Cells (PMFCs) Using Chlamydomonas reinhardtii Transformation F5 as Biocatalyst. Biochem. Eng. J. 2013, 78, 39–43. [Google Scholar] [CrossRef]
- Bardarov, I.; Mitov, M.; Ivanova, D.; Hubenova, Y. Light-Dependent Processes on the Cathode Enhance the Electrical Outputs of Sediment Microbial Fuel Cells. Bioelectrochemistry 2018, 122, 1–10. [Google Scholar] [CrossRef]
- Abazarian, E.; Gheshlaghi, R.; Mahdavi, M.A. Impact of Light/Dark Cycle on Electrical and Electrochemical Characteristics of Algal Cathode Sediment Microbial Fuel Cells. J. Power Sources 2020, 475, 228686. [Google Scholar] [CrossRef]
- Aiyer, K.S. Synergistic Effects in a Microbial Fuel Cell between Co-Cultures and a Photosynthetic Alga Chlorella vulgaris Improve Performance. Heliyon 2021, 7, e05935. [Google Scholar] [CrossRef]
- Das, D.; Pandit, S. Role of Microalgae in Microbial Fuel Cell. In Algal Biorefinery: An Integrated Approach; Springer: Cham, Switzerland, 2016; pp. 1–467. ISBN 9783319228136. [Google Scholar]
- Jaiswal, K.K.; Kumar, V.; Vlaskin, M.S.; Sharma, N.; Rautela, I.; Nanda, M.; Arora, N.; Singh, A.; Chauhan, P.K. Microalgae Fuel Cell for Wastewater Treatment: Recent Advances and Challenges. J. Water Process Eng. 2020, 38, 101549. [Google Scholar] [CrossRef]
- Quintero-Díaz, J.C.; Gil-Posada, J.O. Batch and Semi-Continuous Treatment of Cassava Wastewater Using Microbial Fuel Cells and Metataxonomic Analysis. Bioprocess. Biosyst. Eng. 2024, 47, 1057–1070. [Google Scholar] [CrossRef]
- Shukla, M.; Kumar, S. Algal Growth in Photosynthetic Algal Microbial Fuel Cell and Its Subsequent Utilization for Biofuels. Renew. Sustain. Energy Rev. 2018, 82, 402–414. [Google Scholar] [CrossRef]
- He, H.; Zhou, M.; Yang, J.; Hu, Y.; Zhao, Y. Simultaneous Wastewater Treatment, Electricity Generation and Biomass Production by an Immobilized Photosynthetic Algal Microbial Fuel Cell. Bioprocess. Biosyst. Eng. 2014, 37, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Rao, L.; Yuan, Y.; Zhuang, L. Bioelectricity Generation in a Microbial Fuel Cell with a Self-Sustainable Photocathode. Sci. World J. 2015, 2015, 864568. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Nie, C.; Pei, H.; Hu, W.; Jiang, L.; Yang, Z. The Effect of Algae Species on the Bioelectricity and Biodiesel Generation through Open-Air Cathode Microbial Fuel Cell with Kitchen Waste Anaerobically Digested Effluent as Substrate. Bioresour. Technol. 2016, 218, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Luo, J.; Yang, J.; Zhou, L.; Zhao, Y.; Zhou, M. Coupling of Anodic and Cathodic Modification for Increased Power Generation in Microbial Fuel Cells. J. Power Sources 2012, 219, 358–363. [Google Scholar] [CrossRef]
- Su, D.; Chen, Y. Advanced Bioelectrochemical System for Nitrogen Removal in Wastewater. Chemosphere 2022, 292, 133206. [Google Scholar] [CrossRef]
- Mateo, S.; Cañizares, P.; Rodrigo, M.A.; Fernandez-Morales, F.J. Driving Force of the Better Performance of Metal-Doped Carbonaceous Anodes in Microbial Fuel Cells. Appl. Energy 2018, 225, 52–59. [Google Scholar] [CrossRef]
- Mateo, S.; Cañizares, P.; Rodrigo, M.A.; Fernandez-Morales, F.J. Biofilm and Planktonic Population Distribution. Key Aspects in Carbonaceous Anodes for Microbial Fuel Cells. J. Chem. Technol. Biotechnol. 2018, 93, 3436–3443. [Google Scholar] [CrossRef]
- Scott, K.; Philips, J.; Verbeeck, K.; Rabaey, K.; Arends, J.B.A.; Dumitru, A.; Bajracharya, S.; ElMekawy, A.; Srikanth, S.; Pant, D.; et al. Microbial Electrochemical and Fuel Cells: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2016; Volume 88, ISBN 978-1-78242-375-1. [Google Scholar]
- Logan, B.E.; Noll, K. Microbial Fuel Cells. In Fuel Cell Technology; Sammes, N., Ed.; Wiley: Hoboken, NJ, USA, 2006; pp. 277–296. ISBN 9780470258590. [Google Scholar]
- Hou, B.; Hu, Y.; Sun, J. Performance and Microbial Diversity of Microbial Fuel Cells Coupled with Different Cathode Types during Simultaneous Azo Dye Decolorization and Electricity Generation. Bioresour. Technol. 2012, 111, 105–110. [Google Scholar] [CrossRef]
- Mateo, S.; Cañizares, P.; Fernandez-Morales, F.J.; Rodrigo, M.A. A Critical View of Microbial Fuel Cells: What Is the Next Stage? ChemSusChem 2018, 11, 4183–4192. [Google Scholar] [CrossRef]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef]
- Vicari, F.; D’Angelo, A.; Galia, A.; Quatrini, P.; Scialdone, O. A Single-Chamber Membraneless Microbial Fuel Cell Exposed to Air Using Shewanella putrefaciens. J. Electroanal. Chem. 2016, 783, 268–273. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, H.; Hassett, D.J.; Gu, T. Recent Advances in Microbial Fuel Cells (MFCs) and Microbial Electrolysis Cells (MECs) for Wastewater Treatment, Bioenergy and Bioproducts. J. Chem. Technol. Biotechnol. 2013, 88, 508–518. [Google Scholar] [CrossRef]
- Logan, B. Microbial Fuel Cells; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Wang, X.; Feng, Y.; Liu, J.; Lee, H.; Li, C.; Li, N.; Ren, N. Sequestration of CO2 Discharged from Anode by Algal Cathode in Microbial Carbon Capture Cells (MCCs). Biosens. Bioelectron. 2010, 25, 2639–2643. [Google Scholar] [CrossRef]
- Revelo, D.M.; Hurtado, N.H.; Ruiz, J.O. Celdas de Combustible Microbianas (CCMs): Un Reto Para La Remoci??N de Materia Org??Nica y La Generaci??N de Energ??A El??Ctrica. Inf. Tecnol. 2013, 24, 17–28. [Google Scholar] [CrossRef]
- Nagendranatha Reddy, C.; Nguyen, H.T.H.H.; Noori, T.; Min, B.; Nguyen, H.T.H.H.; Noori, M.T.; Min, B. Potential Applications of Algae in the Cathode of Microbial Fuel Cells for Enhanced Electricity Generation with Simultaneous Nutrient Removal and Algae Biorefinery: Current Status and Future Perspectives. Bioresour. Technol. 2019, 292, 122010. [Google Scholar] [CrossRef]
- Choi, S.A.; Lee, S.Y.; Lee, J.; Cho, J.M.; Lee, J.S.; Kim, S.W.; Kim, D.Y.; Park, S.K.; Jin, C.S.; Oh, Y.K. Rapid Induction of Edible Lipids in Chlorella by Mild Electric Stimulation. Bioresour. Technol. 2019, 292, 121950. [Google Scholar] [CrossRef]
- Fitriana, H.-N.; Lee, S.-Y.; Choi, S.-A.; Lee, J.-Y.; Kim, B.-L.; Lee, J.-S.; Oh, Y.-K. Electric Stimulation of Astaxanthin Biosynthesis in Haematococcus pluvialis. Appl. Sci. 2021, 11, 3348. [Google Scholar] [CrossRef]
- Yilancioglu, K.; Cokol, M.; Pastirmaci, I.; Erman, B.; Cetiner, S. Oxidative Stress Is a Mediator for Increased Lipid Accumulation in a Newly Isolated Dunaliella salina Strain. PLoS ONE 2014, 9, e91957. [Google Scholar] [CrossRef]
- Young Kim, J.; Oh, J.-J.; Hee Kim, D.; Soo Kim, H.; Lee, C.; Park, J.; Choi, Y.-E. Application of Electrical Treatment on Euglena gracilis for Increasing Paramylon Production. Appl. Microbiol. Biotechnol. 2021, 105, 1031–1039. [Google Scholar] [CrossRef]
- Mao, L.; Verwoerd, W.S. Theoretical Exploration of Optimal Metabolic Flux Distributions for Extracellular Electron Transfer by Shewanella oneidensis MR-1. Biotechnol. Biofuels 2014, 7, 118. [Google Scholar] [CrossRef]
- Mao, L. Flux Balance Analysis to Model Microbial Metabolism for Electricity Generation; Lincoln University: Chester, PA, USA, 2013. [Google Scholar]
- Schenk, P.M.; Thomas-Hall, S.R.; Stephens, E.; Marx, U.C.; Mussgnug, J.H.; Posten, C.; Kruse, O.; Hankamer, B. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. Bioenergy Res. 2008, 1, 20–43. [Google Scholar] [CrossRef]
- Gomaa, M.A.; Al-Haj, L.; Abed, R.M.M. Metabolic Engineering of Cyanobacteria and Microalgae for Enhanced Production of Biofuels and High-Value Products. J. Appl. Microbiol. 2016, 121, 919–931. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sheng, J.; III, R.C. Fatty Acid Production in Genetically Modified Cyanobacteria. Proc. Natl. Acad. Sci. USA 2011, 108, 6899–6904. [Google Scholar] [CrossRef] [PubMed]
- Beer, L.L.; Boyd, E.S.; Peters, J.W.; Posewitz, M.C. Engineering Algae for Biohydrogen and Biofuel Production. Curr. Opin. Biotechnol. 2009, 20, 264–271. [Google Scholar] [CrossRef]
- Li, Y.; Han, D.; Hu, G.; Sommerfeld, M.; Hu, Q. Inhibition of Starch Synthesis Results in Overproduction of Lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 2010, 107, 258–268. [Google Scholar] [CrossRef]
- De Jaeger, L.; Verbeek, R.E.M.; Draaisma, R.B.; Martens, D.E.; Springer, J.; Eggink, G.; Wijffels, R.H. Superior Triacylglycerol (TAG) Accumulation in Starchless Mutants of Scenedesmus Obliquus: (I) Mutant Generation and Characterization. Biotechnol. Biofuels 2014, 7, 69. [Google Scholar] [CrossRef]
- Mateo, S.; Cantone, A.; Cañizares, P.; Fernández-Morales, F.J.; Scialdone, O.; Rodrigo, M.A. On the Staking of Miniaturized Air-Breathing Microbial Fuel Cells. Appl. Energy 2018, 232, 1–8. [Google Scholar] [CrossRef]
- Mateo, S.; Cantone, A.; Cañizares, P.; Fernández-Morales, F.J.; Scialdone, O.; Rodrigo, M.A. Development of a Module of Stacks of Air-Breathing Microbial Fuel Cells to Light-up a Strip of LEDs. Electrochim. Acta 2018, 274, 152–159. [Google Scholar] [CrossRef]
- Potrykus, S.; Nieznański, J.; Kutt, F.; Fernandez-Morales, F.J. Modeling the Effect of External Load Variations on Single, Serie and Parallel Connected Microbial Fuel Cells. Bioresour. Technol. 2025, 416, 131761. [Google Scholar] [CrossRef]
- Opoku, P.A.; Jingyu, H.; Yi, L.; Guang, L.; Norgbey, E. Scaled-up Multi-Anode Shared Cathode Microbial Fuel Cell for Simultaneous Treatment of Multiple Real Wastewaters and Power Generation. Chemosphere 2022, 299, 134401. [Google Scholar] [CrossRef]
- Khan, S.S.; Amjad, M.; Shareef, H.; Larkin, S. Review of Microbial Fuel Cell from a Techno-Economic Perspective. Energy Explor. Exploit. 2024, 42, 373–398. [Google Scholar] [CrossRef]
- Rossi, R.; Hur, A.Y.; Page, M.A.; Thomas, A.O.B.; Butkiewicz, J.J.; Jones, D.W.; Baek, G.; Saikaly, P.E.; Cropek, D.M.; Logan, B.E. Pilot Scale Microbial Fuel Cells Using Air Cathodes for Producing Electricity While Treating Wastewater. Water Res. 2022, 215, 118208. [Google Scholar] [CrossRef] [PubMed]
- Savla, N.; Suman; Pandit, S.; Verma, J.P.; Awasthi, A.K.; Sana, S.S.; Prasad, R. Techno-Economical Evaluation and Life Cycle Assessment of Microbial Electrochemical Systems: A Review. Curr. Res. Green. Sustain. Chem. 2021, 4, 100111. [Google Scholar] [CrossRef]
- Jadhav, D.A.; Mungray, A.K.; Arkatkar, A.; Kumar, S.S. Recent Advancement in Scaling-up Applications of Microbial Fuel Cells: From Reality to Practicability. Sustain. Energy Technol. Assess. 2021, 45, 101226. [Google Scholar] [CrossRef]
- Banerjee, C.; Dubey, K.K.; Shukla, P. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges. Front. Microbiol. 2016, 1, 432. [Google Scholar] [CrossRef]
- Mekuto, L.; Olowolafe, A.V.A.; Pandit, S.; Dyantyi, N.; Nomngongo, P.; Huberts, R. Microalgae as a Biocathode and Feedstock in Anode Chamber for a Self-Sustainable Microbial Fuel Cell Technology: A Review. S. Afr. J. Chem. Eng. 2020, 31, 7–16. [Google Scholar] [CrossRef]
Type of BES | Function | Anodic Chamber | Cathodic Chamber | Microorganism | Substrate | Electron Acceptor | Comments |
---|---|---|---|---|---|---|---|
MFCs (Microbial Fuel Cells) | Electricity generation, organic matter removal | Anaerobic oxidation of organic matter | Aerobic reduction reactions | Shewanella, Geobacter, activated sludge | Domestic/industrial wastewater with biodegradable organic matter | O2, K3Fe(CN)6, NaOCl, other oxidizing compounds | Maximum current density: 390 A/m2. Research focuses on improving materials and configurations. |
Microbial electrolysis cells (MECs) | Allow electrolysis of water, synthesis of H2, H2O2, CH4, NaOH, struvite | Anaerobic oxidation of organic matter | Anaerobic, hydrogen generation | Electrogenic at the anode | Biodegradable wastewater | H+, CO2, organics | Requires external power for water electrolysis. pH and aeration control are critical (1000 L produces 0.19 ± 0.04 L H2/L/day). |
Microbial Desalination Cells (MDCs) | Electricity generation, desalination | Anaerobic oxidation of biodegradable substrates | Aerobic reduction reactions | Electrogenic microorganisms in the anode | Domestic/industrial wastewater | O2, K3Fe(CN)6, NaOCl, other oxidizing compounds | Coupled desalination with energy generation. |
Microbial electrosynthesis (MES) | Production of valuable compounds (acetate, etc.) using CO2 | Anaerobic oxidation of organic matter | Reduction in the final electron acceptor to produce value-added compounds | Electrogenic at anode; electrotrophic microorganism, reducing, methanogen bacteria at the cathode | CO2 | CO2 | Requires external power. Challenges include product selectivity and low reaction kinetics. |
MFC | Electricity generation, carbon dioxide capture | Anaerobic oxidation of organic matter | Aerobic reduction | Photosynthetic organism | Organic matter | O2, K3Fe(CN)6, NaOCl, other oxidizing compounds | Combines electricity generation with carbon capture. |
Sediment Microbial Fuel Cells (SMFCs) or benthic MFCs | Energy harvesting from natural organic matter | Anaerobic in sediments | Aerobic | Natural microorganism in aquatic sediments in anode | Organic matter | H+ | Low-cost technology for pollutant removal. |
Plant-Type Microbial Fuel Cells (PMFCs) | Electricity generation and pollutant removal | Anaerobic in soil | Aerobic | Soil microorganisms interacting with the rhizosphere | Plant-excreted carbohydrates | H⁺ | Plants convert sunlight to electricity via rhizosphere processes. |
Constructed Wetlands (CWMFC) | Pollutant treatment, energy generation | Anaerobic in soil | Aerobic | Electrogenic microorganisms in soil | Wastewater | H⁺ | Significant contribution to wastewater treatment. |
mMFCs | Electricity generation, value-added products, carbon dioxide capture | Anaerobic | Aerobic | Microalgae in cathodic chamber | Organic matter | H+ | Microalgae play a key role in power generation. |
Microalgae Specie (Cathode) | MFC Configuration | Electrode | Maximum Power Density | Highlights | Reference |
---|---|---|---|---|---|
Synechocystis + lagoon microorganism | Single chamber | Carbon cloths | 1.3 mW m−2 | Positive response to light | [83] |
Chlorella vulgaris | Double chamber | Glassy graphite rods | 2.7 mW m−2 | Successful removal of CO2 | [84] |
Spirulina platensis | Single chamber | Platinum electrodes | 6.5 mW m−2 | Higher power densities under non illuminated conditions | [85] |
Chlorella vulgaris | Double chamber | Carbon cloths | 13.5 mW m−2 | Polarization resistance more significant at cathode | [86] |
Chlorella vulgaris | Double chamber | Plain graphite | 62.7 mW m−2 | Increasing light intensity (96 µEm2s−1) enhanced power density by 600% | [61] |
Anaerobic mixed consortia | Double chamber | Graphite plate | 57 mW m−2 | Spring season yields 50 times greater power densities | [87] |
Chlorella vulgaris | Double chamber | Plain graphite | 1926 mW m−2 | Closed loop system. High COD | [82] |
Lagoon community | Double chamber | Carbon fiber | 61 µW | Closed loop system | [88] |
Green algae collected from a local water pond (mixture of algae and bacteria) | Tubular Coupled mMFC | Anode: carbon brush Cathode: carbon cloth | 0.205 kWh m−3 | Couple of mMFC and membrane photobioreactor | [89] |
Mixed algae consortia culture | H-type membrane-less mMFC | Graphite rods | - | Potential application to increase biomass production in algal-based treatment systems | [90] |
Chlorella sp. and bacteria | Double chamber | Anode: carbon brush Cathode: stainless steal | 6.4 mW m−2 | Novel configuration | [91] |
Spirulina sp. | Double chamber | Carbon cloths | 0.8–1 W m−2 | Anode removes COD and cathode recovers minerals in wastewater treatment of | [92] |
Chlorella vulgaris | Single chamber | Carbon fibers | 6.46 mW m−2 | real dye textile wastewater. Novel MFC configuration, microalgae biofilm exposed to air | [93] |
Chlorella vulgaris | Dual chamber | Graphite plates | 327.67 mW m−2 | Operation for 32 days with C. vulgaris and bacterial community for bioelectricity generation and bioremediation of oils | [94] |
Golenkinia sp. SDEC-16 | Tubular | Carbon cloth | 0.57 kWhm−3 | Tertiary treatment of kitchen waste | [95] |
Scenedesmus acutus | H-type | Anode: Carbon cloth Cathode: Pt-based gas diffusion electrode | 400 mW m−3 | Use of a membrane based on polybenzimidazole, with better energy performances, cost and sustainability than Nafion. | [96] |
mixed consortium of microalgae collected from lily pond | Cubic dual chamber | Plain graphite plates | 3.33 mW m−2 | Treatment of ghee manufacturing wastewater | [97] |
Chlorella vulgaris | Tubular, polyethylene bags | Graphite felt | 1200 mW m−3 | 10 L outdoor mMFC, low-cost materials | [98] |
Chlorella sp. | Earthen pots dual-chamber mMFC | Anode: stainless steel mesh; cathode: carbon felt | 1.78 W m−2 | Microalgae is used as substrate in anode and as live-culture in the cathode | [99] |
Chlorella pyrenoidosa | Dual chamber | Graphite electrode | 1600 mW m−2 | Treatment of a real batik wastewater | [100] |
Chlorella vulgaris | Dual chamber | Carbon fiber cloth | 1114 mW m−2 | anodic effluent of the mMFC can be utilized in the cathode chamber as a growth medium for microalgae with recirculation | [101] |
Chlorella sp. | Dual chamber coupled to a tubular photobioreactor | Graphite rod | 2.8 W m−3 | Treatment of real dairy wastewater. Influence of light/dark cycles were studied | [102] |
Escherichia coli + Desmodesmus subspicatus | Dual chamber | Graphite electrode | - | The combination of bacteria and microalgae in the mMFC system showed promising outcomes in both generating bioelectricity and bioremediating nutrients in wastewater treatment | [103] |
Saccharomyces cerevisiae + Spirulina platensis | Dual chamber | Graphite rod | 18.30 mW m−2 | Optimizing mMFC performance through adjustments in waste and yeast concentrations shows significant potential for enhancing efficiency | [104] |
Microalgae +ammonia oxidizing bacteria+ denitrifying bacteria | Dual chamber | Carbon cloth | 2.809 mW m−2 | Integration of nitritation into the cathodic compartment, improving bioelectricity generation | [105] |
Nostoc sp. + Enterobacter aerogenes | Dual chamber | Carbon plate | 168 mW m−2 | Bioelectricity generation using dairy wastewater as the substrate | [106] |
Chlorella vulgaris + Spirulina platensis | Dual chamber | Carbon rod | 323.477 mW m−2 | The microalgae consortium improves performance | [107] |
Cladophora sp. | Membrane-less Microbial Fuel Cells | Stainless steel and platinized titanium | 619.1 mW m−2 | Cladophora sp. has significant potential | [108] |
Scenedesmus sp. | Dual chamber | Graphite rods | 34.2 mW m−2 | Domestic wastewater and sugar industry wastewater used as anolyte | [109] |
Scenedesmus obliquus | PBR-MFC-SOC hybrid system | - | 474 mW m−2 | Fixation of CO2 and collecting bioelectricity | [110] |
Spirulina sp. | Dual chamber | Anode: Copper Cathode: zinc | 584.45 mW cm−2 | Pepper residues and Spirulina sp. for large-scale bioelectricity generation | [111] |
Chlorella sp. (closer to sorokiniana) | Dual chamber | Anode: stainless steel mesh Cathode: graphite rod | 34.88 mW m−2 | Use of spent engine oil and cellulosic waste | [112] |
Chlorella sorokiniana | Dual chamber | Graphite sheet | 47.57 mW m−3 | Promising for sustainable bioelectricity generation and wastewater treatment | [113] |
Chlorella sp. | Dual chamber | Graphite rods | 30.1 W m−2 | Removes H2S and CO2 from biogas | [114] |
Scenedesmus sp. | Dual chamber | Graphite rods | 42 mW m−2 | Hydrogen production | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya-Vallejo, C.; Quintero Díaz, J.C.; Yepes, Y.A.; Fernández-Morales, F.J. Microalgal Microbial Fuel Cells: A Comprehensive Review of Mechanisms and Electrochemical Performance. Appl. Sci. 2025, 15, 3335. https://doi.org/10.3390/app15063335
Montoya-Vallejo C, Quintero Díaz JC, Yepes YA, Fernández-Morales FJ. Microalgal Microbial Fuel Cells: A Comprehensive Review of Mechanisms and Electrochemical Performance. Applied Sciences. 2025; 15(6):3335. https://doi.org/10.3390/app15063335
Chicago/Turabian StyleMontoya-Vallejo, Carolina, Juan Carlos Quintero Díaz, Yamid Andrés Yepes, and Francisco Jesús Fernández-Morales. 2025. "Microalgal Microbial Fuel Cells: A Comprehensive Review of Mechanisms and Electrochemical Performance" Applied Sciences 15, no. 6: 3335. https://doi.org/10.3390/app15063335
APA StyleMontoya-Vallejo, C., Quintero Díaz, J. C., Yepes, Y. A., & Fernández-Morales, F. J. (2025). Microalgal Microbial Fuel Cells: A Comprehensive Review of Mechanisms and Electrochemical Performance. Applied Sciences, 15(6), 3335. https://doi.org/10.3390/app15063335