Signal Separation Based on Knowledge Representation
Abstract
:1. Introduction
2. Theory
2.1. Problem Setup
2.2. Knowledge Representation
2.2.1. Observed Knowledge Representation
2.2.2. Physical Knowledge Representation
2.2.3. Data-Driven Knowledge Representation
2.3. Application of Knowledge Representations
2.3.1. Application of Observed Knowledge Representation
2.3.2. Application of Physical Knowledge Representation
2.3.3. Application of Data-Driven Knowledge Representation
3. Methodology
3.1. Signal Separation Based on Knowledge Representation Framework
3.2. Network Architecture
3.3. Loss Function
4. Numerical Simulation
4.1. Up- and Downgoing Wavefield Separation via Observed Knowledge Representation
4.2. P- and S-Wave Separation via Physical Knowledge Representation
4.3. Separation of Mixed Handwritten Digits via Data-Driven Knowledge Representation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, X.; Cao, X.; Ma, Y. Robust separation of reflection from multiple images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2187–2194. [Google Scholar]
- Narayanaswamy, V.; Thiagarajan, J.J.; Anirudh, R.; Spanias, A. Unsupervised audio source separation using generative priors. arXiv 2020, arXiv:2005.13769. [Google Scholar]
- Sawada, H.; Ono, N.; Kameoka, H.; Kitamura, D.; Saruwatari, H. A review of blind source separation methods: Two converging routes to ILRMA originating from ICA and NMF. APSIPA Trans. Signal Inf. Process. 2019, 8, e12. [Google Scholar] [CrossRef]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [Google Scholar] [CrossRef]
- Leplat, V.; Gillis, N.; Ang, A.M. Blind audio source separation with minimum-volume beta-divergence NMF. IEEE Trans. Signal Process. 2020, 68, 3400–3410. [Google Scholar] [CrossRef]
- Sedighin, F.; Babaie-Zadeh, M.; Rivet, B.; Jutten, C. Multimodal soft nonnegative matrix co-factorization for convolutive source separation. IEEE Trans. Signal Process. 2017, 65, 3179–3190. [Google Scholar] [CrossRef]
- Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef]
- Boergens, E.; Rangelova, E.; Sideris, M.G.; Kusche, J. Assessment of the capabilities of the temporal and spatiotemporal ICA method for geophysical signal separation in GRACE data. J. Geophys. Res. Solid Earth 2014, 119, 4429–4447. [Google Scholar] [CrossRef]
- Boppidi, P.K.R.; Louis, V.J.; Subramaniam, A.; Tripathy, R.K.; Banerjee, S.; Kundu, S. Implementation of fast ICA using memristor crossbar arrays for blind image source separations. IET Circuits Devices Syst. 2020, 14, 484–489. [Google Scholar] [CrossRef]
- Belouchrani, A.; Amin, M.G.; Thirion-Moreau, N.; Zhang, Y.D. Source separation and localization using time-frequency distributions: An overview. IEEE Signal Process. Mag. 2013, 30, 97–107. [Google Scholar] [CrossRef]
- Duan, J.; Zhang, G.; Liang, C.; Zhan, Y.; Li, Y. High-efficiency and precision VSP wavefield separation method via DCT. J. Geophys. Eng. 2022, 19, 192–210. [Google Scholar] [CrossRef]
- Hardage, B.A. Vertical seismic profiling. Lead. Edge 1985, 4, 59. [Google Scholar] [CrossRef]
- Devaney, A.; Oristaglio, M. A plane-wave decomposition for elastic wave fields applied to the separation of P-waves and S-waves in vector seismic data. Geophysics 1986, 51, 419–423. [Google Scholar] [CrossRef]
- Li, Z.; Ma, X.; Fu, C.; Gu, B.; Liang, G. Frequency-wavenumber implementation for P-and S-wave separation from multi-component seismic data. Explor. Geophys. 2016, 47, 32–43. [Google Scholar] [CrossRef]
- Jiang, X.; Lin, J.; Ye, F.; Zheng, F. Separation of P–P and P–SV wavefields by high resolution parabolic Radon transform. J. Appl. Geophys. 2015, 119, 192–201. [Google Scholar] [CrossRef]
- Moon, W.; Carswell, A.; Tang, R.; Dilliston, C. Radon transform wave field separation for vertical seismic profiling data. Geophysics 1986, 51, 940–947. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.E.; Zong, J.; Yang, J.; Fu, H.; Sun, M. Deep learning-based P-and S-wave separation for multicomponent vertical seismic profiling. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Huang, H.; Wang, T.; Cheng, J. P/S-wave separation of multicomponent seismic data at the land surface based on deep learning. Geophysics 2023, 88, V233–V247. [Google Scholar] [CrossRef]
- Wisdom, S.; Tzinis, E.; Erdogan, H.; Weiss, R.; Wilson, K.; Hershey, J. Unsupervised sound separation using mixture invariant training. Adv. Neural Inf. Process. Syst. 2020, 33, 3846–3857. [Google Scholar]
- Neri, J.; Badeau, R.; Depalle, P. Unsupervised blind source separation with variational auto-encoders. In Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 311–315. [Google Scholar]
- Lu, L.; Dao, M.; Kumar, P.; Ramamurty, U.; Karniadakis, G.E.; Suresh, S. Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proc. Natl. Acad. Sci. USA 2020, 117, 7052–7062. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Zhang, D.; Yan, J. Combining Knowledge with Deep Convolutional Neural Networks for Short Text Classification. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17), Melbourne, Australia, 19–25 August 2017; pp. 2915–2921. [Google Scholar]
- Wang, X.; He, X.; Cao, Y.; Liu, M.; Chua, T.S. Kgat: Knowledge graph attention network for recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 950–958. [Google Scholar]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Muralidhar, N.; Islam, M.R.; Marwah, M.; Karpatne, A.; Ramakrishnan, N. Incorporating prior domain knowledge into deep neural networks. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 36–45. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Von Rueden, L.; Mayer, S.; Beckh, K.; Georgiev, B.; Giesselbach, S.; Heese, R.; Kirsch, B.; Pfrommer, J.; Pick, A.; Ramamurthy, R. Informed machine learning–a taxonomy and survey of integrating prior knowledge into learning systems. IEEE Trans. Knowl. Data Eng. 2021, 35, 614–633. [Google Scholar] [CrossRef]
- Wu, X.; Ma, J.; Si, X.; Bi, Z.; Yang, J.; Gao, H.; Xie, D.; Guo, Z.; Zhang, J. Sensing prior constraints in deep neural networks for solving exploration geophysical problems. Proc. Natl. Acad. Sci. USA 2023, 120, e2219573120. [Google Scholar] [CrossRef]
- Lu, C.; Zou, X.; Wang, Y.; Zong, J.; Su, Q. P-and S-Wave Separation in Complex Geological Structures via Knowledge-Guided Autoencoder. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–20. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, J.; Xue, Y.; Zhao, X. Seismic inversion based on fusion neural network for the joint estimation of acoustic impedance and porosity. IEEE Trans. Geosci. Remote Sens. 2024, 62. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, C. Seismic velocity inversion via physical embedding recurrent neural networks (RNN). Appl. Sci. 2023, 13, 13312. [Google Scholar] [CrossRef]
- Wang, W.; McMechan, G.A.; Ma, J. Elastic isotropic and anisotropic full-waveform inversions using automatic differentiation for gradient calculations in a framework of recurrent neural networks. Geophysics 2021, 86, R795–R810. [Google Scholar] [CrossRef]
- Cardoso, J.F. Blind signal separation: Statistical principles. Proc. IEEE 1998, 86, 2009–2025. [Google Scholar] [CrossRef]
- Jutten, C.; Herault, J. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Process. 1991, 24, 1–10. [Google Scholar] [CrossRef]
- Fan, N.; Xie, X.B.; Zhao, L.F.; Zhou, X.; Yao, Z.X. The P-and S-Wave Decomposition in a Multicomponent Elastic Wavefield Based on the Divergence and Curl Operators and Their Applications in Elastic Reverse Time Migration. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Xiao, X.; Leaney, W.S. Local vertical seismic profiling (VSP) elastic reverse-time migration and migration resolution: Salt-flank imaging with transmitted P-to-S waves. Geophysics 2010, 75, S35–S49. [Google Scholar] [CrossRef]
- Lu, C.; Mu, Z.; Zong, J.; Wang, T. Unsupervised VSP Up-and Downgoing Wavefield Separation via Dual Convolutional Autoencoders. IEEE Trans. Geosci. Remote Sens. 2023, 62, 1–15. [Google Scholar] [CrossRef]
- Aki, K.; Richards, P.G. Quantitative Seismology; University Science Books: Herndon, VA, USA, 2002. [Google Scholar]
- Jianlei, Z.; Zhenping, T.; Chengxiang, W. P-and S-wave separated elastic wave equation numerical modeling using 2D staggered-grid. In Proceedings of the SEG International Exposition and Annual Meeting, SEG, San Antonio, TX, USA, 23–26 September 2007. SEG–2007–2104. [Google Scholar]
- Martin, G.S.; Wiley, R.; Marfurt, K.J. Marmousi2: An elastic upgrade for Marmousi. Lead. Edge 2006, 25, 156–166. [Google Scholar] [CrossRef]
- Zhang, T.; Innanen, K.A.; Sun, J.; Trad, D.O. Numerical analysis of a deep learning formulation of multi-parameter elastic full waveform inversion. In Proceedings of the SEG International Exposition and Annual Meeting, SEG, Virtual, 11–16 October 2020. D031S057R004. [Google Scholar] [CrossRef]
- Richardson, A. Seismic full-waveform inversion using deep learning tools and techniques. arXiv 2018, arXiv:1801.07232. [Google Scholar]
- Sun, J.; Niu, Z.; Innanen, K.A.; Li, J.; Trad, D.O. A theory-guided deep-learning formulation and optimization of seismic waveform inversion. Geophysics 2020, 85, R87–R99. [Google Scholar] [CrossRef]
Component | Description |
---|---|
Convolutional Layers | Extract spatial and feature information from input data |
Normalization Layers | Standardize input data to stabilize and accelerate training |
Activation Layers | Introduce nonlinearity to capture complex relationships |
Pooling Layers | Downsample feature maps, reducing complexity while preserving key features |
Upsampling Layers | Restore spatial dimensions of feature maps for reconstruction |
Denormalization Layers | Reverse normalization to recover the original signal scale |
Model | MSE | SNR (dB) |
---|---|---|
Initial Model () | 135,977.581 | 7.632 |
Initial Model () | 79,916.215 | 7.727 |
Inversion-A () | 78,317.453 | 10.066 |
Inversion-A () | 51,775.479 | 9.612 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.; Zou, X.; Zong, J. Signal Separation Based on Knowledge Representation. Appl. Sci. 2025, 15, 3319. https://doi.org/10.3390/app15063319
Lu C, Zou X, Zong J. Signal Separation Based on Knowledge Representation. Applied Sciences. 2025; 15(6):3319. https://doi.org/10.3390/app15063319
Chicago/Turabian StyleLu, Cai, Xuyang Zou, and Jingjing Zong. 2025. "Signal Separation Based on Knowledge Representation" Applied Sciences 15, no. 6: 3319. https://doi.org/10.3390/app15063319
APA StyleLu, C., Zou, X., & Zong, J. (2025). Signal Separation Based on Knowledge Representation. Applied Sciences, 15(6), 3319. https://doi.org/10.3390/app15063319