Treatment of a Real Brewery Wastewater with Coagulation and Flocculation: Impact on Organic Substance and Nutrient Concentrations
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of the Brewery Wastewater
2.2. Design of the Experimental Activities
2.2.1. Lab-Scale Phase
2.2.2. Industrial-Scale Phase
2.3. Analytical Methods
3. Results and Discussion
3.1. Lab-Scale Phase
3.2. Industrial-Scale Phase
3.2.1. Physico-Chemical Parameters and Consumption of Chemicals
3.2.2. Chemical Parameters
3.2.3. Production of Chemical Sludge
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAF | Anion-active flocculants |
BOD | Biological oxygen demand |
BOD5 | Biological oxygen demand in five days |
BWW | Brewery wastewater |
CAF | Cation-active reagent |
COD | Chemical oxygen demand |
CIP | Clean-in-Place |
DM | Dry matter |
P-PO43− | Orthophosphate |
PAC | Polyaluminium chloride |
WW | Wastewater |
Ntot | Total nitrogen |
Ptot | Total phosphorus |
TSS | Total suspended solids |
References
- Pascari, X.; Ramos, A.J.; Marín, S.; Sanchís, V. Mycotoxins and Beer. Impact of Beer Production Process on Mycotoxin Contamination. A Review. Food Res. Int. 2018, 103, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Ramamurthy, R.; Rene, E.R. Wastewater Treatment and Resource Recovery Technologies in the Brewery Industry: Current Trends and Emerging Practices. Sustain. Energy Technol. Assess. 2021, 47, 101432. [Google Scholar] [CrossRef]
- de Oliveira Gomes, F.; Guimarães, B.P.; Ceola, D.; Ghesti, G.F. Advances in Dry Hopping for Industrial Brewing: A Review. Food Sci. Technol. 2022, 42, e60620. [Google Scholar] [CrossRef]
- Costa, A.M.; Zanoelo, E.F.; Benincá, C.; Freire, F.B. A Kinetic Model for Electrocoagulation and Its Application for the Electrochemical Removal of Phosphate Ions from Brewery Wastewater. Chem. Eng. Sci. 2021, 243, 116755. [Google Scholar] [CrossRef]
- Dabrowski, W.; Karolinczak, B. Application of Trickling Filter and Vertical Flow Constructed Wetland Bed to Treat Sewage from Craft Brewery. J. Ecol. Eng. 2019, 20, 211–217. [Google Scholar] [CrossRef]
- Khumalo, S.M.; Bakare, B.F.; Rathilal, S.; Tetteh, E.K. Characterization of South African Brewery Wastewater: Oxidation-Reduction Potential Variation. Water 2022, 14, 1604. [Google Scholar] [CrossRef]
- Khumalo, S.M.; Bakare, B.F.; Tetteh, E.K.; Rathilal, S. Application of Response Surface Methodology on Brewery Wastewater Treatment Using Chitosan as a Coagulant. Water 2023, 15, 1176. [Google Scholar] [CrossRef]
- Mwewa, B.; Stopić, S.; Ndlovu, S.; Simate, G.S.; Xakalashe, B.; Friedrich, B. Synthesis of Poly-Alumino-Ferric Sulphate Coagulant from Acid Mine Drainage by Precipitation. Metals 2019, 9, 1166. [Google Scholar] [CrossRef]
- Shabangu, K.P.; Bakare, B.F.; Bwapwa, J.K. The Treatment Effect of Chemical Coagulation Process in South African Brewery Wastewater: Comparison of Polyamine and Aluminum-Chlorohydrate Coagulants. Water 2022, 14, 2495. [Google Scholar] [CrossRef]
- Egamberdiev, N.B.; Sharipjonova, Z.; Nasibov, B.; Khomidov, A.O.; Alimova, M.I.; Abdumalikov, A.A. Biological Treatment of Industrial and Domestic Wastewater of a Brewery in Uzbekistan. E3S Web Conf. 2021, 264, 01055. [Google Scholar] [CrossRef]
- Strelkov, A.K.; Ponomarenko, O.S.; Avdeenkov, P.P.; Zontova, E.R.; Tuktasheva, E.Y. Results of Studies on Biological Wastewater Treatment of a Brewery. Urban Constr. Archit. 2022, 12, 34–39. [Google Scholar] [CrossRef]
- Tuktasheva, E.Y.; Stepanov, A.S.; Kumpeisov, M.S. Biological Treatment of Brewery Wastewater in a Sequencing Batch Reactor. IOP Conf. Ser. Earth Environ. Sci. 2021, 867, 012053. [Google Scholar] [CrossRef]
- Aremanda, R.B.; Berhane, F.; Daniel, H.; Mehari, A.; Tekle, A. Brewery Effluent Treatment with Conventional and Natural Coagulants. Equilib. J. Chem. Eng. 2022, 6, 105–116. [Google Scholar] [CrossRef]
- Wagner, T.V.; Rempe, F.; Hoek, M.; Schuman, E.; Langenhoff, A. Key Constructed Wetland Design Features for Maximized Micropollutant Removal from Treated Municipal Wastewater: A Literature Study Based on 16 Indicator Micropollutants. Water Res. 2023, 244, 120534. [Google Scholar] [CrossRef]
- Reif, D.; Weisz, L.; Kobsik, K.; Schaar, H.; Saracevic, E.; Krampe, J.; Kreuzinger, N. Adsorption/Precipitation Prototype Agent for Simultaneous Removal of Phosphorus and Organic Micropollutants from Wastewater. J. Environ. Chem. Eng. 2023, 11, 110117. [Google Scholar] [CrossRef]
- Aziz, N.; Effendy, N.; Basuki, K.T. Comparison of Poly Aluminium Chloride (PAC) and Aluminium Sulphate Coagulants Efficiency in Waste Water Treatment Plant. J. Inov. Tek. Kim. 2017, 2, 24–31. [Google Scholar]
- Wang, Y.; Chen, M.; Xu, J.; Qi, N.; Dong, L.; Cao, G.; Zhao, X. Potential and Characteristics of Bio-H2 Production from Brewery Wastewater by a Maltose-Preferring Butyrate-Type Producer: Investigation in Batch and Semi-Continuous Cultures. Environ. Res. 2022, 205, 112457. [Google Scholar] [CrossRef]
- Gorfie, B.N.; Tuhar, A.W.; Keraga, A.S.; Woldeyohannes, A.B. Effect of Brewery Wastewater Irrigation on Soil Characteristics and Lettuce (Lactuca Sativa) Crop in Ethiopia. Agric. Water Manag. 2022, 269, 107633. [Google Scholar] [CrossRef]
- Arambarri, J.; Abbassi, B.; Zytner, P. Enhanced Removal of Phosphorus from Wastewater Using Sequential Electrocoagulation and Chemical Coagulation. Water Air Soil Pollut. 2019, 230, 312. [Google Scholar] [CrossRef]
- Henze, M.; Comeau, Y. Wastewater Characterisation. In Biological Wastewater Treatment: Principles, Modelling and Design; Henze, M., van Loosdrecht, M.C.M., Ekama, G.A., Brdjanovic, D., Eds.; IWA Publishing: London, UK, 2008; Volume 7. [Google Scholar]
- Hach Company. Suspended Solids Photometric Method 1 Method 8006 5 to 750 Mg/L TSS Scope and Application: For Water and Wastewater. Test Preparation Instrument-Specific Information Before Starting; Hach Company: Loveland, CO, USA, 2014. [Google Scholar]
- American Public Health Association. APHA Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2022. [Google Scholar]
- Hach Company. HACH LCK 114—Chemical Oxygen Demand (COD); Hach Company: Loveland, CO, USA, 2019. [Google Scholar]
- Hach Company. HACH Phosphorus, Total|Method 8190; Hach Company: Loveland, CO, USA, 2017. [Google Scholar]
- Hach Company. HACH Phosphorus, Reactive (Orthophosphate)|Method 10214; Hach Company: Loveland, CO, USA, 2014. [Google Scholar]
- Hach Company. HACH Error Sources During Analysis—DOC062.52.00304; Hach Company: Loveland, CO, USA, 2017. [Google Scholar]
- Garomsa, F.S.; Mehari, Y.; Desta, W.M.; Bidira, F.; Asaithambi, P. Removal of NO3-, PO3-, and Color from Brewery Wastewater by the Use of Indigenous Bio-Coagulant-Assisted Electrocoagulation. Prog. Eng. Sci. 2024, 1, 100032. [Google Scholar] [CrossRef]
- Owodunni, A.A.; Ismail, S.; Kurniawan, S.B.; Ahmad, A.; Imron, M.F.; Abdullah, S.R.S. A Review on Revolutionary Technique for Phosphate Removal in Wastewater Using Green Coagulant. J. Water Process Eng. 2023, 52, 103573. [Google Scholar] [CrossRef]
- Dai, Y.; Li, Y.; Ke, Y.; Li, B. Efficiency and Mechanism of Advanced Treatment for Phosphate Wastewater by High Efficiency and Low Consumption Coagulation and Phosphorus Removal System. IOP Conf. Ser. Earth Environ. Sci. 2021, 631, 012002. [Google Scholar] [CrossRef]
- Avila-Sierra, A.; Zhang, Z.J.; Fryer, P.J. Effect of Surface Characteristics on Cleaning Performance for CIP System in Food Processing. Energy Procedia 2019, 161, 115–122. [Google Scholar] [CrossRef]
- Rajapakse, N.; Zargar, M.; Sen, T.; Khiadani, M. Effects of Influent Physicochemical Characteristics on Air Dissolution, Bubble Size and Rise Velocity in Dissolved Air Flotation: A Review. Sep. Purif. Technol. 2022, 289, 120772. [Google Scholar] [CrossRef]
- Dayarathne, H.N.P.; Angove, M.J.; Jeong, S.; Aryal, R.; Paudel, S.R.; Mainali, B. Effect of Temperature on Turbidity Removal by Coagulation: Sludge Recirculation for Rapid Settling. J. Water Process Eng. 2022, 46, 102559. [Google Scholar] [CrossRef]
- Bakare, B.F.; Shabangu, K.; Chetty, M. Brewery Wastewater Treatment Using Laboratory Scale Aerobic Sequencing Batch Reactor. S. Afr. J. Chem. Eng. 2017, 24, 128–134. [Google Scholar] [CrossRef]
- Tuktasheva, E.Y. Study of efficiency of pre-reagent treatment of waste water from brewery. Urban Constr. Archit. 2021, 11, 56–61. [Google Scholar] [CrossRef]
- Swain, K.; Abbassi, B.; Kinsley, C. Combined Electrocoagulation and Chemical Coagulation in Treating Brewery Wastewater. Water 2020, 12, 726. [Google Scholar] [CrossRef]
- Fosso-Kankeu, E.; Lunga, O.T.G.; Moyakhe, D.; Waanders, F.B.; de Klerk, C. Effects of Pretreatment on the Removal of COD from Brewery Wastewater. In Proceedings of the SETWM-19, ACBES-19, EEHSS-19, Johannesburg, South Africa, 18–19 November 2019. Eminent Association of Pioneers. [Google Scholar]
- Tonhato Junior, A.; Hasan, S.D.M.; Sebastien, N.Y. Optimization of Coagulation/Flocculation Treatment of Brewery Wastewater Employing Organic Flocculant Based of Vegetable Tannin. Water Air Soil Pollut. 2019, 230, 202. [Google Scholar] [CrossRef]
- Alavijeh, H.N.; Sadeghi, M.; Kashani, M.R.K.; Moheb, A. Efficient Chemical Coagulation-Electrocoagulation-Membrane Filtration Integrated Systems for Baker’s Yeast Wastewater Treatment: Experimental and Economic Evaluation. Clean. Chem. Eng. 2022, 3, 100032. [Google Scholar] [CrossRef]
- Hultberg, M.; Bodin, H. Fungi-Based Treatment of Brewery Wastewater—Biomass Production and Nutrient Reduction. Appl. Microbiol. Biotechnol. 2017, 101, 4791–4798. [Google Scholar] [CrossRef]
- Duan, J.; Wang, J.; Guo, T.; Gregory, J. Zeta Potentials and Sizes of Aluminum Salt Precipitates—Effect of Anions and Organics and Implications for Coagulation Mechanisms. J. Water Process Eng. 2014, 4, 224–232. [Google Scholar] [CrossRef]
- Aigboje, E.O. Effect of the Production Processed Effluence on the Environment: A Case Study of a Typical Brewery Industry in Nigeria. J. Adv. Sci. Eng. 2022, 7, 9–17. [Google Scholar] [CrossRef]
- Jaiyeola, A.T.; Bwapwa, J.K. Treatment Technology for Brewery Wastewater in a Water-Scarce Country: A Review. S. Afr. J. Sci. 2016, 112, 8. [Google Scholar] [CrossRef] [PubMed]
- Agunbiade, M.; Oladipo, B.; Ademakinwa, A.N.; Awolusi, O.; Adesiyan, I.M.; Oyekola, O.; Ololade, O.; Ojo, A. Bioflocculant Produced by Bacillus Velezensis and Its Potential Application in Brewery Wastewater Treatment. Sci. Rep. 2022, 12, 10945. [Google Scholar] [CrossRef]
- Badawi, A.K.; Salama, R.S.; Mostafa, M.M.M. Natural-Based Coagulants/Flocculants as Sustainable Market-Valued Products for Industrial Wastewater Treatment: A Review of Recent Developments. RSC Adv. 2023, 13, 19335–19355. [Google Scholar] [CrossRef]
- Collivignarelli, M.; Abbà, A.; Frattarola, A.; Carnevale Miino, M.; Padovani, S.; Katsoyiannis, I.; Torretta, V. Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview. Sustainability 2019, 11, 6015. [Google Scholar] [CrossRef]
- Nayeri, D.; Mousavi, S.A. A Comprehensive Review on the Coagulant Recovery and Reuse from Drinking Water Treatment Sludge. J. Environ. Manag. 2022, 319, 115649. [Google Scholar] [CrossRef]
Parameter | u.m. | BWW (Tested in This Study) | Urban WW a (as Comparison) |
---|---|---|---|
TSS | mg·L−1 | 60–65 | 250–400 |
BOD5 | mg·L−1 | 2300–2400 | 230–350 b |
COD | mg·L−1 | 5000–5200 | 500–750 |
Ntot | mg·L−1 | 120–130 | 30–60 |
Ptot | mg·L−1 | 19–20 | 6–15 |
P-PO43− | mg·L−1 | 14–16 | 4–10 |
pH | - | 5.6–10.2 | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carnevale Miino, M.; Torretta, V.; Repková, M.; Hlavínek, P.; Telek, J. Treatment of a Real Brewery Wastewater with Coagulation and Flocculation: Impact on Organic Substance and Nutrient Concentrations. Appl. Sci. 2025, 15, 2999. https://doi.org/10.3390/app15062999
Carnevale Miino M, Torretta V, Repková M, Hlavínek P, Telek J. Treatment of a Real Brewery Wastewater with Coagulation and Flocculation: Impact on Organic Substance and Nutrient Concentrations. Applied Sciences. 2025; 15(6):2999. https://doi.org/10.3390/app15062999
Chicago/Turabian StyleCarnevale Miino, Marco, Vincenzo Torretta, Martina Repková, Petr Hlavínek, and Július Telek. 2025. "Treatment of a Real Brewery Wastewater with Coagulation and Flocculation: Impact on Organic Substance and Nutrient Concentrations" Applied Sciences 15, no. 6: 2999. https://doi.org/10.3390/app15062999
APA StyleCarnevale Miino, M., Torretta, V., Repková, M., Hlavínek, P., & Telek, J. (2025). Treatment of a Real Brewery Wastewater with Coagulation and Flocculation: Impact on Organic Substance and Nutrient Concentrations. Applied Sciences, 15(6), 2999. https://doi.org/10.3390/app15062999