Prediction Models for Diabetes in Children and Adolescents: A Review
Abstract
:1. Introduction
2. Prediction Models of Type 1 Diabetes (T1D)
2.1. Immunological Markers in Prediction
2.2. Metabolic Markers as Risk Factors
2.3. Blood Glucose Marker
2.4. Glycemic Control
3. Prediction Models for Type 2 Diabetes (T2D)
3.1. Obesity—A Global Risk Factor in T2D
3.2. Genetic Predisposition
3.3. Gender Differences
3.4. Various Ethnic Groups
3.5. Socioeconomic Status
3.6. Other Pre-Diabetes Diagnosis Markers
4. Models for Differentiating T1D from T2D
5. Machine Learning and Deep Learning Models to Predict Diabetes in Children and Adolescents
5.1. ML Classifier
5.2. Comparison of ML Algorithms
5.3. Multilayer ML Algorithm
5.4. ML Based Ensemble Model
5.5. Deep Learning Approach
5.6. Deep Neural Network
6. Future Research
- -
- The natural history of early-onset diabetes remains poorly understood and explained.
- -
- Further determining risk factors for diabetes that are specific in children and adolescents and are related to growing up and maturing is necessary.
- -
- Some of the risk factors are not sufficiently researched yet. This is the case, for example, with the influence of psychological conditions or disorders in adolescence on the occurrence of diabetes; however, there is an opposite effect between the influence of early-onset diabetes on psychological conditions.
- -
- The effect of the mutual influence of different risk factors during growing up on the occurrence of diabetes in adolescents.
Funding
Conflicts of Interest
Abbreviations
Symbols | |
AI | Artificial intelligence |
ASDR | Disability-Adjusted Life–Year Rate |
ASMR | Age-Standardized Mortality Rate |
BMI | Body mass index |
CVD | Cardiovascular disease |
DALY | Disability-adjusted life years |
DL | Deep learning |
DNN | Deep Neural Network |
DT | Decision Tree |
EC | Ensemble Classifier |
EHR | Electronic health record |
FBS | Fasting blood sugar |
GBD | Global Burden of Diseases Study |
GD | Gestational diabetes |
k-NN | k-Nearest Neighbor algorithm |
LR | Logistic Regression |
MLP | Multi-Layer Perceptron algorithm |
NB | Naïve Bayes |
RF | Random forest algorithm |
SDI | Socio demographic index |
SVM | Support Vector Machines |
T1D | Type 1 diabetes |
T2D | Type 2 diabetes |
WVC | Weighted Voting Classifier |
XGB | Extreme Gradient Boosting Tree |
References
- Ong, K.L. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the global burden of disease study 2021. Lancet Reg. Health 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Wu, G.; Li, H.; Qiao, Y.; Gao, S. Type 1 and type 2 diabetes mortality burden: Predictions for 2030 based on bayesian age period-cohort analysis of China and global mortality burden from 1990 to 2019. J. Diabetes Investig. 2024, 15, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Zhou, D.; Li, N.; Han, B. Predicting diabetes and estimating its economic burden in China using autoregressive integrated moving average model. Int. J. Public Health 2022, 66, 1604449. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Chai, Z.; Li, C.; Wang, Y.; Shen, M.L.; Zhuang, G.; Zhang, L. Projected rapid growth in diabetes disease burden and economic burden in China: A spatio-temporal study from 2020 to 2030. Lancet Reg. Health-West. Pac. 2023, 33, 100700. [Google Scholar] [CrossRef]
- Pinhas-Hamiel, O.; Zeitler, P. Type 2 Diabetes in Children and Adolescents—A Focus on Diagnosis and Treatment. In Endotex, Endocrinology Book; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; Endotex: South Dartmouth, MA, USA, 2023; Chapter: Pediatric Endocrinology. [Google Scholar]
- Ahmed, A.M. History of diabetes mellitus. Saudi Med. J. 2002, 23, 373–378. [Google Scholar]
- Arslanian, S. Type 2 diabetes in children: Clinical aspects and risk factors. Horm. Res. 2002, 57 (Suppl. S1), 19–28. [Google Scholar] [CrossRef]
- Knowler, W.C.; Pettitt, D.J.; Savage, P.J.; Bennett, P.H. Diabetes incidence in Pima indians: Contributions of obesity and parental diabetes. Am. J. Epidemiol. 1981, 113, 144–156. [Google Scholar] [CrossRef]
- American Diabetes Association. Type 2 diabetes in children and adolescents. Pediatrics 2000, 105, 671–680. [Google Scholar] [CrossRef]
- Dabelea, D.; Bell, R.A.; D’Agostino, R.B.; Imperatore, G.; Johansen, J.M.; Linder, B.; Liu, L.L.; Loots, B.; Marcovina, S.; Writing Group for the SEARCH for Diabetes in Youth Study Group; et al. Incidence of diabetes in youth in the United States. JAMA 2007, 297, 2716–2724. [Google Scholar]
- Knip, M. Prediction and prevention of type 1 diabetes. Acta Paediatr. Suppl. 1998, 425, 54–62. [Google Scholar] [CrossRef]
- Muñoz, L.G.; Barrull, D.P.; Armayones, J.M.C.; Murillo, M.; Fernandez, S.R.; Valls, A.; Vazquez, F.; Perez, J.; Corripio, R.; Castaño, L.; et al. Candidate biomarkers for the prediction and monitoring ‘of partial remission in pediatric type 1 diabetes. Front. Immunol. 2022, 13, 825426. [Google Scholar]
- Chai, J.; Sun, Z.; Zhou, Q.; Xu, J. Evaluation of trace elements levels and construction of auxiliary prediction model in patients with diabetes Ketoacidosis in type 1 diabetes. Diabetes Metab. Syndr. Obes. 2023, 16, 3403–3415. [Google Scholar] [CrossRef] [PubMed]
- Pettitt, D.J.; Talton, J.; Dabelea, D.; Divers, J.; Imperatore, G.; Lawrence, J.M.; Liese, A.D.; Linder, B.; Mayer-Davis, E.J.; Pihoker, C.; et al. Prevalence of Diabetes in U.S. Youth in 2009: The SEARCH for Diabetes in Youth Study. Diabetes Care 2014, 37, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Hamman, R.F.; Bell, R.A.; Dabelea, D.; D’Agostino, R.B., Jr.; Dolan, L.; Imperatore, G.; Lawrence, J.M.; Linder, B.; Marcovina, S.M.; Mayer-Davis, E.J.; et al. The SEARCH for Diabetes in Youth study: Rationale, findings, and future directions. Diabetes Care 2014, 37, 3336–3344. [Google Scholar] [CrossRef]
- Hockett, C.W.; Praveen, P.A.; Ong, T.C.; Amutha, A.; Isom, S.P.; Jensen, E.T.; D’Agostino, R.B.; Hamman, R.F.; Mayer-Davis, E.J.; Lawrence, J.M.; et al. Clinical profile at diagnosis with youth-onset type 1 and type 2 diabetes in two pediatric diabetes registries: SEARCH (United States) and YDR (India). Pediatr. Diabetes 2021, 22, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Copeland, K.C.; Zeitler, P.; Geffner, M.; Guandalini, C.; Higgins, J.; Hirst, K.; Kaufman, F.R.; Linder, B.; Marcovina, S.; McGuigan, P.; et al. Characteristics of adolescents and youth with recent-onset type 2 diabetes: The TODAY cohort at baseline. J. Clin. Endocrinol. Metab. 2011, 96, 159–167. [Google Scholar] [CrossRef]
- Wagenknecht, L.E.; Lawrence, J.M.; Isom, S.; Jensen, E.T.; Dabelea, D.; Liese, A.D.; Dolan, L.M.; Shah, A.S.; Bellatorre, A.; Sauder, K. Trend of youth-onset type 1 and type 2 diabetes in the USA, 2002–2018: Results from the population-based SEARCH for Diabetes in Youth study. Lancet Diabetes Endocrinol. 2023, 11, 242–250. [Google Scholar] [CrossRef]
- Nadeau, K.; Dabelea, D. Epidemiology of type 2 diabetes in children and adolescents. Endocr. Res. 2008, 33, 35–58. [Google Scholar] [CrossRef]
- Rosenbloom, A.L.; Joe, J.R.; Young, R.S.; Winter, W.E. Emerging epidemic of type 2 diabetes in youth. Diabetes Care 1999, 22, 345–354. [Google Scholar] [CrossRef]
- Stahl-Pehe, A.; Kamrath, C.; Prinz, N.; Kapellen, T.; Menzel, U.; Kordonouri, O.; Schwab, K.O.; Bechtold-Dalla, P.S.; Rosenbauer, J.; Holl, R.W. Prevalence of type 1 and type 2 diabetes in children and adolescents in Germany from 2002 to 2020: A study based on electronic health record data from the DPV registry. J. Diabetes 2022, 14, 840–850. [Google Scholar] [CrossRef]
- Amed, S.; Dean, H.J.; Panagiotopoulos, C.; Sellers, E.A.; Hadjiyannakis, S.; Laubscher, T.A.; Dannenbaum, D.; Shah, B.R.; Booth, G.L.; Hamilton, J.K. Type 2 diabetes, medication-induced diabetes, and monogenic diabetes in Canadian children: A prospective national surveillance study. Diabetes Care 2010, 33, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Tung, J.Y.; Kwan, E.Y.; But, B.W.; Wong, W.H.; Fu, A.C.; Pang, G.; Tsang, J.W.; Yau, H.C.; Belaramani, K.; Wong, L.M.; et al. Incidence and clinical characteristics of pediatric-onset type 2 diabetes in Hong Kong: The Hong Kong childhood diabetes registry 2008 to 2017. Pediatr. Diabetes 2022, 23, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhong, J.; Yu, M.; Wang, H.; Gong, W.; Pan, J.; Fei, F.; Wang, M.; Yang, L.; Hu, R. Incidence and time trends of type 2 diabetes mellitus in youth aged 5–19 years: A population-based registry in Zhejiang, China, 2007 to 2013. BMC Pediatr. 2017, 17, 85. [Google Scholar] [CrossRef]
- Urakami, T.; Miyata, M.; Yoshida, K.; Mine, Y.; Kuwabara, R.; Aoki, M.; Suzuki, J. Changes in annual incidence of school children with type 2 diabetes in the Tokyo Metropolitan Area during 1975–2015. Pediatr. Diabetes 2018, 19, 1385–1392. [Google Scholar] [CrossRef]
- Amutha, A.; Datta, M.; Unnikrishnan, I.R.; Rema, M.; Narayan, K.M.; Mohan, V. Clinical profile of diabetes in the young seen between 1992 and 2009 at a specialist diabetes centre in south India. Prim. Care Diabetes 2011, 5, 223–229. [Google Scholar] [CrossRef]
- Zuckerman, L.N.; Cohen, M.; Phillip, M.; Tenenbaum, A.; Koren, I.; Tenenbaum-Rakover, Y.; Admoni, O.; Hershkovitz, E.; Haim, A.; Mazor, A.K.; et al. Youth-onset type 2 diabetes in Israel: A national cohort. Pediatr. Diabetes 2022, 23, 649–659. [Google Scholar] [CrossRef]
- Wise, J. Type 2 diabetes: Charity warns of “perfect storm” putting more children at risk. BMJ 2022, 377, o1451. [Google Scholar] [CrossRef]
- Fu, J.; Prasad, H.C. Changing epidemiology of metabolic syndrome and type 2 diabetes in Chinese youth. Curr. Diab. Rep. 2014, 14, 4. [Google Scholar] [CrossRef]
- Bjornstad, P.; Chao, L.C.; Cree-Green, M.; Dart, B.A.; King, M.; Looker, H.C.; Magliano, D.J.; Nadeau, K.J.; Pinhas-Hamiel, O.; Shah, A.S.; et al. Youth- onset type 2 diabetes mellitus: An urgent challenge. Nat. Rev. Nephrol. 2023, 19, 168–184. [Google Scholar] [CrossRef]
- Tung, J.Y.L.; Poon, G.W.K.; Du, J.; Wong, K.K.Y. Obesity in children and adolescents: Overview of the diagnosis and management. Chronic Dis. Transl. Med. 2023, 9, 122–133. [Google Scholar] [CrossRef]
- Jia, L.J.; Zampetti, S.; Pozzilli, P.; Buzzetti, R. Type 2 diabetes in children and adolescents: Challenges for treatment and potential solutions. Diabetes Res. Clin. Pract. 2024, 217, 111879. [Google Scholar] [CrossRef]
- Al-Saeed, A.H.; Constantino, M.I.; Molyneaux, L.; D’Souza, M.; Limacher- Gisler, F.; Luo, C.; Wu, T.; Twigg, S.M.; Yue, D.K.; Wong, J. An inverse relationship between age of type 2 diabetes onset and complication risk and mortality: The impact of youth-onset type 2 diabetes. Diabetes Care 2016, 39, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Lancet, T. Type 2 diabetes: The urgent need to protect young people. Lancet 2018, 392, 2325. [Google Scholar] [CrossRef] [PubMed]
- Ogle, G.D.; James, S.; Dabelea, D.; Pihoker, C.; Svennson, J.; Maniam, J.; Klatman, E.L.; Patterson, C.C. Global estimates of incidence of type 1 diabetes in children and adolescents: Results from the International Diabetes Federation Atlas, 10th edition. Diabetes Res. Clin. Pract. 2022, 183, 109083. [Google Scholar] [CrossRef] [PubMed]
- Khanolkar, A.R.; Amin, R.; Taylor-Robinson, D.; Viner, R.M.; Warner, J.; Stephenson, T. Inequalities in glycemic control in childhood onset type 2 diabetes in England and Wales—A national population-based longitudinal study. Pediatr. Diabetes 2019, 20, 821–831. [Google Scholar] [CrossRef]
- Wisting, L.; Bang, L.; Skrivarhaug, T.; Dahl-Jorgensen, K.; Ro, O. Adolescents with type 1 diabetes—The impact of gender, age, and health-related functioning on eating disorder Psychopathology. PLoS ONE 2015, 10, e0141386. [Google Scholar] [CrossRef]
- Kim, H.S.; Jung, S.J.; Jang, S.; Kim, M.J.; Cha, Y.S. Rice-based breakfast improves fasting glucose and HOMA-IR in Korean adolescents who skip breakfast, but breakfast skipping increases aromatic amino acids associated with diabetes prediction in Korean adolescents who skip breakfast: A randomized, parallel-group, controlled trial. Nutr. Res. Pract. 2022, 16, 450–463. [Google Scholar]
- Lubasinski, N.; Thabit, H.; Nutter, P.W.; Harper, S. Blood glucose prediction from nutrition analytics in type 1 diabetes: A review. Nutrients 2024, 16, 2214. [Google Scholar] [CrossRef]
- El-Baky, M.N.E.A.; Ismail, N.A.; Rahman, A.M.O.A.; EL-Sahrigy, S.A.F.; Hasanin, R.M.; Ahmed, H.H.; Hashesh, M.A.; Ibrahim, M.H. Role of epicardial fat thickness and irisin levels in early prediction of cardiac dysfunction in children and adolescents with type 1 diabetes mellitus. Pediatr. Pol. 2023, 98, 278–284. [Google Scholar] [CrossRef]
- Schweiger, D.S.; Battelino, T.; Groselj, U. Sex-related differences in cardiovascular disease risk profile in children and adolescents with type 1 diabetes. Int. J. Mol. Sci. 2021, 22, 10192. [Google Scholar] [CrossRef]
- Aljihmani, I.; Kerdjidj, O.; Petrovski, G.; Erraguntla, M.; Sasangohar, F.; Mehta, R.K.; Qaraqe, K. Hand tremor-based hypoglycemia detection and prediction in adolescents with type 1 diabetes. Biomed. Signal Process. Control 2022, 78, 103869. [Google Scholar] [CrossRef]
- Lee, H.S. Diagnosis and treatment of pediatric type 2 diabetes mellitus. J. Korean Med. Assoc. 2021, 64, 432–437. [Google Scholar] [CrossRef]
- Mayer-Davis, E.J.; Lawrence, J.M.; Dabelea, D.; Divers, J.; Isom, S.; Dolan, L.; Imperatore, G.; Linder, B.; Marcovina, S.; Pettitt, D.J.; et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N. Engl. J. Med. 2017, 376, 1419–1429. [Google Scholar] [CrossRef]
- Xie, J.; Wang, M.; Long, Z.; Ning, H.; Li, J.; Cao, Y.; Liao, Y.; Liu, G.; Wang, F.; Pan, A. Global burden of type 2 diabetes in adolescents and young adults, 1990–2019: Systematic analysis of the global burden of disease study 2019. BMJ 2022, 379, e072385. [Google Scholar] [CrossRef] [PubMed]
- Titmuss, S.; Korula, B.; Wicklow, K.; Nadeau, J. Youth-onset type 2 diabetes: An overview of pathophysiology, prognosis, prevention and management. Curr. Diabetes Rep. 2024, 24, 183–195. [Google Scholar] [CrossRef]
- Jonas, D.E.; Schaaf, E.B.V.; Riley, S.; Allison, B.A.; Middleton, J.C.; Baker, C.; Ali, R.; Voisin, C.E.; LeBlanc, E.S. Screening for prediabetes and type 2 diabetes in children and adolescents. Evidence report and systematic review for the US preventive services task force. JAMA 2022, 328, 968–979. [Google Scholar] [CrossRef]
- Serbis, A.; Giapros, V.; Kotanidou, E.P.; Galli-Tsinopoulou, A.; Siomou, E. Diagnosis, treatment and prevention of type 2 diabetes mellitus in children and adolescents. World J. Diabetes 2021, 12, 344–365. [Google Scholar] [CrossRef]
- Bingley, P.J.; Knip, M.; Gale, E.A.M. Designing an intervention study to delay or prevent the clinical onset of IDDM. Pediatr. Adolesc. Endocrinol. 1993, 23, 147–156. [Google Scholar]
- Chen, W.; Srinivasan, S.R.; Elkasabany, A.; Berenson, G.S. Cardiovascular risk factors clustering features of insulin resistance syndrome (Syndrome X) in a biracial (Black-White) population of children, adolescents, and young adults: The Bogalusa Heart Study. Am. J. Epidemiol. 1999, 150, 667–674. [Google Scholar] [CrossRef]
- Cleland, C.P.; Rwiza, J.; Evans, J.R.; Gordon, I.; MacLeod, D.; Burton, C.; Bascaran, M.J. Artificial intelligence for diabetic retinopathy in low-income and middle-income countries: A scoping review. BMJ Open Diabetes Res. Care 2023, 11, e003424. [Google Scholar] [CrossRef]
- Temneanu, O.R.; Trandafir, L.M.; Purcarea, M.R. Type 2 diabetes mellitus in children and adolescents: A relatively new clinical problem within pediatric practice. J. Med. Life 2016, 9, 235–239. [Google Scholar] [PubMed]
- Asgari, S.; Khalili, D.; Hosseinpanah, F.; Hadaegh, F. Prediction models for type 2 diabetes risk in the general population: A systematic review of observational studies. Int. J. Endocrinol. Metab. 2021, 19, e109206. [Google Scholar] [CrossRef] [PubMed]
- Wilmot, E.; Idris, I. Early onset type 2 diabetes: Risk factors, clinical impact and management. Ther. Adv. Chronic Dis. 2014, 5, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.V. Type 2 diabetes in children: Clinical aspects and risk factors. Indian J. Endocrinol. Metab. 2015, 19, S47–S50. [Google Scholar] [CrossRef]
- Collins, S.; Mallett, S.; Omar, O.; Yu, L.-M. Developing risk prediction models for T2D: A systematic review of methodology and reporting. BMC Med. 2011, 9, 103. [Google Scholar] [CrossRef]
- Hanley, A.J.G.; Festa, A.; D’Agostino, R.B.; Wagenknecht, L.E.; Savage, P.J.; Tracy, R.P.; Saad, M.F.; Haffner, S.M. Metabolic and inflammation variable clusters and prediction of type 2 diabetes factor analysis using directly measured insulin sensitivity. Diabetes 2004, 53, 1773–1781. [Google Scholar] [CrossRef]
- Libman, I.M.; Pietropaolo, M.; Arslanian, S.A.; LaPorte, R.E.; Becker, D.J. Changing prevalence of overweight children and adolescents at onset of insulin treated diabetes. Diabetes Care 2003, 26, 2871–2875. [Google Scholar] [CrossRef]
- Wang, J.; Zhou1, L.; Yin, W.; Hu, C.; Zuo, X. Trends of the burden of type 2 diabetes mellitus attributable to high body mass index from 1990 to 2019 in China. Front. Endocrinol. 2023, 14, 1193884. [Google Scholar] [CrossRef]
- Biondi, G.; Marrano, N.; Borrelli, A.; Rella, M.; Palma, G.; Calderoni, I.; Siciliano, E.; Lops, P.; Giorgino, F.; Natalicchio, A. Adipose tissue secretion pattern influences beta-cell wellness in the transition from obesity to type 2 diabetes. Int. J. Mol. Sci. 2022, 2, 5522. [Google Scholar] [CrossRef]
- Han, J.C.; Lawlor, D.A.; Kimm, S.Y. Childhood obesity. Lancet 2010, 375, 1737–1748. [Google Scholar] [CrossRef]
- Pinhas-Hamiel, O.; Dolan, L.M.; Daniels, S.R.; Standiford, D.; Khoury, P.R.; Zeitler, P. Increased incidence of non-insulin-dependent diabetes mellitus among adolescents. J. Pediatr. 1996, 128, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Glaser, N.S.; Jones, K.L. Non-insulin dependent diabetes mellitus in Mexican-American children. West. J. Med. 1998, 168, 11–16. [Google Scholar] [PubMed]
- Neufeld, N.D.; Raffel, L.J.; Landon, C.; Chen, Y.D.; Vadheim, C.M. Early presentation of type 2 diabetes in Mexican-American youth. Diabetes Care 1998, 21, 80–86. [Google Scholar] [CrossRef]
- Panagiotopoulos, C.; Hadjiyannakis, S.; Henderson, M. Type 2 diabetes in children and adolescents. Can. J. Diabetes 2018, 42, S247–S254. [Google Scholar] [CrossRef]
- Hanson, M.A.; Gluckman, P.D. Early developmental conditioning of later health and disease: Physiology or pathophysiology? Physiol. Rev. 2014, 94, 1027–1076. [Google Scholar] [CrossRef]
- Velea, I.P.; Paul, C.; Brink, S.J. Type 2 diabetes mellitus in youth no benign disorder! Update Pediatr. Endocrinol. Diabetes 2015, 147–154. [Google Scholar]
- Ciarambino, T.; Crispino, P.; Leto, G.; Mastrolorenzo, E.; Para, O.; Giordano, M. Influence of gender in diabetes mellitus and its complication. Int. J. Mol. Sci. 2022, 23, 8850. [Google Scholar] [CrossRef]
- Rodriguez, B.C.; Astudillo, M.; Tosur, M.; Rafaey, A.; McKay, S.; Bacha, F.; Balasubramanyam, A.; Redondo, M.J. Characteristics of type 2 diabetes in female and male youth. Clin. Diabetes 2023, 41, 239–243. [Google Scholar] [CrossRef]
- Cioana, M.; Deng, J.; Nadarajah, A.; Hou, M.; Qiu, Y.; Chen, S.S.J.; Rivas, A.; Banfield, L.; Toor, P.P.; Zhou, F.; et al. The prevalence of obesity among children with type 2 diabetes: A systematic review and meta-analysis. JAMA Netw. Open 2022, 5, e2247186. [Google Scholar] [CrossRef]
- Freedman, D.S.; Sherry, B. The validity of BMI as an indicator of body fatness and risk among children. Pediatrics 2009, 124 (Suppl. S1), S23–S34. [Google Scholar] [CrossRef]
- Omer, G.M.; Balmakov, Y.; Gelman, S.; Twig, G. Adolescent immigration and type-2 diabetes. Curr. Diabetes Rep. 2021, 21, 60. [Google Scholar] [CrossRef] [PubMed]
- Koren, D.; Levitsky, L.L. Type 2 diabetes mellitus in childhood and adolescence. Pediatr. Rev. 2021, 42, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Z.; Zhang, K.; Ge, X.; Sun, R.; Zhai, X. Early detection of type 2 diabetes risk: Limitations of current diagnostic criteria. Front. Endocrinol. 2023, 14, 1260623. [Google Scholar] [CrossRef]
- Karavanaki, K.; Paschou, S.A.; Tentolouris, N.; Karachaliou, F.; Soldatou, A. Type 2 diabetes in children and adolescents: Distinct characteristics and evidence-based management. Endocrine 2022, 78, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Jansen, H.; Wijga, A.H.; Scholtens, S.; Koppelman, G.H.; Postma, D.S.; Brunekreef, B.; De Jongste, J.C.; Smit, H.A.; Stolk, R.P. Change in HbA1c levels between the age of 8 years and the age of 12 years in Dutch children without diabetes: The PIAMA birth cohort study. PLoS ONE 2015, 10, e0119615. [Google Scholar] [CrossRef]
- Thomas, N.J.; McGovern, A.; Young, K.G.; Sharp, S.A.; Weedon, M.N.; Hattersley, A.T.; Dennis, J.; Jones, A.G. Identifying type 1 and 2 diabetes in research datasets where classification biomarkers are unavailable: Assessing the accuracy of published approaches. J. Clin. Epidemiol. 2023, 153, 34–44. [Google Scholar] [CrossRef]
- Reitzle, L.; Ihle, P.; Heidemann, C.; Paprott, R.; Köster, I.; Schmidt, C. Algorithm for the classification of type 1 and type 2 diabetes mellitus for the analysis of routine data. Gesundheitswesen 2023, 85 (Suppl. S2), S119–S126. [Google Scholar]
- James, S.; Perry, L.; Gallagher, R.; Lowe, J. A discussion of healthcare support for adolescents and young adults with long-term conditions: Current policy and practice and future opportunities. Int. J. Nurs. Pract. 2020, 26, e12882. [Google Scholar] [CrossRef]
- Albahra, S.; Gorbett, T.; Robertson, S.; D’Aleo, G.; Vasudevan, S.; Kumar, S.; Ockunzzi, S.; Lallo, D.; Hu, B.; Rashidi, H.H. Artificial intelligence and machine learning overview in pathology & laboratory medicine: A general review of data preprocessing and basic supervised concepts. Semin. Diagn. Pathol. 2023, 40, 71–87. [Google Scholar]
- Tasin, I.; Nabil, T.U.; Islam, S.; Khan, R. Diabetes prediction using machine learning and explainable AI techniques. Healthc. Technol. Lett. 2023, 10, 1–10. [Google Scholar] [CrossRef]
- Wee, B.F.; Sivakumar, S.; Lim, K.H.; Wong, W.K.; Juwono, F.H. Diabetes detection based on machine learning and deep learning approaches. Multimed. Tools Appl. 2024, 83, 24153–24185. [Google Scholar] [CrossRef]
- Nazirun, N.N.N.; Waha, A.A.; Selamat, A.; Fujita, H.; Krejcar, O.; Kuca, K.; Seng, G.H. Prediction models for type 2 diabetes progression: A systematic review. IEEE Access 2024, 12, 161595–161619. [Google Scholar] [CrossRef]
- Sisodia, D.; Sisodia, D.S. Prediction of diabetes using classification algorithms. Procedia Comput. Sci. 2018, 132, 1578–1585. [Google Scholar] [CrossRef]
- Giddings, R.; Joseph, A.; Callender, T.; Janes, S.M.; Schaar, M.; Sheringham, J.; Navani, N. Factors influencing clinician and patient interaction with machine-learning based risk prediction models: A systematic review. Lancet Digit. Health 2024, 6, e131–e144. [Google Scholar] [CrossRef]
- Petridis, P.D.; Kristo, A.S.; Sikalidis, A.K.; Kitsas, I.K. A review on trending machine learning techniques for type 2 diabetes mellitus management. Informatics 2024, 11, 70. [Google Scholar] [CrossRef]
- Larabi-Marie-Sainte, S.; Aburahmah, L.; Almohaini, R.; Saba, T. Current techniques for diabetes prediction: Review and case study. Appl. Sci. 2019, 9, 4604. [Google Scholar] [CrossRef]
- Khanam, J.J.; Foo, S.Y. A comparison of machine learning algorithms for diabetes prediction. ICT Express 2021, 7, 432–439. [Google Scholar] [CrossRef]
- Adua, E.; Kolog, A.; Afrifa-Yamoah, E.; Amankwah, B.; Obirikorang, C.; Anto, E.O.; Acheampong, E.; Wang, W.; Tetteh, A.Y. Predictive model and feature importance for early detection of type II diabetes mellitus. Transl. Med. Commun. 2021, 6, 17. [Google Scholar] [CrossRef]
- Hamiel, U.; Pinhas-Hamiel, O.; Vivante, A.; Bendor, C.; Bardugo, A.; Afek, A.; Beer, Z.; Derazne, E.; Tzur, D.; Behar, D.; et al. Impact of immigration on Body Mass Index and Blood Pressure among adolescent males and females: A Nationwide Study. Hypertension 2019, 74, 1316–1323. [Google Scholar] [CrossRef]
- Iparraguirre-Villanueva, O.; Espinola-Linares, K.; Castañeda, R.O.F.; Cabanillas-Carbonell, M. Application of machine learning models for early detection and accurate classification of type 2 diabetes. Diagnostics 2023, 13, 2383. [Google Scholar] [CrossRef]
- Ahmad, H.F.; Mukhtar, H.; Alaqail, H.; Seliaman, M.; Alhumam, A. Investigating health-related features and their impact on the prediction of diabetes using machine learning. Appl. Sci. 2021, 11, 1173. [Google Scholar] [CrossRef]
- Meganathan, S.S. Machine learning based pattern detection technique for diabetes mellitus prediction. Concurr. Comput. Pract. Exp. 2023, 34, e6751. [Google Scholar]
- Hu, H.; Lai, T.; Farid, F. Feasibility study of constructing a screening tool for adolescent diabetes detection applying machine learning methods. Sensors 2022, 22, 6155. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Sindhu, R. Diabetes prediction using machine learning. J. Electr. Syst. 2024, 20–27s, 2244–2257. [Google Scholar] [CrossRef]
- Sonia, J.J.; Jayachandran, P.; Quadir, A.; Mohan, S.; Sivaraman, A.K.; Tee, K.F. Machine-learning-based diabetes mellitus risk prediction using multi-layer neural network no-prop algorithm. Diagnostics 2023, 13, 723. [Google Scholar] [CrossRef]
- Dutta, A.; Hasan, K.; Ahmad, M.; Awal, A.; Islam, A.; Masud, M.; Meshref, H. Early prediction of diabetes using an ensemble of machine learning models. Int. J. Environ. Res. Public Health 2022, 19, 12378. [Google Scholar] [CrossRef]
- El-Bashbishy, S.; El-Bakry, H.M. Pediatric diabetes prediction using deep learning. Sci. Rep. 2024, 14, 4206. [Google Scholar] [CrossRef]
- Swapna, G.; Vinayakumar, R.; Soman, K.P. Diabetes detection using deep learning algorithms. ICT Express 2018, 4, 243–246. [Google Scholar]
- Ayon, S.I. Diabetes prediction: A deep learning approach. Int. J. Inf. Eng. Electron. Bus. 2019, 11, 21–27. [Google Scholar]
- Thaiyalnayaki, K. Classification of diabetes using deep learning and SVM techniques. Int. J. Curr. Res. Rev. 2021, 13, 146–149. [Google Scholar] [CrossRef]
- Zhu, T.; Li, K.; Herrero, P.; Georgiou, P. Deep learning for diabetes: A systematic review. IEEE J. Biomed. Health Inform. 2021, 25, 2744–2757. [Google Scholar] [CrossRef] [PubMed]
- Naseem, A.; Habib, R.; Naz, T.; Atif, M.; Arif, M.; Chelloug, S.A. Novel Internet of Things based approach toward diabetes prediction using deep learning models. Front. Public Health 2022, 10, 914106. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Myrzashova, R.; Zheng, R. Diabetes prediction model based on an enhanced deep neural network. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 148. [Google Scholar] [CrossRef]
- Bayraci, S.; Susuz, O. A Deep Neural Network (DNN) based classification model in application to loan default prediction. Theor. Appl. Econ. 2019, XXVI, 75–84. [Google Scholar]
- Hounguè, P.; Bigirimana, A.G. Leveraging pima dataset to diabetes prediction: Case study of deep neural network. J. Comput. Commun. 2022, 10, 15–28. [Google Scholar] [CrossRef]
- Cardoso, P.; McDonald, T.J.; Patel, K.A.; Pearson, E.R.; Hattersley, A.T.; Shields, B.M.; McKinley, T.J. Comparison of bayesian approaches for developing prediction models in rare disease: Application to the identification of patients with maturity-onset diabetes of the young. BMC Med. Res. Methodol. 2024, 24, 128. [Google Scholar] [CrossRef]
- Afsaneh, E.; Sharifdini, A.; Ghazzaghi, H.; Ghobadi, M.Z. Recent applications of machine learning and deep learning models in the prediction, diagnosis, and management of diabetes: A comprehensive review. Diabetol. Metab. Syndr. 2022, 14, 196. [Google Scholar] [CrossRef]
- Nouwen, A.; Adriaanse, M.C.; van Dam, K.; Iversen, M.M.; Viechtbauer, W.; Peyrot, M.; Caramlau, I.; Kokoszka, A.; Kanc, K.; de Groot, M.; et al. Longitudinal associations between depression and diabetes complications: A systematic review and meta-analysis. Diabet. Med. 2019, 36, 1562–1572. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cveticanin, L.; Arsenovic, M. Prediction Models for Diabetes in Children and Adolescents: A Review. Appl. Sci. 2025, 15, 2906. https://doi.org/10.3390/app15062906
Cveticanin L, Arsenovic M. Prediction Models for Diabetes in Children and Adolescents: A Review. Applied Sciences. 2025; 15(6):2906. https://doi.org/10.3390/app15062906
Chicago/Turabian StyleCveticanin, Livija, and Marko Arsenovic. 2025. "Prediction Models for Diabetes in Children and Adolescents: A Review" Applied Sciences 15, no. 6: 2906. https://doi.org/10.3390/app15062906
APA StyleCveticanin, L., & Arsenovic, M. (2025). Prediction Models for Diabetes in Children and Adolescents: A Review. Applied Sciences, 15(6), 2906. https://doi.org/10.3390/app15062906