AI, IoT and Remote Sensing in Precision Agriculture
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
DL | Deep learning |
GISs | Geographic information systems |
IoT | Internet of Things |
ML | Machine learning |
References
- United Nations. World Population Prospects 2019: Highlights; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): New York, NY, USA, 2021. [Google Scholar]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Purcell, W.; Neubauer, T. Digital Twins in Agriculture: A State-of-the-art review. Smart Agric. Technol. 2023, 3, 100094. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Hua, W.; Heinemann, P.; He, L. Frost management in agriculture with advanced sensing, modeling, and artificial intelligent technologies: A review. Comput. Electron. Agric. 2025, 231, 110027. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Lepnaan Dayil, J.; Akande, O.; Mahmoud, A.E.D.; Kimera, R.; Omole, O. Challenges and opportunities in Machine learning for bioenergy crop yield Prediction: A review. Sustain. Energy Technol. Assess. 2025, 73, 104057. [Google Scholar] [CrossRef]
- Cressie, N.; Wikle, C.K. Statistics for Spatio-Temporal Data; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Banerjee, S.; Carlin, B.P.; Gelfand, A.E. Hierarchical Modeling and Analysis for Spatial Data; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Finger, R.; Möhring, N. The emergence of pesticide-free crop production systems in Europe. Nat. Plants 2024, 10, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Bebber, D.P.; Ramotowski, M.A.T.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Chang. 2014, 3, 985–988. [Google Scholar] [CrossRef]
- Chakraborty, S.; Newton, A.C. Climate change, plant diseases and food security: An overview. Plant Pathol. 2011, 60, 2–14. [Google Scholar] [CrossRef]
- Kumar, D.; Mukhopadhyay, R. Climate change and plant pathogens: Understanding dynamics, risks and mitigation strategies. Plant Pathol. 2024, 74, 59–68. [Google Scholar] [CrossRef]
- Ristaino, J.B.; Anderson, P.K.; Bebber, D.P.; Brauman, K.A.; Cunniffe, N.J.; Fedoroff, N.V.; Finegold, C.; Garrett, K.A.; Gilligan, C.A.; Jones, C.M.; et al. The persistent threat of emerging plant disease pandemics to global food security. Proc. Natl. Acad. Sci. USA 2021, 118, e2022239118. [Google Scholar] [CrossRef] [PubMed]
- Rosace, M.C.; Conesa, D.V.; López-Quílez, A.; Marini, L.; Martinez-Beneito, M.A.; Nardi, D.; Rossi, V.; Vicent, A.; Cendoya, M. Hotspot mapping of pest introductions in the EU: A regional analysis of environmental, anthropogenic and spatial effects. Biol. Invasions 2025, 27, 18. [Google Scholar] [CrossRef]
- Cendoya, M.; Navarro-Quiles, A.; López-Quílez, A.; Vicent, A.; Conesa, D. An individual-based spatial epidemiological model for the spread of plant diseases. J. Agric. Biol. Environ. Stat. 2025, in press. [Google Scholar] [CrossRef]
- Lázaro, E.; Sesé, M.; López-Quílez, A.; Conesa, D.; Dalmau, V.; Ferrer, A.; Vicent, A. Tracking the outbreak: An optimized sequential adaptive strategy for Xylella fastidiosa delimiting surveys. Biol. Invasions 2021, 23, 3243–3261. [Google Scholar] [CrossRef]
- Sun, H.; Douma, J.C.; Schenk, M.F.; van der Werf, W. Comparing inward and outward strategies for delimiting non-native plant pest outbreaks. J. Pest Sci. 2025, in press. [Google Scholar] [CrossRef]
- Monsalve, N.C.; López-Quílez, A. Prediction and Surveillance Sampling Assessment in Plant Nurseries and Fields. Appl. Sci. 2022, 12, 9005. [Google Scholar] [CrossRef]
- Martínez-Minaya, J.; Conesa, D.; López-Quílez, A.; Mira, J.L.; Vicent, A. Modelling inoculum availability of Plurivorosphaerella nawae in persimmon leaf litter with Bayesian beta regression. Phytopathology 2021, 111, 1184–1192. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Quílez, A. AI, IoT and Remote Sensing in Precision Agriculture. Appl. Sci. 2025, 15, 2890. https://doi.org/10.3390/app15062890
López-Quílez A. AI, IoT and Remote Sensing in Precision Agriculture. Applied Sciences. 2025; 15(6):2890. https://doi.org/10.3390/app15062890
Chicago/Turabian StyleLópez-Quílez, Antonio. 2025. "AI, IoT and Remote Sensing in Precision Agriculture" Applied Sciences 15, no. 6: 2890. https://doi.org/10.3390/app15062890
APA StyleLópez-Quílez, A. (2025). AI, IoT and Remote Sensing in Precision Agriculture. Applied Sciences, 15(6), 2890. https://doi.org/10.3390/app15062890