Special Issue: Measurement, Simulation, and Design of Sound in Urban Spaces
1. Introduction
1.1. Stabilization Time of Running Equivalent Level LAeq for Urban Road Traffic Noise
1.2. City Ditty: An Immersive Soundscape Sketchpad for Professionals of the Built Environment
1.3. NoisenseDB: An Urban Sound Event Database to Develop Neural Classification Systems for Noise-Monitoring Applications
- Two novel convolutional neural network (CNN)-based models—one using conventional convolutional layers and the other incorporating residual networks (ResNet).
- A transformer-based Audio Spectrogram Transformer (AST) model, leveraging pretrained embeddings.
1.4. Acoustic Requalification of an Urban Evolving Site and Design of a Noise Barrier: A Case Study at the Bologna Engineering School
1.5. Sonic Crystal Noise Barrier with Resonant Cavities for Train Brake Noise Mitigation
2. Conclusions
Acknowledgments
Conflicts of Interest
References
- Torresin, S.; Aletta, F.; Oberman, T.; Vinciotti, V.; Albatici, R.; Kang, J. Measuring, Representing and Analysing Indoor Soundscapes: A Data Collection Campaign in Residential Buildings with Natural and Mechanical Ventilation in England. Build. Environ. 2023, 243, 110726. [Google Scholar] [CrossRef]
- Vogiatzis, K.; Remy, N. Soundscape Design Guidelines through Noise Mapping Methodologies: An Application to Medium Urban Agglomerations. Noise Mapp. 2017, 4, 1–19. [Google Scholar] [CrossRef]
- D’Orazio, D.; Fratoni, G.; Tardini, V. The Italian Standard on Classroom Acoustics Uni 11532-2:2020 Explained Through Case Studies. Appl. Acoust. 2025, 231, 110498. [Google Scholar] [CrossRef]
- Fusaro, G.; Barbaresi, L.; Cingolani, M.; Garai, M.; Prato, A.; Schiavi, A. Influence of Additive Manufacturing on Acoustic Metamaterials Performance: A Case Study. In Proceedings of the Forum Acusticum, Turin, Italy, 11–15 September 2023; pp. 1–6. [Google Scholar]
- Fusaro, G.; Barbaresi, L.; Guidorzi, P.; Garai, M. Investigation of the Sound Insulation and Natural Ventilation Performance of a Metamaterial-Based Open Window. Build. Environ. 2024, 266, 112140. [Google Scholar] [CrossRef]
- Fusaro, G.; Kang, J.; Chang, W.-S.S. Effective Soundscape Characterisation of an Acoustic Metamaterial Based Window: A Comparison between Laboratory and Online Methods. Appl. Acoust. 2022, 193, 108754. [Google Scholar] [CrossRef]
- Brocolini, L.; Lavandier, C.; Quoy, M.; Ribeiro, C. Measurements of Acoustic Environments for Urban Soundscapes: Choice of Homogeneous Periods, Optimization of Durations, and Selection of Indicators. J. Acoust. Soc. Am. 2013, 134, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.Y.; Lam, B.; Ong, Z.T.; Ooi, K.; Gan, W.S.; Kang, J.; Feng, J.; Tan, S.T. Quality Assessment of Acoustic Environment Reproduction Methods for Cinematic Virtual Reality in Soundscape Applications. Build. Environ. 2019, 149, 1–14. [Google Scholar] [CrossRef]
- Kang, J.; Aletta, F.; Gjestland, T.T.; Brown, L.A.; Botteldooren, D.; Schulte-Fortkamp, B.; Lercher, P.; van Kamp, I.; Genuit, K.; Fiebig, A.; et al. Ten Questions on the Soundscapes of the Built Environment. Build. Environ. 2016, 108, 284–294. [Google Scholar] [CrossRef]
- Fusaro, G.; D’Alessandro, F.; Kang, J.; Aletta, F.; Margaritis, E.; Asdrubali, F. A Prototype of a Street Furniture Element for Soundscape Management. In Proceedings of the ICSV 2016—23rd International Congress on Sound and Vibration: From Ancient to Modern Acoustics, Athens, Greece, 10–14 July 2016. [Google Scholar]
- Brambilla, G.; Benocci, R.; Potenza, A.; Zambon, G. Stabilization Time of Running Equivalent Level LAeq for Urban Road Traffic Noise. Appl. Sci. 2023, 13, 207. [Google Scholar] [CrossRef]
- Gaja, E.; Gimenez, A.; Sancho, S.; Reig, A. Sampling Techniques for the Estimation of the Annual Equivalent Noise Level under Urban Traffic Conditions. Appl. Acoust. 2003, 64, 43–53. [Google Scholar] [CrossRef]
- Torija, A.J.; Ruiz, D.P.; Ramos, A. A Method for Prediction of the Stabilization Time in Traffic Noise Measurements. In Proceedings of the 19th International Congress on Acoustics, Madrid, Spain, 2–7 September 2007. [Google Scholar]
- Barrigón Morillas, J.M.; Prieto Gajardo, C. Uncertainty Evaluation of Continuous Noise Sampling. Appl. Acoust. 2014, 75, 27–36. [Google Scholar] [CrossRef]
- Yanaky, R.; Tyler, D.; Guastavino, C. City Ditty: An Immersive Soundscape Sketchpad for Professionals of the Built Environment. Appl. Sci. 2023, 13, 1611. [Google Scholar] [CrossRef]
- Steele, D.; Bild, E.; Guastavino, C. Moving Past the Sound-Noise Dichotomy: How Professionals of the Built Environment Approach the Sonic Dimension. Cities 2023, 132, 103974. [Google Scholar] [CrossRef]
- Guastavino, C.; Katz, B.F.G. Perceptual Evaluation of Multi-Dimensional Spatial Audio Reproduction. J. Acoust. Soc. Am. 2004, 116, 1105–1115. [Google Scholar] [CrossRef]
- Diez, I.; Saratxaga, I.; Salegi, U.; Navas, E.; Hernaez, I. NoisenseDB: An Urban Sound Event Database to Develop Neural Classification Systems for Noise-Monitoring Applications. Appl. Sci. 2023, 13, 9358. [Google Scholar] [CrossRef]
- Tsalera, E.; Papadakis, A.; Samarakou, M. Comparison of Pre-Trained Cnns for Audio Classification Using Transfer Learning. J. Sens. Actuator Netw. 2021, 10, 72. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A Systematic Analysis of Performance Measures for Classification Tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, S.; Zhang, S.; Qiao, T.; Cao, S. Attention Based Convolutional Recurrent Neural Network for Environmental Sound Classification. Neurocomputing 2021, 453, 896–903. [Google Scholar] [CrossRef]
- Fusaro, G.; Garai, M. Acoustic Requalification of an Urban Evolving Site and Design of a Noise Barrier: A Case Study at the Bologna Engineering School. Appl. Sci. 2024, 14, 1837. [Google Scholar] [CrossRef]
- Liu, C.; Zang, Q.; Li, J.; Pan, X.; Dai, H.; Gao, W. The Effect of the Acoustic Environment of Learning Spaces on Students’ Learning Efficiency: A Review. J. Build. Eng. 2023, 79, 107911. [Google Scholar] [CrossRef]
- Bull, J.; Watts, G.; Pearse, J. The Use of In-Situ Test Method EN 1793-6 for Measuring the Airborne Sound Insulation of Noise Barriers. Appl. Acoust. 2017, 116, 82–86. [Google Scholar] [CrossRef]
- Morandi, F.; Miniaci, M.; Marzani, A.; Barbaresi, L.; Garai, M. Standardised Acoustic Characterisation of Sonic Crystals Noise Barriers: Sound Insulation and Reflection Properties. Appl. Acoust. 2016, 114, 294–306. [Google Scholar] [CrossRef]
- Moheit, L.; Anthis, S.; Heinz, J.; Kronowetter, F.; Marburg, S. Analysis of Scattering by Finite Sonic Crystals in Free Field with Infinite Elements and Normal Modes. J. Sound Vib. 2020, 476, 115291. [Google Scholar] [CrossRef]
- Romero-García, V.; Krynkin, A.; Garcia-Raffi, L.M.; Umnova, O.; Sánchez-Pérez, J.V. Multi-Resonant Scatterers in Sonic Crystals: Locally Multi-Resonant Acoustic Metamaterial. J. Sound Vib. 2013, 332, 184–198. [Google Scholar] [CrossRef]
- Dimitrijević, S.M.; García-Chocano, V.M.; Cervera, F.; Roth, E.; Sánchez-Dehesa, J. Sound Insulation and Reflection Properties of Sonic Crystal Barrier Based on Micro-Perforated Cylinders. Materials 2019, 12, 2806. [Google Scholar] [CrossRef] [PubMed]
- Iannace, G.; Ciaburro, G.; Trematerra, A. Metamaterials Acoustic Barrier. Appl. Acoust. 2021, 181, 108172. [Google Scholar] [CrossRef]
- Qin, X.; Ni, A.; Chen, Z.; Fang, M.; Li, Y. Numerical Modeling and Field Test of Sonic Crystal Acoustic Barriers. Environ. Sci. Pollut. Res. 2023, 30, 16289–16304. [Google Scholar] [CrossRef]
- Ramírez-Solana, D.; Galiana-Nieves, J.; Picó, R.; Redondo, J.; Sangiorgio, V.; Graziano, A.V.; Parisi, N. Sonic Crystal Noise Barrier with Resonant Cavities for Train Brake Noise Mitigation. Appl. Sci. 2024, 14, 2753. [Google Scholar] [CrossRef]
- Minelli, G.; Yao, H.D.; Andersson, N.; Lindblad, D.; Forssén, J.; Höstmad, P.; Krajnović, S. Using Horizontal Sonic Crystals to Reduce the Aeroacosutic Signature of a Simplified ICE3 Train Model. Appl. Acoust. 2021, 172, 107597. [Google Scholar] [CrossRef]
- Cavalieri, T.; Cebrecos, A.; Groby, J.P.; Chaufour, C.; Romero-García, V. Three-Dimensional Multiresonant Lossy Sonic Crystal for Broadband Acoustic Attenuation: Application to Train Noise Reduction. Appl. Acoust. 2019, 146, 1–8. [Google Scholar] [CrossRef]
- Jolibois, A.; Defrance, J.; Koreneff, H.; Jean, P.; Duhamel, D.; Sparrow, V.W. In Situ Measurement of the Acoustic Performance of a Full Scale Tramway Low Height Noise Barrier Prototype. Appl. Acoust. 2015, 94, 57–68. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garai, M.; Fusaro, G.; Stavroulakis, G.E.; Papadakis, N.M. Special Issue: Measurement, Simulation, and Design of Sound in Urban Spaces. Appl. Sci. 2025, 15, 2758. https://doi.org/10.3390/app15052758
Garai M, Fusaro G, Stavroulakis GE, Papadakis NM. Special Issue: Measurement, Simulation, and Design of Sound in Urban Spaces. Applied Sciences. 2025; 15(5):2758. https://doi.org/10.3390/app15052758
Chicago/Turabian StyleGarai, Massimo, Gioia Fusaro, Georgios E. Stavroulakis, and Nikolaos M. Papadakis. 2025. "Special Issue: Measurement, Simulation, and Design of Sound in Urban Spaces" Applied Sciences 15, no. 5: 2758. https://doi.org/10.3390/app15052758
APA StyleGarai, M., Fusaro, G., Stavroulakis, G. E., & Papadakis, N. M. (2025). Special Issue: Measurement, Simulation, and Design of Sound in Urban Spaces. Applied Sciences, 15(5), 2758. https://doi.org/10.3390/app15052758