Impact of Nitric Oxide on the Surface Properties of Selected Polymers
Abstract
1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
2.2. NO Treatment of the Gas Exchanger Materials
2.3. Additional Sample Treatment
2.4. FTIR-ATR Measurements
2.5. Zeta-Potential Measurements
2.6. Dynamic Contact-Angle Measurements
3. Results and Discussion
3.1. FTIR-ATR Stability Measurements
3.2. Zeta-Potential and Dynamic Contact-Angle Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makdisi, G.; Wang, I.-W. Extra Corporeal Membrane Oxygenation (ECMO) review of a lifesaving technology. J. Thorac. Dis. 2015, 7, E166–E176. [Google Scholar] [CrossRef] [PubMed]
- Banfi, C.; Pozzi, M.; Siegenthaler, N.; Brunner, M.-E.; Tassaux, D.; Obadia, J.-F.; Bendjelid, K.; Giraud, R. Veno-venous extracorporeal membrane oxygenation: Cannulation techniques. J. Thorac. Dis. 2016, 8, 3762–3773. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.; Holena, D.; McCunn, M.; Kohl, B.; Sarani, B. A Review of the Fundamental Principles and Evidence Base in the Use of Extracorporeal Membrane Oxygenation (ECMO) in Critically Ill Adult Patients. J. Intensive Care Med. 2011, 26, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Zeibi Shirejini, S.; Carberry, J.; McQuilten, Z.K.; Burrell, A.J.C.; Gregory, S.D.; Hagemeyer, C.E. Current and future strategies to monitor and manage coagulation in ECMO patients. Thrombosis J. 2023, 21, 11. [Google Scholar] [CrossRef]
- Karagiannidis, C.; Strassmann, S.; Larsson, A.; Brodie, D. The Hemovent Oxygenator: A New Low-Resistance, High-Performance Oxygenator. ASAIO J. 2021, 67, e59–e61. [Google Scholar] [CrossRef]
- Olson, S.R.; Murphree, C.R.; Zonies, D.; Meyer, A.D.; Mccarty, O.J.T.; Deloughery, T.G.; Shatzel, J.J. Thrombosis and Bleeding in Extracorporeal Membrane Oxygenation (ECMO) Without Anticoagulation: A Systematic Review. ASAIO J. 2021, 67, 290–296. [Google Scholar] [CrossRef]
- Gajkowski, E.F.; Herrera, G.; Hatton, L.; Velia Antonini, M.; Vercaemst, L.; Cooley, E. ELSO Guidelines for Adult and Pediatric Extracorporeal Membrane Oxygenation Circuits. ASAIO J. 2022, 68, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Andrabi, S.M.; Sharma, N.S.; Karan, A.; Shahriar, S.M.S.; Cordon, B.; Ma, B.; Xie, J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. Adv. Sci. 2023, 10, e2303259. [Google Scholar] [CrossRef]
- Jin, R.C.; Loscalzo, J. Vascular Nitric Oxide: Formation and Function. J. Blood Med. 2010, 2010, 147–162. [Google Scholar] [CrossRef]
- Köglmaier, M.; Joost, T.; Kronseder, M.; Kunz, W. Characterization of the interaction of nitric oxide/nitrogen dioxide with the polymer surfaces in ECMO devices. J. Polym. Res. 2024, 31, 261. [Google Scholar] [CrossRef]
- Obstals, F.; Vorobii, M.; Riedel, T.; de Los Santos Pereira, A.; Bruns, M.; Singh, S.; Rodriguez-Emmenegger, C. Improving Hemocompatibility of Membranes for Extracorporeal Membrane Oxygenators by Grafting Nonthrombogenic Polymer Brushes. Macromol. Biosci. [Online] 2018, 18, 1700359. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.W. The history of extracorporeal oxygenators. Anaesthesia 2006, 61, 984–995. [Google Scholar] [CrossRef]
- O’Brien, C.; Monteagudo, J.; Schad, C.; Cheung, E.; Middlesworth, W. Centrifugal pumps and hemolysis in pediatric extracorporeal membrane oxygenation (ECMO) patients: An analysis of Extracorporeal Life Support Organization (ELSO) registry data. J. Pediatr. Surg. 2017, 52, 975–978. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, C.; Joost, T.; Strassmann, S.; Weber-Carstens, S.; Combes, A.; Windisch, W.; Brodie, D. Safety and Efficacy of a Novel Pneumatically Driven Extracorporeal Membrane Oxygenation Device. Ann. Thorac. Surg. 2020, 109, 1684–1691. [Google Scholar] [CrossRef]
- Menninger, L.; Körner, A.; Mirakaj, V.; Heck-Swain, K.-L.; Haeberle, H.A.; Althaus, K.; Baumgaertner, M.; Jost, W.; Schlensak, C.; Rosenberger, P.; et al. Membrane oxygenator longevity was higher in argatroban-treated patients undergoing vvECMO. Eur. J. Clin. Investig. 2023, 53, e13963. [Google Scholar] [CrossRef] [PubMed]
- O’Meara, C.; Timpa, J.; Peek, G.; Sindelar, M.; Ross, J.; Raper, J.; Byrnes, J.W. Nitric Oxide on Extracorporeal Life Support-Circuit Modifications for a Safe Therapy. J. Extra-Corpor. Technol. 2022, 54, 142–147. [Google Scholar] [CrossRef]
- Winnersbach, P.; Hosseinnejad, A.; Breuer, T.; Fechter, T.; Jakob, F.; Schwaneberg, U.; Rossaint, R.; Bleilevens, C.; Singh, S. Endogenous Nitric Oxide-Releasing Microgel Coating Prevents Clot Formation on Oxygenator Fibers Exposed to In Vitro Blood Flow. Membranes 2022, 12, 73. [Google Scholar] [CrossRef]
- Taite, L.J.; Yang, P.; Jun, H.-W.; West, J.L. Nitric oxide-releasing polyurethane-PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 84, 108–116. [Google Scholar] [CrossRef]
- Brinkley, L.; Brock, M.A.; Stinson, G.; Bilgili, A.; Jacobs, J.P.; Bleiweis, M.; Peek, G.J. The biological role and future therapeutic uses of nitric oxide in extracorporeal membrane oxygenation, a narrative review. Perfusion 2025, 40, 83–91. [Google Scholar] [CrossRef]
- Malfertheiner, M.V.; Garrett, A.; Passmore, M.; Haymet, A.B.; Webb, R.I.; Bahr, V.V.; Millar, J.E.; Schneider, B.A.; Obonyo, N.G.; Black, D.; et al. The effects of nitric oxide on coagulation and inflammation in ex vivo models of extracorporeal membrane oxygenation and cardiopulmonary bypass. Artif. Organs 2023, 47, 1581–1591. [Google Scholar] [CrossRef]
- Lopez, L.C.; Wilkes, G.L.; Stricklen, P.M.; White, S.A. Synthesis, Structure, and Properties of Poly(4-Methyl-1 -Pentene). J. Macromol. Sci. Polymer Rev. 1992, 32, 301–406. [Google Scholar] [CrossRef]
- Stamm, M. (Ed.) Polymer Surfaces and Interfaces: Characterization, Modification and Applications; Springer: Berlin, Heidelberg, 2008. [Google Scholar]
- Xu, L.; Tang, Q.; Liu, B.; Zhang, M. Control of the composition of matrix resin for the design of MABS resin with good transparency and toughness. Colloids Surf. A Physiochem. Eng. Asp. 2023, 658, 130608. [Google Scholar] [CrossRef]
- Riley, B.; Sapatnekar, S.; Cornell, D.T.; Anderson, J.; Walsh-sukys, M. Impact of prolonged saline solution prime exposure on integrity of extracorporeal membrane oxygenation circuits. J. Perinatol. 1997, 17, 444–449. [Google Scholar]
- Larkin, P. Infrared and Raman Spectroscopy. Principles and Spectral Interpretation, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Schnitzer, C.; Ripperger, S. Influence of Surface Roughness on Streaming Potential Method. Chem. Eng. Technol. 2008, 31, 1696–1700. [Google Scholar] [CrossRef]
- Bellmann, C.; Caspari, A.; Albrecht, V.; Loan Doan, T.T.; Mäder, T.; Luxbacher, T.; Kohl, R. Electrokinetic properties of natural fibres. Colloids Surf. A Physicochem. Eng. Asp. 2005, 267, 19–23. [Google Scholar] [CrossRef]
- Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H.A. Surface-wetting characterization using contact-angle measurements. Nat. Protoc. 2018, 13, 1521–1538. [Google Scholar] [CrossRef] [PubMed]
- Hebbar, R.S.; Isloor, A.M.; Ismail, A.F. Chapter 12-Contact Angle Measurements. In Membrane Characterization; Hilal, N., Ismail, A.F., Matsuura, T., Oatley-Radcliffe, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 219–255. [Google Scholar]
- Wang, J.; Wu, Y.; Cao, Y.; Li, G.; Liao, Y. Influence of surface roughness on contact angle hysteresis and spreading work. Colloid Polym. Sci. 2020, 298, 1107–1112. [Google Scholar] [CrossRef]
- Drechsler, A.; Frenzel, R.; Caspari, A.; Michel, S.; Holzschuh, M.; Synytska, A.; Curosu, I.; Liebscher, M.; Mechtcherine, V. Surface modification of poly(vinyl alcohol) fibers to control the fiber-matrix interaction in composites. Colloid Polym. Sci. 2019, 297, 1079–1093. [Google Scholar] [CrossRef]
- Della Volpe, C.; Siboni, S. The Wilhelmy method: A critical and practical review. Surf. Innov. 2018, 6, 120–132. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies. Tables and Charts, 3rd ed.; repr. as paperback; Wiley: Chichester, UK, 2010. [Google Scholar]
- Tsukahara, H.; Ishida, T.; Mayumi, M. Gas-Phase Oxidation of Nitric Oxide: Chemical Kinetics and Rate Constant. Nitric Oxide 1999, 3, 191–198. [Google Scholar] [CrossRef]
- England, C.; Corcoran, W.H. Kinetics and Mechanisms of the Gas-Phase Reaction of Water Vapor and Nitrogen Dioxide. Ind. Eng. Chem. Fund. 1974, 13, 373–384. [Google Scholar] [CrossRef]
- Ogihara, T. Oxidative Degradation of Polyethylene in Nitrogen Dioxide. Bull. Chem. Soc. Jpn. 1963, 36, 58–63. [Google Scholar] [CrossRef]
- Giamalva, D.H.; Kenion, G.B.; Church, D.F.; Pryor, W.A. Rates and mechanisms of reactions of nitrogen dioxide with alkenes in solution. J. Am. Chem. Soc. 1987, 109, 7059–7063. [Google Scholar] [CrossRef]
- Pariiskii, G.B.; Gaponova, I.S.; Davydov, E.Y. Reactions of nitrogen oxides with polymers. Russ. Chem. Rev. 2000, 69, 985–999. [Google Scholar] [CrossRef]
- Jellinek, H.H.G.; Wang, T.J.Y. Reaction of nitrogen dioxide with linear polyurethane. J. Polym. Sci. Polym. Chem. Ed. 1973, 11, 3227–3242. [Google Scholar] [CrossRef]
- Ridd, J.H. Mechanism of aromatic nitration. Acc. Chem. Res. 1971, 4, 248–253. [Google Scholar] [CrossRef]
- Gray, P.; Williams, A. The thermochemistry and reactivity of alkoxyl radicals. Chem. Rev. 1959, 59, 239–328. [Google Scholar] [CrossRef]
- Boschan, R.; Merrow, R.T.; van Dolah, R.W. The Chemistry of Nitrate Esters. Chem. Rev. 1955, 55, 485–510. [Google Scholar] [CrossRef]
- Li, G.-B.; Cai, S.-H.; Long, B. New Reactions for the Formation of Organic Nitrate in the Atmosphere. ACS Omega 2022, 7, 39671–39679. [Google Scholar] [CrossRef]
- Martínez, I.; Casas, P.A. Simple model for CO2 absorption in a bubbling water column. Braz. J. Chem. Eng. 2012, 29, 107–111. [Google Scholar] [CrossRef]
- Keshavarz, F.; Thornton, J.A.; Vehkamäki, H.; Kurtén, T. Reaction Mechanisms Underlying Unfunctionalized Alkyl Nitrate Hydrolysis in Aqueous Aerosols. ACS Earth Space Chem. 2021, 5, 210–225. [Google Scholar] [CrossRef]
- Khalil, F.Y.; Hanna, M.T. Kinetic salt effects in the acid hydrolysis of potassium ethyl malonate in water and in 50% dioxane? Water mixture. Monatsh. Chem. 1980, 111, 841–849. [Google Scholar] [CrossRef]
- Kwok, D.Y.; Gietzelt, T.; Grundke, K.; Jacobasch, H.-J.; Neumann, A.W. Contact Angle Measurements and Contact Angle Interpretation. 1. Contact Angle Measurements by Axisymmetric Drop Shape Analysis and a Goniometer Sessile Drop Technique. Langmuir 1997, 13, 2880–2894. [Google Scholar] [CrossRef]
- Lam, C.; Ko, R.; Yu, L.; Ng, A.; Li, D.; Hair, M.L.; Neumann, A.W. Dynamic Cycling Contact Angle Measurements: Study of Advancing and Receding Contact Angles. J. Colloid Interface Sci. 2001, 243, 208–218. [Google Scholar] [CrossRef]
- Marmur, A. Solid-Surface Characterization by Wetting. Annu. Rev. Mater. Res. 2009, 39, 473–489. [Google Scholar] [CrossRef]
- Temmel, S.; Kern, W.; Luxbacher, T. Zeta Potential of Photochemically Modified Polymer Surfaces. In Characterization of Polymer Surfaces and Thin Films; Grundke, K., Stamm, M., Adler, H.-J., Eds.; Progress in Colloid and Polymer Science; Springer: Berlin/Heidelberg, Germany, 2006; pp. 54–61. [Google Scholar]
- Nygård, P.; Grundke, K.; Mäder, E.; Bellmann, C. Wetting kinetics and adhesion strength between polypropylene melt and glass fibre: Influence of chemical reactivity and fibre roughness. J. Adhes. Sci. Technol. 2002, 16, 1781–1808. [Google Scholar] [CrossRef]
- De Queiroz, J.F.; Carneiro, J.W.d.M.; Sabino, A.A.; Sparrapan, R.; Eberlin, M.N.; Esteves, P.M. Electrophilic aromatic nitration: Understanding its mechanism and substituent effects. J. Org. Chem. 2006, 71, 6192–6203. [Google Scholar] [CrossRef]
- Liljenberg, M.; Stenlid, J.H.; Brinck, T. Mechanism and regioselectivity of electrophilic aromatic nitration in solution: The validity of the transition state approach. J. Mol. Model. 2017, 24, 15. [Google Scholar] [CrossRef]
- Urbański, T. Chemistry and Technology of Explosives; Repr; Pergamon Pr: Oxford, UK, 1983. [Google Scholar]
- Shi, H.; Wang, Y.; Hua, R. Acid-catalyzed carboxylic acid esterification and ester hydrolysis mechanism: Acylium ion as a sharing active intermediate via a spontaneous trimolecular reaction based on density functional theory calculation and supported by electrospray ionization-mass spectrometry. Phys. Chem. Chem. Phys. 2015, 17, 30279–30291. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köglmaier, M.; Caspari, A.; Michel, S.; Auernhammer, G.K.; Kunz, W. Impact of Nitric Oxide on the Surface Properties of Selected Polymers. Appl. Sci. 2025, 15, 2646. https://doi.org/10.3390/app15052646
Köglmaier M, Caspari A, Michel S, Auernhammer GK, Kunz W. Impact of Nitric Oxide on the Surface Properties of Selected Polymers. Applied Sciences. 2025; 15(5):2646. https://doi.org/10.3390/app15052646
Chicago/Turabian StyleKöglmaier, Moritz, Anja Caspari, Stefan Michel, Günter K. Auernhammer, and Werner Kunz. 2025. "Impact of Nitric Oxide on the Surface Properties of Selected Polymers" Applied Sciences 15, no. 5: 2646. https://doi.org/10.3390/app15052646
APA StyleKöglmaier, M., Caspari, A., Michel, S., Auernhammer, G. K., & Kunz, W. (2025). Impact of Nitric Oxide on the Surface Properties of Selected Polymers. Applied Sciences, 15(5), 2646. https://doi.org/10.3390/app15052646