Robust Sandstorm Image Restoration via Adaptive Color Correction and Saturation Line Prior-Based Dust Removal
Abstract
:1. Introduction
- We present a robust sand-dust image restoration algorithm that decomposes the restoration task into color correction and dust removal components. In mild dust conditions, the proposed method delivers enhanced dust removal effectiveness. In extreme sandstorm situations, the algorithm removes the red veil from the sand-dust images while maintaining stable and robust dust removal performance.
- We propose a novel color correction method that is equally effective for red-dominant sand-dust images. Channel compensation is applied to restore the distribution of the compressed blue and red channels. Color transfer ensures the consistency of the mean and variance across the color channels. Dynamic range expansion is employed to enhance the image’s contrast and brightness.
- We propose a local-block-based atmospheric light estimation strategy and design a novel illuminance adjustment method, significantly reducing color artifacts.
2. Related Work
2.1. Nonphysical Model-Based Methods
2.2. Deep Learning-Based Methods
2.3. Physical Model-Based Restoration Methods
3. Motivation
3.1. Color Correction
3.2. Dust Removal
4. Method
4.1. Adaptive Color Correction
4.2. Local Atmospheric Light Estimation
4.3. Transmission Estimation Based on Saturation Line Prior
Algorithm 1: The Main Steps of the Proposed Method |
Input: Sand-dust image Parameter setting: , , Begin Step 2: Correct the color shift using Equation (4) Step 3: Stretch dynamic range using Equation (5) Step 4: Estimate local atmospheric light via DCP [23] Step 5: Obtain using Equation (7) Step 6: Adjust the illumination of the atmospheric light map using Equation (8) Step 7: Calculate using Equation (18) Step 8: Calculate using Equation (19) Step 9: Restore the dust-free image using Equation (20) End Output: Clear image |
5. Experiments
5.1. Subjective Evaluation
5.2. Objective Evaluation
5.3. Running Time
5.4. Application
5.5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SLP | Saturation line prior |
SOTA | State-of-the-art |
ROP | Rank one prior |
ROP+ | Rank one prior plus |
CLAHE | Contrast-limited adaptive histogram equalization |
CNN | Convolutional neural network |
USDR-Net | Unsupervised sand-dust image restoration network |
D-CycleGAN | Cycle-consistent generative adversarial network for image de-dusting |
DedustGAN | Image de-dusting based on Retinex with generative adversarial networks |
DCP | Dark channel prior |
CAP | Color attenuation prior |
FBE | Fusion-based enhancing approach |
HRDCP | Halo-reduced dark channel prior |
NGT | Normalized gamma transformation |
SCB | Successive color balance |
CVC | Chromatic variance consistency |
NIQE | Natural image quality evaluator |
NPQI | Natural scene statistics and perceptual characteristics-based quality index |
SNP-NIQE | Structure, naturalness, and perception-driven NIQE |
References
- Ma, J.; Lin, M.; Zhou, G.; Jia, Z. Joint Image Restoration For Domain Adaptive Object Detection In Foggy Weather Condition. In Proceedings of the 2024 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 27–30 October 2024; pp. 542–548. [Google Scholar] [CrossRef]
- Mehra, A.; Mandal, M.; Narang, P.; Chamola, V. ReViewNet: A Fast and Resource Optimized Network for Enabling Safe Autonomous Driving in Hazy Weather Conditions. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4256–4266. [Google Scholar] [CrossRef]
- Fu, X.; Huang, Y.; Zeng, D.; Zhang, X.P.; Ding, X. A fusion-based enhancing approach for single sandstorm image. In Proceedings of the 2014 IEEE 16th international workshop on multimedia signal processing (MMSP), Jakarta, Indonesia, 22–24 September 2014; pp. 1–5. [Google Scholar]
- Shi, Z.; Feng, Y.; Zhao, M.; Zhang, E.; He, L. Normalised gamma transformation-based contrast-limited adaptive histogram equalisation with colour correction for sand–dust image enhancement. IET Image Process. 2020, 14, 747–756. [Google Scholar] [CrossRef]
- Park, T.H.; Eom, I.K. Sand-dust image enhancement using successive color balance with coincident chromatic histogram. IEEE Access 2021, 9, 19749–19760. [Google Scholar] [CrossRef]
- Xiang, P.; Chen, C.; Liu, G.; Pang, Z.; Zhang, J.; Hu, J. Image Enhancement of Degraded Sand-dust Images Based on Channel Compensation and Brightness Partitioning. In Proceedings of the 2023 2nd International Conference on Robotics, Artificial Intelligence and Intelligent Control (RAIIC), Mianyang, China, 11–13 August 2023; pp. 288–293. [Google Scholar] [CrossRef]
- Si, Y.; Yang, F.; Guo, Y.; Zhang, W.; Yang, Y. A comprehensive benchmark analysis for sand dust image reconstruction. J. Vis. Commun. Image Represent. 2022, 89, 103638. [Google Scholar] [CrossRef]
- Shi, J.; Wei, B.; Zhou, G.; Zhang, L. Sandformer: CNN and Transformer under Gated Fusion for Sand Dust Image Restoration. In Proceedings of the ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–9 June 2023; pp. 1–5. [Google Scholar]
- Gao, G.; Lai, H.; Jia, Z. Unsupervised image dedusting via a cycle-consistent generative adversarial network. Remote Sens. 2023, 15, 1311. [Google Scholar] [CrossRef]
- Meng, X.; Huang, J.; Li, Z.; Wang, C.; Teng, S.; Grau, A. DedustGAN: Unpaired learning for image dedusting based on Retinex with GANs. Expert Syst. Appl. 2024, 243, 122844. [Google Scholar] [CrossRef]
- Shi, Z.; Feng, Y.; Zhao, M.; Zhang, E.; He, L. Let you see in sand dust weather: A method based on halo-reduced dark channel prior dehazing for sand-dust image enhancement. IEEE Access 2019, 7, 116722–116733. [Google Scholar] [CrossRef]
- Jeon, J.J.; Park, T.H.; Eom, I.K. Sand-dust image enhancement using chromatic variance consistency and gamma correction-based dehazing. Sensors 2022, 22, 9048. [Google Scholar] [CrossRef]
- Liu, J.; Liu, W.; Sun, J.; Zeng, T. Rank-One Prior: Toward Real-Time Scene Recovery. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14802–14810. [Google Scholar]
- Liu, J.; Liu, R.W.; Sun, J.; Zeng, T. Rank-one prior: Real-time scene recovery. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 8845–8860. [Google Scholar] [CrossRef]
- Wang, B.; Wei, B.; Kang, Z.; Hu, L.; Li, C. Fast color balance and multi-path fusion for sandstorm image enhancement. Signal Image Video Process. 2021, 15, 637–644. [Google Scholar] [CrossRef]
- Gao, G.; Lai, H.; Wang, L.; Jia, Z. Color balance and sand-dust image enhancement in lab space. Multimed. Tools Appl. 2022, 81, 15349–15365. [Google Scholar] [CrossRef]
- Xu, G.; Wang, X.; Xu, X. Single image enhancement in sandstorm weather via tensor least square. IEEE/CAA J. Autom. Sin. 2020, 7, 1649–1661. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, C.; Ren, W.; Shuangli, D.; Zhao, M. Convolutional neural networks for sand dust image color restoration and visibility enhancement. Chin. J. Image Graph 2022, 27, 1493–1508. [Google Scholar] [CrossRef]
- Ding, B.; Chen, H.; Xu, L.; Zhang, R. Restoration of single sand-dust image based on style transformation and unsupervised adversarial learning. IEEE Access 2022, 10, 90092–90100. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, T.; Zeng, T. Scene recovery: Combining visual enhancement and resolution improvement. Pattern Recognit. 2024, 153, 110529. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, D.; Gao, Y.; Liu, R.W.; Liu, J.; Guo, Y. AoSRNet: All-in-One Scene Recovery Networks via multi-knowledge integration. Knowl.-Based Syst. 2024, 294, 111786. [Google Scholar] [CrossRef]
- Narasimhan, S.G.; Nayar, S.K. Vision and the atmosphere. Int. J. Comput. Vis. 2002, 48, 233–254. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar]
- Gao, G.; Lai, H.; Jia, Z.; Liu, Y.; Wang, Y. Sand-dust image restoration based on reversing the blue channel prior. IEEE Photonics J. 2020, 12, 1–16. [Google Scholar] [CrossRef]
- Dhara, S.K.; Roy, M.; Sen, D.; Biswas, P.K. Color cast dependent image dehazing via adaptive airlight refinement and non-linear color balancing. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 2076–2081. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, J.; Cai, Z. ACCE: An Adaptive Color Compensation and Enhancement Algorithm for Underwater Image. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–13. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, S.; Lin, Z.; Jiang, Q.; Sohel, F. A Pixel Distribution Remapping and Multi-Prior Retinex Variational Model for Underwater Image Enhancement. IEEE Trans. Multimed. 2024, 26, 7838–7849. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, W.; Ruan, R.; Zhuang, P.; Xie, X.; Li, C. Underwater Image Quality Improvement via Color, Detail, and Contrast Restoration. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 1726–1742. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, L.; Xu, W. Retinex-inspired color correction and detail preserved fusion for underwater image enhancement. Comput. Electron. Agric. 2022, 192, 106585. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Ren, P.; Zhang, W. Underwater Image Color Correction via Color Channel Transfer. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Li, F.; Li, X.; Peng, Y.; Li, B.; Zhai, Y. Maximum Information Transfer and Minimum Loss Dehazing for Underwater Image Restoration. IEEE J. Ocean. Eng. 2024, 49, 622–636. [Google Scholar] [CrossRef]
- Ling, P.; Chen, H.; Tan, X.; Jin, Y.; Chen, E. Single image dehazing using saturation line prior. IEEE Trans. Image Process. 2023, 32, 3238–3253. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color Balance and Fusion for Underwater Image Enhancement. IEEE Trans. Image Process. 2018, 27, 379–393. [Google Scholar] [CrossRef]
- Hu, H.M.; Zhang, H.; Zhao, Z.; Li, B.; Zheng, J. Adaptive single image dehazing using joint local-global illumination adjustment. IEEE Trans. Multimed. 2019, 22, 1485–1495. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [Google Scholar] [CrossRef]
- Zhu, Q.; Mai, J.; Shao, L. A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 2015, 24, 3522–3533. [Google Scholar] [PubMed]
- Bui, T.M.; Kim, W. Single image dehazing using color ellipsoid prior. IEEE Trans. Image Process. 2017, 27, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Berman, D.; Treibitz, T.; Avidan, S. Single image dehazing using haze-lines. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 720–734. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.T.; Cao, K.; Cosman, P.C. Generalization of the dark channel prior for single image restoration. IEEE Trans. Image Process. 2018, 27, 2856–2868. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Park, T.H.; Eom, I.K. Fast single image dehazing using saturation based transmission map estimation. IEEE Trans. Image Process. 2019, 29, 1985–1998. [Google Scholar] [CrossRef]
- Meng, G.; Wang, Y.; Duan, J.; Xiang, S.; Pan, C. Efficient image dehazing with boundary constraint and contextual regularization. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 617–624. [Google Scholar]
- Buchsbaum, G. A spatial processor model for object colour perception. J. Frankl. Inst. 1980, 310, 1–26. [Google Scholar] [CrossRef]
- Finlayson, G.D.; Trezzi, E. Shades of gray and colour constancy. In Proceedings of the 12th Color and Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications, Scottsdale, AZ, USA, 9–12 November 2004; pp. 37–41. [Google Scholar]
- Hautiere, N.; Tarel, J.P.; Aubert, D.; Dumont, E. Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal. Stereol. 2008, 27, 87–95. [Google Scholar] [CrossRef]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2012, 20, 209–212. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, K.; Li, X.; Zhang, Y. Blind image quality assessment by natural scene statistics and perceptual characteristics. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2020, 16, 1–91. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, K.; Zhang, Y.; Li, X.; Zhai, G.; Zhao, D.; Gao, W. Unsupervised blind image quality evaluation via statistical measurements of structure, naturalness, and perception. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 929–943. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Sbert, M. Color Channel Compensation (3C): A Fundamental Pre-Processing Step for Image Enhancement. IEEE Trans. Image Process. 2020, 29, 2653–2665. [Google Scholar] [CrossRef]
Method | NIQE ↓ | NPQI ↓ | SNP-NIQE ↓ | ||
---|---|---|---|---|---|
FBE [3] | 0.8905 | 2.7882 | 3.4897 | 10.2192 | 5.8600 |
HRDCP [11] | 0.7931 | 4.5853 | 3.7228 | 10.5894 | 5.9373 |
NGT [4] | 0.4157 | 1.9198 | 3.2431 | 9.9789 | 5.5269 |
ROP [12] | 0.4558 | 2.0696 | 3.6074 | 10.7137 | 5.5782 |
SCB [5] | 0.7754 | 2.4037 | 3.4271 | 10.0767 | 5.3070 |
ROP+ [13] | 1.1099 | 3.5369 | 3.6466 | 10.1720 | 5.9190 |
CVC [14] | 0.6639 | 1.7882 | 3.5646 | 11.1459 | 5.5255 |
DedustGAN [10] | 1.4277 | 3.5972 | 3.6165 | 9.5147 | 4.9324 |
Ours | 1.0510 | 3.0082 | 3.4204 | 9.7736 | 5.3356 |
Method | NIQE ↓ | NPQI ↓ | SNP-NIQE ↓ | ||
---|---|---|---|---|---|
FBE [3] | 3.1179 | 2.2255 | 3.2991 | 9.1606 | 5.5158 |
HRDCP [11] | 2.8110 | 4.5513 | 3.6905 | 9.4413 | 5.7885 |
NGT [4] | 0.7043 | 1.9480 | 3.3056 | 9.2859 | 5.5565 |
ROP [12] | 3.4139 | 2.0363 | 3.3206 | 9.5956 | 5.1726 |
SCB [5] | 3.5480 | 2.2997 | 3.2501 | 9.1667 | 5.1128 |
ROP+ [13] | 4.2756 | 3.5223 | 3.2979 | 8.6822 | 5.3899 |
CVC [14] | 2.6295 | 1.7033 | 3.4279 | 10.4143 | 5.3632 |
DedustGAN [10] | 5.1937 | 3.7031 | 3.5251 | 8.7102 | 4.7425 |
Ours | 5.2528 | 3.0270 | 3.2285 | 8.5987 | 5.0383 |
Method | Platform | Hardware | 640 × 360 | 1280 × 720 | 1920 × 1080 |
---|---|---|---|---|---|
FBE [3] | Matlab | CPU | 0.1966 | 0.6878 | 1.5065 |
HRDCP [11] | Matlab | CPU | 1.0338 | 4.0810 | 8.0943 |
NGT [4] | Matlab | CPU | 0.0659 | 0.2290 | 0.4581 |
ROP [12] | Matlab | CPU | 0.0631 | 0.2384 | 0.5311 |
SCB [5] | Python | CPU | 0.1160 | 0.2293 | 0.4052 |
ROP+ [13] | Matlab | CPU | 0.6070 | 2.5339 | 4.6092 |
CVC [14] | Python | CPU | 0.0674 | 0.3555 | 0.7745 |
DedustGAN [10] | Python | GPU | 2.8102 | 7.2574 | 14.4687 |
Ours | Matlab | CPU | 0.7800 | 2.9054 | 6.3091 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Shi, F.; Jia, Z.; Wang, G.; Huang, J. Robust Sandstorm Image Restoration via Adaptive Color Correction and Saturation Line Prior-Based Dust Removal. Appl. Sci. 2025, 15, 2594. https://doi.org/10.3390/app15052594
Zhou S, Shi F, Jia Z, Wang G, Huang J. Robust Sandstorm Image Restoration via Adaptive Color Correction and Saturation Line Prior-Based Dust Removal. Applied Sciences. 2025; 15(5):2594. https://doi.org/10.3390/app15052594
Chicago/Turabian StyleZhou, Shan, Fei Shi, Zhenhong Jia, Guoqiang Wang, and Jian Huang. 2025. "Robust Sandstorm Image Restoration via Adaptive Color Correction and Saturation Line Prior-Based Dust Removal" Applied Sciences 15, no. 5: 2594. https://doi.org/10.3390/app15052594
APA StyleZhou, S., Shi, F., Jia, Z., Wang, G., & Huang, J. (2025). Robust Sandstorm Image Restoration via Adaptive Color Correction and Saturation Line Prior-Based Dust Removal. Applied Sciences, 15(5), 2594. https://doi.org/10.3390/app15052594