Aspect-Related Mechanical Properties of the Cortical Bone in the Third Metacarpal Bone of Mares
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Samples
2.2. CT Imaging
2.3. Mechanical Tests
2.3.1. 3-Point Bending Test
2.3.2. Uniaxial Compression Test
2.4. Statistical Analysis
3. Results
3.1. Aspect-Related Properties of the MC III
3.2. Load Direction-Related Properties of the MC III
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bischofberger, A.S.; Fürst, A.; Auer, J.; Lischer, C. Surgical management of complete diaphyseal third metacarpal and metatarsal bone fractures: Clinical outcome in 10 mature horses and 11 foals. Equine Vet. J. 2009, 41, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Bogers, S.H.; Rogers, C.W.; Bolwell, C.; Roe, W.; Gee, E.; McIlwraith, C.W. Quantitative comparison of bone mineral density characteristics of the distal epiphysis of third metacarpal bones from Thoroughbred racehorses with or without condylar fracture. Am. J. Vet. Res. 2016, 77, 32–38. [Google Scholar] [CrossRef]
- Moulin, N.; François, I.; Coté, N.; Alford, C.; Cleary, O.; Desjardins, M.R. Surgical repair of propagating condylar fractures of the third metacarpal/metatarsal bones with cortical screws placed in lag fashion in 26 racehorses (2007–2015). Equine Vet. J. 2018, 50, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Lischer, C.; Klaus, C. Diaphyseal fractures of the Third Metacarpal and Third Metatarsal Bones. In Fractures in the Horse; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Steel, C.; Ahern, B.; Zedler, S.; Vallance, S.; Galuppo, L.; Richardson, J.; Whitton, C.; Young, A. Comparison of Radiography and Computed Tomography for Evaluation of Third Carpal Bone Fractures in Horses. Animals 2023, 13, 1459. [Google Scholar] [CrossRef]
- Morgan, R.; Dyson, S. Incomplete longitudinal fractures and fatigue injury of the proximopalmar medial aspect of the third metacarpal bone in 55 horses. Equine Vet. J. 2012, 44, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Reardon, R.J.; Boden, L.; Stirk, A.J.; Parkin, T.D.H. Accuracy of distal limb fracture diagnosis at British racecourses 1999–2005. Vet. Rec. 2014, 174, 477. [Google Scholar] [CrossRef]
- Wright, I.M.; Nixon, A.J. Fractures of the condyles of the third metacarpal and metatarsal bones. In Equine Fracture Repair; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Misheff, M.M.; Alexander, G.R.; Hirst, G.R. Management of fractures in endurance horses. Equine Vet. Educ. 2010, 22, 623–630. [Google Scholar] [CrossRef]
- Young, N.; Corletto, F.; Wright, I. Predicting return to racing after repair of fractures of the metacpal/metatarsal condyles in Thoroughbred racehorses. Vet. Surg. 2022, 51, 753–762. [Google Scholar] [CrossRef] [PubMed]
- McClure, S.R.; Watkins, J.P.; Glickman, N.W.; Hawkins, J.F.; Glickman, L.T. Complete fractures of the third metacarpal or metatarsal bone in horses: 25 cases (1980–1996). J. Am. Vet. Med. Assoc. 1998, 213, 847–850. [Google Scholar] [CrossRef]
- Turek, B.; Potyński, A.; Wajler, C.; Szara, T.; Czopowicz, M.; Drewnowska, O. Biomechanical study in vitro on the use of self-designed external fixator in diaphyseal III metacarpal fractures in horses. Pol. J. Vet. Sci. 2015, 18, 323–332. [Google Scholar] [CrossRef]
- Donati, B.; Fürst, A.E.; Hässig, M.; Jackson, M.A. Epidemiology of fractures: The role of kick injuries in equine fractures. Equine Vet. J. 2018, 50, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Sarrafian, T.L.; Case, J.T.; Kinde, H.; Daft, B.M.; Read, D.H.; Moore, J.D.; Stover, S.M. Fatal musculo-skeletal injuries of Quarter Horse racehorses: 314 cases (1990–2007). J. Am. Vet. Med. Assoc. 2012, 241, 935–942. [Google Scholar] [CrossRef]
- Springer, S.; Jenner, F.; Tichy, A.; Grimm, H. Austrian veterinarians’ attitudes to euthanasia in equine practice. Animals 2019, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.M.; Whitton, R.C.; Kawcak, C.E.; Stover, S.M.; Pandy, M.G. Evaluation of a subject-specific finite-element model of the equine metacarpophalangeal joint under physiological load. J. Biomech. 2014, 47, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Shaktivesh, S.; Malekipour, F.; Whitton, R.C.; Hitchens, P.L.; Lee, P.V. Fatigue behavior of subchondral bone under simulated physiological loads of equine athletic training. J. Mech. Behav. Biomed. Mater. 2020, 110, 103920. [Google Scholar] [CrossRef] [PubMed]
- McCarty, C.A.; Thomason, J.J.; Gordon, K.D.; Burkhart, T.A.; Milner, J.S.; Holdsworth, D.W. Finite-element analysis of bone stresses on primary impact in a large-animal model: The distal end of the equine third metacarpal. PLoS ONE 2016, 11, e0159541. [Google Scholar] [CrossRef]
- Słowiński, J.; Roszak, M.; Krawiec, K.; Henklewski, R.; Jamroziak, K. Numerical Analysis of Stabilization of a Horse’s Third Metacarpal Bone Fracture for Prediction of the Possibility of Bone Union. Appl. Sci. 2024, 14, 7976. [Google Scholar] [CrossRef]
- Lescun, T.B.; McClure, S.R.; Ward, M.P.; Downs, C.; Wilson, D.A.; Adams, S.B.; Hawkins, J.F.; Reinertson, E.L. Evaluation of transfixation casting for treatment of third metacarpal, third metatarsal, and phalangeal fractures in horses: 37 cases (1994–2004). J. Am. Vet. Med. Assoc. 2007, 230, 1340–1349. [Google Scholar] [CrossRef] [PubMed]
- Brianza, S.; Brighenti, V.; Lansdowne, J.L.; Schwieger, K.; Bouré, L. Finite element analysis of a novel pin-sleeve system for external fixation of distal limb fractures in horses. Vet. J. 2011, 190, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Turek, B.; Potyński, A.; Drewnowska, O. Own-design external fixator for the treatment of diaphyseal fractures of the third metacarpal bone in horses. Med. Weter. 2016, 72, 197–202. [Google Scholar]
- Lescun, T.B.; Adams, S.B.; Main, R.P.; Nauman, E.A.; Breur, G.J. Finite Element Analysis of Six Transcortical Pin Parameters and Their Effect on Bone–Pin Interface Stresses in the Equine Third Meta-carpal Bone. Vet. Comp. Orthop. Traumatol. 2020, 33, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Boros, K.; Dyson, S. Magnetic resonance imaging, computed tomographic and radiographic findings in the metacarpophalangeal joints of 40 non-lame Thoroughbred Yearlings. Animals 2023, 13, 3466. [Google Scholar] [CrossRef]
- Nagy, A.; Dyson, S. Magnetic Resonance Imaging, Computed Tomographic and Radiographic Findings in the Metacarpophalangeal Joints of 31 Warmblood Showjumpers in Full Work and Competing Regularly. Animals 2024, 14, 1417. [Google Scholar] [CrossRef]
- Skedros, J.G.; Dayton, M.R.; Sybrowsky, C.L.; Bloebaum, R.D.; Bachus, K.N. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone. J. Exp. Biol. 2006, 209, 3025–3042. [Google Scholar] [CrossRef] [PubMed]
- Novitskaya, E.; Chen, P.-Y.; Lee, S.; Castro-Ceseña, A.; Hirata, G.; Lubarda, V.A.; McKittrick, J. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Mater. Sci. Eng. 2011, 7, 3170–3177. [Google Scholar] [CrossRef]
- Glade, M.J.; Luba, N.K.; Schryver, H.F. Effects of age and diet on the development of mechanical strength by the third metacarpal and metatarsal bones of young horses. J. Anim. Sci. 1986, 63, 1432–1444. [Google Scholar] [CrossRef]
- Jackson, B.F.; Lonnell, C.; Verheyen, K.; Wood, J.L.N.; Pfeiffer, D.U.; Price, J.S. Gender differences in bone turnover in 2-year-old horses. Equine Vet. J. 2014, 46, 303–310. [Google Scholar]
- Marsiglia, M.F.; Yamada, A.L.M.; Agreste, F.R.; de Sá, L.R.M.; Nieman, R.T.; da Silva, L.C.L.C. Morphological analysis of third metacarpus cartilage and subchondral bone in Thoroughbred racehorses: An ex vivo study. Anat. Rec. 2022, 305, 3385–3397. [Google Scholar] [CrossRef]
- de Oliveira Pereira, L.; de Souza, A.F.; Yamada, A.L.M.; de Andrade Salgado, D.R.; De Zoppa, A.L.D.V. Radiographic Texture of the Trabecular Bone in the Proximal Phalanx of Horses. Int. J. Equine Sci. 2024, 3, 107–114. [Google Scholar]
- Rho, J.Y.; Currey, J.D.; Zioupos, P.; Pharr, G.M. The anisotropic Young’s modulus of equine secondary osteones and interstitial bone determined by nanoindentation. J. Exp. Biol. 2001, 204, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- Reilly, D.T.; Burstein, A.H. The elastic and ultimate properties of compact bone tissue. J. Biomech. 1975, 8, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Bonfield, W.; Grynpas, M.D. Anisotropy of the Young’s modulus of bone. Nature 1977, 270, 453–454. [Google Scholar] [CrossRef] [PubMed]
- Les, C.M.; Keyak, J.H.; Stover, S.M.; Taylor, K.T.; Kaneps, A.J. Estimation of material properties in the equine metacarpus with use of quantitative computed tomography. J. Orthop. Res. 1994, 12, 822–833. [Google Scholar] [CrossRef]
- Rubio-Martínez, L.M.; Cruz, A.M.; Gordon, K.; Hurtig, M.B. Mechanical properties of subchondral bone in the distal aspect of third metacarpal bones from Thoroughbred racehorses. Am. J. Vet. Res. 2008, 69, 1423–1433. [Google Scholar] [CrossRef] [PubMed]
- Leahy, P.D.; Smith, B.S.; Easton, K.L.; Kawcak, C.E.; Eickhoff, J.C.; Shetye, S.S.; Puttlitz, C.M. Correlation of mechanical properties within the equine third metacarpal with trabecular bending and multi-density micro-computed tomography data. Bone 2010, 46, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Symons, J.E.; Entwistle, R.C.; Arens, A.M.; Garcia, T.C.; Christiansen, B.A.; Fyhrie, D.P.; Stover, S.M. Mechanical and morphological properties of trabecular bone samples obtained from third metacarpal bones of cadavers of horses with a bone fragility syndrome and horses unaffected by that syndrome. Am. J. Vet. Res. 2012, 73, 1742–1751. [Google Scholar] [CrossRef] [PubMed]
- Hounsfield, G.N. Nobel Award address. Computed medical imaging. Med. Phys. 1980, 7, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Keller, T.S.; Mao, Z.; Spengler, D.M. Young’s modulus, bending strength, and tissue physical properties of human compact bone. J. Orthop. Res. 1990, 8, 592–603. [Google Scholar] [CrossRef]
- Odgaard, A.; Linde, F. The underestimation of Young’s modulus in compressive testing of cancellous bone specimens. J. Biomech. 1991, 24, 691–698. [Google Scholar] [CrossRef]
- Biewener, A.A. Allometry of quadrupedal locomotion: The scaling of duty factor, bone curvature, and limb orientation to body size. J. Exp. Biol. 1983, 105, 147–171. [Google Scholar] [CrossRef] [PubMed]
- Shahkhosravi, N.A.; Bellenzani, M.C.; Davies, H.M.; Komeili, A. The influence of equine limb conformation on the biomechanical responses of the hoof: An in vivo and finite element study. J. Biomech. 2021, 128, 110715. [Google Scholar] [CrossRef]
- Barnes, G.; Pinder, D. In-vivo tendon tension and bone strain measurement and correlation. J. Biomech. 1974, 7, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Gross, T.S.; McLeod, K.J.; Rubin, C.T. Technical note: Characterizing bone’ strain distributions in vivo using three triple rosette strain gages. J. Biomech. 1992, 25, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Rybicki, E.; Mills, E.; Turner, A.; Simonen, F. In vivo and analytical studies of forces and moments in equine long bone. J. Biomech. 1977, 10, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Mills, E.; Gabel, A. In vivo measurement of bone strain in the horse. Am. J. Vet. Res. 1975, 36, 1573–1579. [Google Scholar]
- Sauer, F.J.; Hellige, M.; Beineke, A.; Geburek, F. Osteoarthritis of the coxofemoral joint in 24 horses: Evaluation of radiography, ultrasonography, intra-articular anesthesia, treatment, and outcome. Equine Vet. J. 2024, 57, 101–104. [Google Scholar] [CrossRef]
- Wang, X.; Thomas, C.D.L.; Clement, J.G.; Das, R.; Davies, H.; Fernandez, J.W. A mechanostatistical approach to cortical bone remodelling: An equine model. Biomech. Model. Mechanobiol. 2016, 15, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Les, C.M.; Stover, S.M.; Keyak, J.H.; Taylor, K.T.; Willits, N.H. The distribution of material properties in the equine third metacarpal bone serves to enhance sagittal bending. J. Biomech. 1997, 30, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, S.; Giorgi, M.; Dall’Ara, E. Validation of finite element models of the mouse tibia using digital volume correlation. J. Mech. Behav. Biomed. Mater. 2018, 86, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Bowen, A.J.; Burd, M.A.; Craig, J.J.; Craig, M. Radiographic calibration for analysis of bone mineral density of the equine third metacarpal bone. J. Equine Vet. Sci. 2013, 33, 1131–1135. [Google Scholar] [CrossRef]
- Turek, B.; Borowska, M.; Jankowski, K.; Skierbiszewska, K.; Pawlikowski, M.; Jasiński, T.; Domino, M. A Preliminary Protocol of Radiographic Image Processing for Quantifying the Severity of Equine Osteoarthritis in the Field: A Model of Bone Spavin. Appl. Sci. 2024, 14, 5498. [Google Scholar] [CrossRef]
- McClure, S.R.; Glickman, L.T.; Glickman, N.W.; Weaver, C.M. Evaluation of dual-energy x-ray absorptiometry for in situ measurement of bone mineral density of equine metacarpi. Am. J. Vet. Res. 2001, 62, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Skierbiszewska, K.; Szałaj, U.; Turek, B.; Sych, O.; Jasiński, T.; Łojkowski, W.; Domino, M. Radiological properties of nano-hydroxyapatite compared to natural equine hydroxyapatite quantified using dual-energy CT and high-field MR. Nanomedicine 2024, 61, 102765. [Google Scholar] [CrossRef]
- Charan, J.; Kantharia, N. How to calculate sample size in animal studies. J. Pharmacol. Pharmacother. 2013, 4, 303–306. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turek, B.; Mikułowski, G.; Szara, T.; Dołasiński, M.; Jasiński, T.; Domino, M. Aspect-Related Mechanical Properties of the Cortical Bone in the Third Metacarpal Bone of Mares. Appl. Sci. 2025, 15, 1593. https://doi.org/10.3390/app15031593
Turek B, Mikułowski G, Szara T, Dołasiński M, Jasiński T, Domino M. Aspect-Related Mechanical Properties of the Cortical Bone in the Third Metacarpal Bone of Mares. Applied Sciences. 2025; 15(3):1593. https://doi.org/10.3390/app15031593
Chicago/Turabian StyleTurek, Bernard, Grzegorz Mikułowski, Tomasz Szara, Michał Dołasiński, Tomasz Jasiński, and Małgorzata Domino. 2025. "Aspect-Related Mechanical Properties of the Cortical Bone in the Third Metacarpal Bone of Mares" Applied Sciences 15, no. 3: 1593. https://doi.org/10.3390/app15031593
APA StyleTurek, B., Mikułowski, G., Szara, T., Dołasiński, M., Jasiński, T., & Domino, M. (2025). Aspect-Related Mechanical Properties of the Cortical Bone in the Third Metacarpal Bone of Mares. Applied Sciences, 15(3), 1593. https://doi.org/10.3390/app15031593