Potentials and Limitations of Using Sentinel Data for Power System Operation and Control: Case Study of Protection Against Forest Fires and Aerosol Contamination
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. The Surface Measurements
2.2.2. The Remote Sensing Data
2.3. Methods
2.3.1. Data Preparation
2.3.2. Data Analysis, Forest Fire Protection
2.3.3. Data Analysis, Aerosol Contamination Protection
2.4. Computational Tools
3. Results
3.1. Forest Fire Protection
3.2. Aerosol Contamination Protection
3.2.1. Aerosol Contamination Monitoring on a Synoptic Scale: The Saharan Dust Movement over the Mediterranean to Europe
3.2.2. Aerosol Contamination Monitoring on a Mesoscale: The Faults in the 25 kV 50 Hz Electric Traction Network in Croatia
4. Discussion
4.1. Discussion of Forest Fire Protection Using Sentinel Data
4.2. Discussion of Aerosol Contamination Protection Using Sentinel Data
4.3. General Discussion and Future Research Possibilities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sentinel Online. Available online: https://sentinels.copernicus.eu/web/sentinel/home (accessed on 19 September 2024).
- Air Quality in the Republic of Croatia. Available online: https://iszz.azo.hr/iskzl/index.html (accessed on 19 November 2024).
- Hill, M.J. Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect. Remote Sens. Environ. 2013, 137, 94–111. [Google Scholar] [CrossRef]
- Gabban, A.; San-Miguel-Ayanz, J.; Viegas, D.X. On the suitability of the use of normalized difference vegetation index for forest fire risk assessment. Int. J. Remote Sens. 2006, 27, 5095–5102. [Google Scholar] [CrossRef]
- ESA, Land Cover. Available online: https://www.esa-landcover-cci.org/ (accessed on 18 November 2024).
- Addabbo, P.; Focareta, M.; Maruccio, S.; Votto, C.; Ullo, S.L. Contribution of Sentinel-2 data for applications in vegetation monitoring. Acta IMEXO 2016, 5, 44–54. [Google Scholar] [CrossRef]
- Lefebvre, A.; Sannier, C.; Corpetti, T. Monitoring Urban Areas with Sentinel-2A Data: Application to the Update of the Copernicus High Resolution Layer Imperviousness Degree. Remote Sens. 2016, 8, 606. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Ramo, R.; Roteta, E.; Bistinasd, I.; van Weesd, D.; Aitor Bastarrika, A.; Chuvieco, E.; van der Werf, G.R. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl. Acad. Sci. USA 2021, 118, e2011160118. [Google Scholar] [CrossRef] [PubMed]
- Han, A.; Qing, S.; Bao, Y.; Na, L.; Bao, Y.; Liu, X.; Zhang, J.; Wang, C. Short-Term Effects of Fire Severity on Vegetation Based on Sentinel-2 Satellite Data. Sustainability 2021, 13, 432. [Google Scholar] [CrossRef]
- Wooster, M.J.; Xu, W.; Nightingale, T. Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets. Remote Sens. Environ. 2012, 120, 236–245. [Google Scholar] [CrossRef]
- Xu, W.; Wooster, M.J.; Polehampton, E.; Yemelyanova, R.; Zhang, T. Sentinel-3 active fire detection and FRP product performance—Impact of scan angle and SLSTR middle infrared channel selection. Remote Sens. Environ. 2021, 261, 112460. [Google Scholar] [CrossRef]
- Xu, W.; Wooster, M.J.; He, J.; Zhang, T. First study of Sentinel-3 SLSTR active fire detection and FRP retrieval: Nighttime algorithm enhancements and global intercomparison to MODIS and VIIRS AF products. Remote Sens. Environ. 2020, 248, 111947. [Google Scholar] [CrossRef]
- Stoyanova, J.S.; Georgiev, C.G.; Neytchev, P.N. Satellite Observations of Fire Activity in Relation to Biophysical Forcing Effect of Land Surface Temperature in Mediterranean Climate. Remote Sens. 2022, 14, 1747. [Google Scholar] [CrossRef]
- Polehampton, E.; Cox, C.; Smith, D.; Ghent, D.; Wooster, M.; Xu, W.; Bruniquel, J.; Henocq, C.; Dransfeld, S. Copernicus Sentinel-3 SLSTR Land User Handbook; European Space Agency: Paris, France, 2023. [Google Scholar]
- Pérez-Planells, L.; Niclòs, R.; Puchades, J.; Coll, C.; Göttsche, F.-M.; Valiente, J.A.; Valor, E.; Galve, J.M. Validation of Sentinel-3 SLSTR Land Surface Temperature Retrieved by the Operational Product and Comparison with Explicitly Emissivity-Dependent Algorithms. Remote Sens. 2021, 13, 2228. [Google Scholar] [CrossRef]
- Maffei, C.; Lindenbergh, R.; Menenti, M. Combining multi-spectral and thermal remote sensing to predict forest fire characteristics. ISPRS J. Photogramm. Remote Sens. 2021, 181, 400–412. [Google Scholar] [CrossRef]
- Tarpanelli, A.; Camici, S.; Nielsen, K.; Brocca, L.; Moramarco, T.; Benveniste, J. Potentials and limitations of Sentinel-3 for river discharge assessment. Adv. Space Res. 2021, 68, 593–606. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, R.; Zhao, W.; Tang, B.; Wu, H.; Shao, K.; Li, Z.-L. Surface Soil Water Content Estimation from Thermal Remote Sensing based on the Temporal Variation of Land Surface Temperature. Remote Sens. 2014, 6, 3170. [Google Scholar] [CrossRef]
- Stoyanova, J.; Georgiev, C.; Neytchev, P.; Kulishev, A. Spatial-Temporal Variability of Land Surface Dry Anomalies in Climatic Aspect: Biogeophysical Insight by Meteosat Observations and SVAT Modeling. Atmosphere 2019, 10, 636. [Google Scholar] [CrossRef]
- TERRA. MODIS. Available online: https://terra.nasa.gov/about/terra-instruments/modis (accessed on 25 September 2024).
- MODIS Collection 5 Deep Blue Aerosol Product. Available online: https://ntrs.nasa.gov/api/citations/20170010422/downloads/20170010422.pdf (accessed on 2 February 2025).
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- SentiWiki. Sentinel-5P. Available online: https://sentiwiki.copernicus.eu/web/sentinel-5p (accessed on 25 September 2024).
- Tampubolon, T.; Yanti, J.; Tampubolon, F.R. Estimating Spatiotemporal Aerosol Index between MODIS and Sentinel 5 in Medan City. J. Phys. Conf. Ser. 2023, 2672, 012007. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Q.; Li, T.; Tan, S.; Zhang, L. Full-coverage spatiotemporal mapping of ambient PM2.5 and PM10 over China from Sentinel-5P and assimilated datasets: Considering the precursors and chemical compositions. Sci. Total Environ. 2021, 793, 148535. [Google Scholar] [CrossRef] [PubMed]
- IEC/TS 60815-1; Selection and Dimensioning of High-Voltage Insulators for Polluted Conditions—Part 1: Definitions, Information and General Principles. International Electrotechnical Commission: Geneva, Switzerland, October 2008.
- EC/TS 60815-4; Selection and Dimensioning of High-Voltage Insulators for Polluted Conditions—Part 4: Definitions, Information and General Principles. International Electrotechnical Commission: Geneva, Switzerland, October 2016.
- INMR. Advanced Pollution Modeling on Insulators: Verification by Direct Measurements & Service Experience. Available online: https://www.inmr.com/advanced-pollution-modeling-on-insulators-verification-by-direct-measurements-service-experience/ (accessed on 18 November 2024).
- Ma, Y.; Pei, Z.; Ma, Y.; Wu, B.; Zhai, S.; Luo, J.; Kong, P. Mapping of Pollution Distribution for Electric Power System Based on Satellite Remote Sensing. Environ. Sci. 2022, 10, 938806. [Google Scholar] [CrossRef]
- Chisholm, W.A. Using Satellite Maps of Pollution Flux for Improved Insulator Selection and Operation; INMR World Congress: Barcelona, Spain, 2017. [Google Scholar]
- Chisholm, W.A. Dust and Sea Salt Pollution Mapping: Satellite Versus Ground Truth Results; INMR World Congress: Tucson, AZ, USA, 2024. [Google Scholar]
- Van Wagner, C.E.; Pickett, T.L. Equations and FORTRAN program for the 3 Forest Fire Weather Index System; Canadian Forest Service: Ottawa, ON, Canada, 1985. [Google Scholar]
- CIGRE WG B2.12; Guide for the Selection of Weather Parameters for Bare Overhead Conductor Ratings. CIGRE: Paris, France, 2006.
- Copernicus Data Space Service. Available online: https://dataspace.copernicus.eu/ (accessed on 19 November 2024).
- S2 Mission. Available online: https://sentiwiki.copernicus.eu/web/s2-mission (accessed on 16 November 2024).
- Stein Zweers, D.C. TROPOMI ATBD of the UV Aerosol Index; Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment: Utrecht, The Netherlands, 2022. [Google Scholar]
- Kocman, S.; Debaecker, V.; Bas, S.; Saunier, S.; Garcia, K.; Just, D. Investigations on the Global Image Datasets for the Absolute Geometric Quality Assessment of MSG SEVIRI imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 1339–1346. [Google Scholar] [CrossRef]
- European Forest Fire Information System. Available online: https://forest-fire.emergency.copernicus.eu/ (accessed on 23 September 2024).
- Kim, Y.; Jeong, M.-H.; Youm, M.; Kim, J.; Kim, J. Recovery of Forest Vegetation in a Burnt Area in the Republic of Korea: A Perspective Based on Sentinel-2 Data. Appl. Sci. 2021, 11, 2570. [Google Scholar] [CrossRef]
- Božiček, A.; Đurović, M.; Filipović-Grčić, B.; Stipetić, N.; Franc, B. Impact of Lightning-Induced Wildfires on Power System Based on Satellite Data and Climatological Projections. In Proceedings of the New Energy and Future Energy Systems Conference, Matsue, Japan, 21–24 November 2023. [Google Scholar] [CrossRef]
- Palumbo, I.; Gregoire, J.-M.; Simonetti, D.; Punga, M. Spatio-temporal distribution of fire activity in protected areas of Sub-Saharan Africa derived from MODIS data. Procedia Environ. Sci. 2021, 7, 26–31. [Google Scholar] [CrossRef]
- Pandas. Available online: https://pandas.pydata.org/ (accessed on 19 November 2024).
- GeoPandas. Available online: https://geopandas.org/en/stable/ (accessed on 19 November 2024).
- NumPy. Available online: https://numpy.org/ (accessed on 19 November 2024).
- SciPy. Available online: https://scipy.org/ (accessed on 19 November 2024).
- QGIS. Available online: https://www.qgis.org/ (accessed on 19 November 2024).
- Cartopy. Available online: https://scitools.org.uk/cartopy/docs/latest/ (accessed on 19 November 2024).
- Matplotlib. Available online: https://matplotlib.org/ (accessed on 2 February 2025).
- Zaninović, K.; Gajić-Čapka, M.; Perčec Tadić, M.; Vučetić, M.; Milković, J.; Bajić, A.; Cindrić, K.; Cvitan, L.; Katušin, Z.; Kaučić, D.; et al. Climate atlas of Croatia 1961–1990, 1971–2000. In Proceedings of the 9th EMS Annual Meeting, Toulouse, France, 28 September–2 October 2009. [Google Scholar]
- Copernicus Browser. Available online: https://browser.dataspace.copernicus.eu/ (accessed on 19 September 2024).
- EUMETSAT User Portal. Available online: https://view.eumetsat.int/productviewer?v=default (accessed on 19 September 2024).
- SEVIRI Dust RGB Quick Guide. Available online: https://resources.eumetrain.org/rgb_quick_guides/quick_guides/DustRGB.pdf (accessed on 30 September 2024).
- Kramer, P.; Kvassay, M.; Mojžiš, J.; Kenyeres, M.; Očkay, M.; Hluchý, L.; Pavlov, L.; Skurčák, L. Using Satellite Imagery to Improve Local Pollution Models for High-Voltage Transmission Lines and Insulators. Future Internet 2022, 14, 99. [Google Scholar] [CrossRef]
- Volpov, E.; Linder, R.; Kishcha, P. Development of Outdoor Insulation Pollution Maps for IECo Power Grid; CIGRE: Paris, France, 2018. [Google Scholar]
- Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17. [Google Scholar] [CrossRef]
- Chiang, S.-H.; Chiang, S.-H.; Ulloa, N.I. Mapping and Tracking Forest Burnt Areas in the Indio Maiz Biological Reserve Using Sentinel-3 SLSTR and VIIRS-DNB Imagery. Sensors 2019, 19, 5423. [Google Scholar] [CrossRef]
- MTG (Meteosat Third Generation). Available online: https://www.eoportal.org/satellite-missions/meteosat-third-generation#irs-infrared-sounder (accessed on 25 September 2024).
Class | Very Low | Low | Moderate | High | Very High | Extreme |
---|---|---|---|---|---|---|
Value | ≤−5 | <−5, 0] | <0, 10] | <10, 15] | <15, 20] | 20< |
Satellite Mission | Sentinel 2 MSI | Sentinel 3 LST | Sentinel 3 FRP | Sentinel 5p AI/LH | |
---|---|---|---|---|---|
Operation Duration | |||||
Hourly | − | − | − | − | |
Intra-day | − | + | + | + | |
Day-ahead | − | + | + | + | |
Weekly | + | − | − | − | |
Monthly and seasonal | + | − | − | − | |
Long term | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Božiček, A.; Filipović-Grčić, B.; Franc, B.; Škrlec, D.; Tomašević, F. Potentials and Limitations of Using Sentinel Data for Power System Operation and Control: Case Study of Protection Against Forest Fires and Aerosol Contamination. Appl. Sci. 2025, 15, 1533. https://doi.org/10.3390/app15031533
Božiček A, Filipović-Grčić B, Franc B, Škrlec D, Tomašević F. Potentials and Limitations of Using Sentinel Data for Power System Operation and Control: Case Study of Protection Against Forest Fires and Aerosol Contamination. Applied Sciences. 2025; 15(3):1533. https://doi.org/10.3390/app15031533
Chicago/Turabian StyleBožiček, Amalija, Božidar Filipović-Grčić, Bojan Franc, Davor Škrlec, and Frano Tomašević. 2025. "Potentials and Limitations of Using Sentinel Data for Power System Operation and Control: Case Study of Protection Against Forest Fires and Aerosol Contamination" Applied Sciences 15, no. 3: 1533. https://doi.org/10.3390/app15031533
APA StyleBožiček, A., Filipović-Grčić, B., Franc, B., Škrlec, D., & Tomašević, F. (2025). Potentials and Limitations of Using Sentinel Data for Power System Operation and Control: Case Study of Protection Against Forest Fires and Aerosol Contamination. Applied Sciences, 15(3), 1533. https://doi.org/10.3390/app15031533