A Combined Dynamic–Kinematic Extended Kalman Filter for Estimating Vehicle Sideslip Angle
Abstract
:1. Introduction
2. Combined Extended Kalman Filter
2.1. Dynamic Model
2.2. Kinematic Model
2.3. Combined Dynamic–Kinematic EKF
3. Experimental Setup
- Kistler Correvit S-motion. It is an optical sensor for measuring the overall vehicle velocity V and the sideslip angle . It is herein used to provide a reliable ground-truth comparison.
- dSPACE MicroAutoBox II. It serves as a signal logger, ensuring the synchronization of all recorded signals. Signals logged from the vehicle CAN include accelerations , , yaw rate r, wheel velocities and the steering angle, . Additionally, the dSPACE MicroAutoBox is a powerful real-time system with a high-performance multi-core processor, adept at handling complex control tasks with low latency, making it an excellent candidate for an ECU validation platform.
3.1. Signal Pre-Processing
3.2. Experimental Lateral Characteristics of Front and Rear Axles
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bertipaglia, A.; de Mol, D.; Alirezaei, M.; Happee, R.; Shyrokau, B. Model-Based vs Data-Driven Estimation of Vehicle Sideslip Angle and Benefits of Tyre Force Measurements. arXiv 2022, arXiv:2206.15119. [Google Scholar]
- Melzi, S.; Sabbioni, E. On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results. Mech. Syst. Signal Process. 2011, 25, 2005–2019. [Google Scholar] [CrossRef]
- Du, X.; Sun, H.; Qian, K.; Li, Y.; Lu, L. A prediction model for vehicle sideslip angle based on neural network. In Proceedings of the 2010 2nd IEEE International Conference on Information and Financial Engineering, Chongqing, China, 17–19 September 2010; IEEE: New York, NY, USA, 2010; pp. 451–455. [Google Scholar]
- Gurney, K. An Introduction to Neural Networks; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Li, J.; Zhang, J. Vehicle sideslip angle estimation based on hybrid Kalman filter. Math. Probl. Eng. 2016, 2016, 3269142. [Google Scholar] [CrossRef]
- Ungoren, A.Y.; Peng, H.; Tseng, H. A study on lateral speed estimation methods. Int. J. Veh. Auton. Syst. 2004, 2, 126–144. [Google Scholar] [CrossRef]
- Chen, B.C.; Hsieh, F.C. Sideslip angle estimation using extended Kalman filter. Veh. Syst. Dyn. 2008, 46, 353–364. [Google Scholar] [CrossRef]
- Chindamo, D.; Lenzo, B.; Gadola, M. On the vehicle sideslip angle estimation: A literature review of methods, models, and innovations. Appl. Sci. 2018, 8, 355. [Google Scholar] [CrossRef]
- van Aalst, S.; Naets, F.; Boulkroune, B.; De Nijs, W.; Desmet, W. An adaptive vehicle sideslip estimator for reliable estimation in low and high excitation driving. IFAC-PapersOnLine 2018, 51, 243–248. [Google Scholar] [CrossRef]
- Naets, F.; van Aalst, S.; Boulkroune, B.; El Ghouti, N.; Desmet, W. Design and experimental validation of a stable two-stage estimator for automotive sideslip angle and tire parameters. IEEE Trans. Veh. Technol. 2017, 66, 9727–9742. [Google Scholar] [CrossRef]
- Carnier, S.; Corno, M.; Savaresi, S.M. Hybrid Kinematic-Dynamic Sideslip and Friction Estimation. J. Dyn. Syst. Meas. Control. 2023, 145, 051004. [Google Scholar] [CrossRef]
- Villano, E.; Lenzo, B.; Sakhnevych, A. Cross-combined UKF for vehicle sideslip angle estimation with a modified Dugoff tire model: Design and experimental results. Meccanica 2021, 56, 2653–2668. [Google Scholar] [CrossRef]
- Ahangarnejad, A.H.; Başlamışlı, S.Ç. Adap-tyre: DEKF filtering for vehicle state estimation based on tyre parameter adaptation. Int. J. Veh. Des. 2016, 71, 52–74. [Google Scholar] [CrossRef]
- Antonov, S.; Fehn, A.; Kugi, A. Unscented Kalman filter for vehicle state estimation. Veh. Syst. Dyn. 2011, 49, 1497–1520. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J. Estimation of vehicle speed and tire-road adhesion coefficient by adaptive unscented Kalman filter. J. Xi’an Jiaotong Univ. 2016, 50, 68–75. [Google Scholar]
- Ren, H.; Chen, S.; Liu, G.; Zheng, K. Vehicle state information estimation with the unscented Kalman filter. Adv. Mech. Eng. 2014, 6, 589397. [Google Scholar] [CrossRef]
- Righetti, G.; Binetti, E.; de Castro, R.P.; Lot, R.; Massaro, M.; Lenzo, B. On the Investigation of Car Steady-State Cornering Equilibria and Drifting; Technical Report, SAE Technical Paper, Detroit; SAE International: Warrendale, PA, USA, 2024. [Google Scholar]
- Selmanaj, D.; Corno, M.; Panzani, G.; Savaresi, S.M. Vehicle sideslip estimation: A kinematic based approach. Control. Eng. Pract. 2017, 67, 1–12. [Google Scholar] [CrossRef]
- Hautus, M.L. Controllability and observability conditions of linear autonomous systems. Ned. Akad. Wet. 1969, 72, 443–448. [Google Scholar]
- Mosconi, L.; Farroni, F.; Sakhnevych, A.; Timpone, F.; Gerbino, F.S. Adaptive vehicle dynamics state estimator for onboard automotive applications and performance analysis. Veh. Syst. Dyn. 2023, 61, 3244–3268. [Google Scholar] [CrossRef]
- ISO 3888-2: 2011; Passenger Cars—Test Track for a Severe Lane-Change Manoeuvre—Part 2: Obstacle Avoidance. International Organization for Standardization (ISO): Geneva, Switzerland, 2011.
- GB/T 6323-2014; Controllability and Stability Test Procedure for Automobile [S]. China Standard Press: Beijing, China, 2014.
- Selmanaj, D.; Corno, M.; Panzani, G.; Savaresi, S.M. Robust vehicle sideslip estimation based on kinematic considerations. IFAC-PapersOnLine 2017, 50, 14855–14860. [Google Scholar] [CrossRef]
- Guiggiani, M. The Science of Vehicle Dynamics; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Madhusudhanan, A.K.; Corno, M.; Holweg, E. Vehicle sideslip estimator using load sensing bearings. Control. Eng. Pract. 2016, 54, 46–57. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Mass | m | 1525 kg |
Yaw moment of inertia | 2130 kg m2 | |
COG to front axle distance | a | 1.315 m |
COG to rear axle distance | b | 1.505 m |
Front track | 1.557 m | |
Rear track | 1.625 m | |
Front cornering stiffness | 115 kN/rad | |
Rear cornering stiffness | 165 kN/rad | |
Tyre-road friction coefficient | 0.9 |
Strategy | DLC | Slalom |
---|---|---|
D-EKF | 0.40 deg | 0.33 deg |
K-KF | 0.60 deg | 0.33 deg |
DK-EKF | 0.27 deg | 0.22 deg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Righetti, G.; Lenzo, B. A Combined Dynamic–Kinematic Extended Kalman Filter for Estimating Vehicle Sideslip Angle. Appl. Sci. 2025, 15, 1365. https://doi.org/10.3390/app15031365
Righetti G, Lenzo B. A Combined Dynamic–Kinematic Extended Kalman Filter for Estimating Vehicle Sideslip Angle. Applied Sciences. 2025; 15(3):1365. https://doi.org/10.3390/app15031365
Chicago/Turabian StyleRighetti, Giovanni, and Basilio Lenzo. 2025. "A Combined Dynamic–Kinematic Extended Kalman Filter for Estimating Vehicle Sideslip Angle" Applied Sciences 15, no. 3: 1365. https://doi.org/10.3390/app15031365
APA StyleRighetti, G., & Lenzo, B. (2025). A Combined Dynamic–Kinematic Extended Kalman Filter for Estimating Vehicle Sideslip Angle. Applied Sciences, 15(3), 1365. https://doi.org/10.3390/app15031365