A Novel Hybrid Methodology Based on Transfer Learning, Machine Learning, and ReliefF for Chickpea Seed Variety Classification
Abstract
:1. Introduction
- A novel image dataset “TRCS_8_SET” consisting of eight different certified chickpea seeds grown in Türkiye;
- A novel hybrid methodology that integrates pre-trained deep learning models for feature extraction, feature selection, and classical machine learning methods for classification to achieve superior performance in chickpea seed variety classification;
- Chickpea seed variety classification with a success rate of 94% and above to increase productivity in agricultural production and contribute to seed purity.
2. Related Work
3. Methodology
3.1. Data Collection and Preprocessing
3.2. Transfer Learning and Feature Extraction
3.3. ReliefF Feature Selection
- Inputs: Dataset with instances and features, k.
- Output: Weight features.
- Initialize weights.
- Randomly select a subset of instances.
- Find k nearest hits and misses for each selected instance.
- Update the weights of features using the differences between instances and feature values.
- Normalize the weights to fall within a certain range.
3.4. Classification Using Machine Learning
3.5. Performance Evaluation
4. Results and Discussion
4.1. Experimental Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pourdarbani, R.; Sabzi, S.; García-Amicis, V.M.; García-Mateos, G.; Molina-Martínez, J.M.; Ruiz-Canales, A. Automatic classification of chickpea varieties using computer vision techniques. Agronomy 2019, 9, 672. [Google Scholar] [CrossRef]
- Phiri, C.; Njira, K.; Chitedze, G. An insight of chickpea production potential, utilization and their challenges among smallholder farmers in Malawi—A review. J. Agric. Food Res. 2023, 14, 100713. [Google Scholar] [CrossRef]
- Merga, B.; Haji, J. Economic importance of chickpea: Production, value, and world trade. Cogent Food Agric. 2019, 5, 1615718. [Google Scholar] [CrossRef]
- Dolcel, H.; Durgun, M.; Gökrem, L. IoT Tabanlı ve Makine Öğrenmesine Dayalı Seçici Sulama Sistemi. Avrupa Bilim ve Teknoloji Dergisi 2021, 28, 395–401. [Google Scholar] [CrossRef]
- Özcan, Y.A.; Sarraj, S.; İstanbullu, A. Hassas Tarım Uygulaması Tasarımı ve Geliştirilmesi. J. Sci. Technol. Eng. Res. 2020, 1, 33–39. [Google Scholar] [CrossRef]
- Çakmak, Y.S.; Boyacı, İ.H. Quality evaluation of chickpeas using an artificial neural network integrated computer vision system. Int. J. Food Sci. Technol. 2011, 46, 194–200. [Google Scholar] [CrossRef]
- Güzel, M. Tokat bölgesi buğday üretiminde bazı yabancı otların derin öğrenme yöntemi ile tespit edilmesi. Ph.D. Thesis, Tokat Gaziosmanpaşa University, Tokat, Türkiye, 2022. [Google Scholar]
- de Medeiros, A.D.; Capobiango, N.P.; da Silva, J.M.; da Silva, L.J.; da Silva, C.B.; dos Santos Dias, D.C.F. Interactive machine learning for soybean seed and seedling quality classification. Sci. Rep. 2020, 10, 11267. [Google Scholar] [CrossRef]
- Taştan, M. Nesnelerin İnterneti Tabanlı Akıllı Sulama ve Uzaktan İzleme Sistemi. Avrupa Bilim ve Teknoloji Dergisi 2019, 15, 229–236. [Google Scholar] [CrossRef]
- Adebiyi, M.O.; Ogundokun, R.O.; Abokhai, A.A. Machine learning–based predictive farmland optimization and crop monitoring system. Scientifica 2020, 2020, 9428281. [Google Scholar] [CrossRef] [PubMed]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Mhatre, V.; Vispute, V.; Mishra, N.; Khandagle, K. IoT based health monitoring system for dairy cows. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020; pp. 820–825. [Google Scholar] [CrossRef]
- Suresh, A.; Sarath, T. An IoT solution for cattle health monitoring. IOP Conf. Ser. Mater. Sci. Eng. 2019, 561, 012106. [Google Scholar] [CrossRef]
- Ahmed, G.; Malick, R.A.S.; Akhunzada, A.; Zahid, S.; Sagri, M.R.; Gani, A. An approach towards IoT-based predictive service for early detection of diseases in poultry chickens. Sustainability 2021, 13, 13396. [Google Scholar] [CrossRef]
- Chatterjee, P.S.; Ray, N.K.; Mohanty, S.P. LiveCare: An IoT-based healthcare framework for livestock in smart agriculture. IEEE Trans. Consum. Electron. 2021, 67, 257–265. [Google Scholar] [CrossRef]
- Dinata, M.I.; Nugroho, S.M.S.; Rachmadi, R.F. Classification of strawberry plant diseases with leaf image using CNN. In Proceedings of the 2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST), Yogyakarta, Indonesia, 29–30 June 2021; pp. 68–72. [Google Scholar] [CrossRef]
- Özgüven, M.M.; Altaş, Z.; Güven, D.; Çam, A. Tarımda Drone Kullanımı ve Geleceği. Ordu Üniversitesi Bilim ve Teknoloji Dergisi 2022, 12, 64–83. [Google Scholar] [CrossRef]
- Esen, F.A.; Onan, A. Derin Öğrenme Yöntemleri ile Bitki Yaprakları Üzerindeki Hastalıkların Sınıflandırılması. Avrupa Bilim ve Teknoloji Dergisi 2022, 40, 151–155. [Google Scholar] [CrossRef]
- Islam, N.; Altamimi, M.; Haseeb, K.; Siraj, M. Secure and sustainable predictive framework for IoT-based multimedia services using machine learning. Sustainability 2021, 13, 13128. [Google Scholar] [CrossRef]
- Türkoğlu, M.; Hanbay, K.; Sivrikaya, I.S.; Hanbay. Derin evrişimsel sinir ağı kullanılarak kayısı hastalıklarının sınıflandırılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 2020, 9, 334–345. [Google Scholar] [CrossRef]
- Horng, G.J.; Liu, M.X.; Chen, C.C. The Smart Image Recognition Mechanism for Crop Harvesting System in Intelligent Agriculture. IEEE Sens. J. 2020, 20, 2766–2781. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, R.; Xing, Z.; Guo, Q.; Zeng, C. Improved Faster Region-Based Convolutional Neural Networks (R-CNN) Model Based on Split Attention for the Detection of Safflower Filaments in Natural Environments. Agronomy 2023, 13, 2596. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Xu, P.; Shi, R.; Xing, Z.; Li, J. WED-YOLO: A Detection Model for Safflower Under Complex Unstructured Environment. Agriculture 2025, 15, 205. [Google Scholar] [CrossRef]
- Koppad, D.; Suma, K.; Nagarajappa, N. Automated Seed Classification Using State-of-the-Art Techniques. SN Comput. Sci. 2024, 5, 511. [Google Scholar] [CrossRef]
- Elmas, B. Evrişimli Sinir Ağları ile Mantar Görüntülerinden Mantar Türlerinin Transfer Öğrenme Yöntemiyle Tanımlanması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2021, 25, 74–88. [Google Scholar] [CrossRef]
- Adige, S.; Kurban, R.; Durmuş, A.; Karaköse, E. Görüntü işleme tekniklerinden faydalanarak elma çeşitlerinin türlerine göre sınıflandırılması. Avrupa Bilim ve Teknoloji Dergisi 2022, 37, 131–138. [Google Scholar] [CrossRef]
- Jaithavil, D.; Triamlumlerd, S.; Pracha, M. Paddy seed variety classification using transfer learning based on deep learning. In Proceedings of the 2022 International Electrical Engineering Congress (iEECON), Khon Kaen, Thailand, 9–11 March 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Aktaş, H. Antep fıstığının derin öğrenme ile dış kabuk rengine göre sınıflandırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 2022, 11, 461–466. [Google Scholar] [CrossRef]
- Xu, P.; Yang, R.; Zeng, T.; Zhang, J.; Zhang, Y.; Tan, Q. Varietal classification of maize seeds using computer vision and machine learning techniques. J. Food Process Eng. 2021, 44, e13846. [Google Scholar] [CrossRef]
- Yasar, A. Benchmarking analysis of CNN models for bread wheat varieties. Eur. Food Res. Technol. 2023, 249, 749–758. [Google Scholar] [CrossRef]
- Taspinar, Y.S.; Dogan, M.; Cinar, I.; Kursun, R.; Ozkan, I.A.; Koklu, M. Computer vision classification of dry beans (Phaseolus vulgaris L.) based on deep transfer learning techniques. Eur. Food Res. Technol. 2022, 248, 2707–2725. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Nasiri, A.; Fanourakis, D.; Fatahi, S.; Omid, M.; Nikoloudakis, N. Automated in situ seed variety identification via deep learning: A case study in chickpea. Plants 2021, 10, 1406. [Google Scholar] [CrossRef]
- Golcuk, A.; Yasar, A.; Saritas, M.M.; Erharman, A. Classification of Cicer arietinum varieties using MobileNetV2 and LSTM. Eur. Food Res. Technol. 2023, 249, 1343–1350. [Google Scholar] [CrossRef]
- Saha, D.; Mangukia, M.P.; Manickavasagan, A. Real-time deployment of MobileNetV3 model in edge computing devices using RGB color images for varietal classification of chickpea. Appl. Sci. 2023, 13, 7804. [Google Scholar] [CrossRef]
- Ghamari, S. Classification of chickpea seeds using supervised and unsupervised artificial neural networks. Afr. J. Agric. Res. 2012, 7, 3193–3201. [Google Scholar] [CrossRef]
- Saha, D.; Manickavasagan, A. Chickpea varietal classification using deep convolutional neural networks with transfer learning. J. Food Process Eng. 2022, 45, e13975. [Google Scholar] [CrossRef]
- Kılıç, İ.; Yalçın, N. Classification of Chickpea Varieties Based on Convolutional Neural Networks. In Proceedings of the 2023 Innovations in Intelligent Systems and Applications Conference (ASYU), Sivas, Türkiye, 11–13 October 2023. [Google Scholar] [CrossRef]
- Kılıç, İ.; Yalçın, N. Transfer Öğrenme Teknikleri Kullanarak Nohut Çeşidi Sınıflandırma. Karaelmas Fen ve Mühendislik Dergisi 2024, 14, 48–58. [Google Scholar] [CrossRef]
- Koul, B.; Sharma, K.; Sehgal, V.; Yadav, D.; Mishra, M.; Bharadwaj, C. Chickpea (Cicer arietinum L.) biology and biotechnology: From domestication to biofortification and biopharming. Plants 2022, 11, 2926. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Chauhan, Y.; Dalal, R.; Schmidt, S. Chickpea. In The Beans and the Peas; Pratap, A., Gupta, S., Eds.; Woodhead Publishing: Cambridge, UK, 2021; pp. 173–215. [Google Scholar] [CrossRef]
- Jahan, T.A.; Kalve, S.; Belak, Z.; Eskiw, C.; Tar’an, B. Iron accumulation and partitioning in hydroponically grown wild and cultivated chickpea (Cicer arietinum L). Front. Plant Sci. 2023, 14, 1092493. [Google Scholar] [CrossRef] [PubMed]
- Kılıç, İ. TRCS_8_SET. 2024. Available online: https://github.com/ibrahimkilic/TRCS_8_SET/ (accessed on 31 December 2024).
- Kılıç, İ. Multiple Classification of Chickpea Seed Varieties with a Hybrid Approach Based on Transfer Learning, Feature Selection, and Machine Learning Methods. Master’s Thesis, Graduate School of Natural and Applied Sciences, Erciyes University, Kayseri, Türkiye, 2024. [Google Scholar]
- Cai, W.; Li, M.; Jin, G.; Liu, Q.; Lu, C. Comparison of Residual Network and Other Classical Models for Classification of Interlayer Distresses in Pavement. Appl. Sci. 2024, 14, 6568. [Google Scholar] [CrossRef]
- Rosso, M.M.; Marasco, G.; Aiello, S.; Aloisio, A.; Chiaia, B.; Marano, G.C. Convolutional networks and transformers for intelligent road tunnel investigations. Comput. Struct. 2023, 275, 106918. [Google Scholar] [CrossRef]
- Ram, S.; Vinoth, S.; Gopalakrishnan, R.N.; Balakumar, A.A.; Kalinathan, L.; Velankanni, T.A.J. Leveraging Diverse CNN Architectures for Medical Image Captioning (ImageCLEF) 2024. In Proceedings of the (CLEF2024) Working Notes, (CEUR) Workshop Proceedings, Grenoble, France, 9–12 September 2024. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Gu, W.; Bai, S.; Kong, L. A review on 2D instance segmentation based on deep neural networks. Image Vis. Comput. 2022, 120, 104401. [Google Scholar] [CrossRef]
- Behera, S.K.; Rath, A.K.; Sethy, P.K. Fruit recognition using support vector machine based on deep features. Karbala Int. J. Mod. Sci. 2020, 6, 16. [Google Scholar] [CrossRef]
- Salim, F.; Saeed, F.; Basurra, S.; Qasem, S.N.; Al-Hadhrami, T. DenseNet-201 and Xception Pre-Trained Deep Learning Models for Fruit Recognition. Electronics 2023, 12, 3132. [Google Scholar] [CrossRef]
- Sabanci, K.; Aslan, M.F.; Ropelewska, E.; Unlersen, M.F. A convolutional neural network-based comparative study for pepper seed classification: Analysis of selected deep features with support vector machine. J. Food Process Eng. 2022, 45, e13955. [Google Scholar] [CrossRef]
- Saini, A.; Guleria, K.; Sharma, S. A Deep Learning-based Fine-tuned ResNet50 Model for Soybean Seeds Multiclass Classification. In Proceedings of the Global Conference on Information Technologies and Communications (GCITC), Bangalore, India, 1–3 December 2023; pp. 1–6. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Yilmaz, F.; Kose, O.; Demir, A. Comparison of two different deep learning architectures on breast cancer. In Proceedings of the 2019 Medical Technologies Congress (TIPTEKNO), İzmir, Türkiye, 3–5 October 2019; pp. 1–4. [Google Scholar]
- Akhtar, M.J.; Mahum, R.; Butt, F.S.; Amin, R.; El-Sherbeeny, A.M.; Lee, S.M.; Shaikh, S. A Robust Framework for Object Detection in a Traffic Surveillance System. Electronics 2022, 11, 3425. [Google Scholar] [CrossRef]
- Dash, A.; Sethy, P.K.; Behera, S.K. Maize disease identification based on optimized support vector machine using deep feature of DenseNet201. J. Agric. Food Res. 2023, 14, 100824. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; Proceedings of Machine Learning Research. Volume 97, pp. 6105–6114. [Google Scholar]
- Ozsari, S.; Kumru, E.; Ekinci, F.; Akata, I.; Guzel, M.S.; Acici, K.; Ozcan, E.; Asuroglu, T. Deep Learning-Based Classification of Macrofungi: Comparative Analysis of Advanced Models for Accurate Fungi Identification. Sensors 2024, 24, 7189. [Google Scholar] [CrossRef]
- Munirathinam, D.R.; Ranganadhan, M. A new improved filter-based feature selection model for high-dimensional data. J. Supercomput. 2020, 76, 5745–5762. [Google Scholar] [CrossRef]
- Kononenko, I.; Šimec, E.; Robnik-Šikonja, M. Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl. Intell. 1997, 7, 39–55. [Google Scholar] [CrossRef]
- Peker, M.; Ballı, S.; Sağbaş, E.A. Predicting human actions using a hybrid of ReliefF feature selection and kernel-based extreme learning machine. In Cognitive Analytics: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2020; pp. 307–325. [Google Scholar]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Blanco, V.; Japón, A.; Puerto, J. Multiclass optimal classification trees with svm-splits. Mach. Learn. 2023, 112, 4905–4928. [Google Scholar] [CrossRef]
- Lewis, D.D. Naive (Bayes) at forty: The independence assumption in information retrieval. In Proceedings of the European Conference on Machine Learning, Chemnitz, Germany, 21–23 April 1998; Springer: Berlin/Heidelberg, Germany, 1998; pp. 4–15. [Google Scholar]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Zhao, H.; Lai, Z.; Leung, H.; Zhang, X. Feature Learning and Understanding; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Yalçın, N.; Çakır, S.; Ünaldı, S. Attack Detection Using Artificial Intelligence Methods for SCADA Security. IEEE Internet Things J. 2024, 11, 39550–39559. [Google Scholar] [CrossRef]
- Giraldi, G.A.; Rodrigues, P.S.; Kitani, E.C.; Sato, J.R.; Thomaz, C.E. Statistical learning approaches for discriminant features selection. J. Braz. Comput. Soc. 2008, 14, 7–22. [Google Scholar] [CrossRef]
- Kini, A.S.; Prema, K.; Pai, S.N. Intelligent classification model for Indian chickpea. In Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 1847–1852. [Google Scholar] [CrossRef]
- Pourdarbani, R.; Sabzi, S.; Kalantari, D.; Hernández-Hernández, J.L.; Arribas, J.I. A Computer Vision System Based on Majority-Voting Ensemble Neural Network for the Automatic Classification of Three Chickpea Varieties. Foods 2020, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tao, H.; Zhou, H.; Zhou, P.; Deng, Y. Hierarchical and progressive learning with key point sensitive loss for sonar image classification. Multimed. Syst. 2024, 30, 380. [Google Scholar] [CrossRef]
Reference | Chickpea Varieties | Dataset | Total | Methods | Accuracy |
---|---|---|---|---|---|
[1] | Adel, Arman, | Balanced | 1020 | ANN+PSO | 99.35 |
Azad, Bevanij, | ANN | 98.04 | |||
Hashem | |||||
[32] | Adel, Arman, | Balanced | 400 | VGG16 | 94.21 |
Azad, Saral | |||||
[33] | Atabey, Aydoğan, | Unbalanced | 5192 | MobileNetV2 | 92.3 |
Bahadır, Goktürk, | MobileNetV2+LSTM | 92.7 | |||
Karlı, Tunç | |||||
[34] | Alma, Orion, | Balanced | 2200 | NasNet-A | 96.8 |
Consul, Cory | MobileNetV2 | 99.9 | |||
EfficientNet-B0 | 98.1 | ||||
[35] | Jam, ILC, | Balanced | 400 | ANN | 79 |
Piroz, Kaka | |||||
[36] | Alma, Leader, | Balanced | 2400 | ResNet-50 | 100 |
Frontier, Orion, | MobileNetV2 | 100 | |||
Palmer, Luna, | GoogleNet | 99 | |||
Consul, Cory | |||||
[37] | Nihatbey, Çiftçi, | Balanced | 1500 | CNN-1 | 94 |
Sarı98, Aslanbey, | CNN-2 | 98 | |||
Aksu | |||||
[38] | Nihatbey, Çiftçi, | Balanced | 1500 | VGG19 | 97 |
Sarı98, Aslanbey, | VGG16 | 96.7 | |||
Aksu | |||||
This | Nihatbey, Çiftçi, | Balanced | 7200 | TL+SVM | 94.4 |
study | Sarı98, İnci, | TL+LDA | 94 | ||
Hisar, Aslanbey, | |||||
Akça, Aksu |
Method | Parameter(s) |
---|---|
KNN | Distance: Euclidean |
Distance Weight: SquaredInverse | |
Number of Neighbors: 10 | |
Standardize: true | |
SVM | Kernel Function: polynomial |
Polynomial Order: 2 | |
Kernel Scale: auto | |
Box Constraint: 1 | |
Coding: onevsone | |
Standardize: true | |
NB | Distribution Names: kernel |
LDA | Gamma: 0 |
Discrim Type: Linear | |
Fill Coeffs: off | |
ReliefF | k = 10 |
Accuracy | Weighted | Weighted | Weighted | |||||
---|---|---|---|---|---|---|---|---|
F1-Score | Precision | Recall | ||||||
Model | Training | Test | Training | Test | Training | Test | Training | Test |
TL+KNN | 0.9007 | 0.8951 | 0.9012 | 0.8950 | 0.9035 | 0.8959 | 0.9007 | 0.8951 |
TL+SVM | 0.9356 | 0.9438 | 0.9360 | 0.9438 | 0.9365 | 0.9442 | 0.9356 | 0.9438 |
TL+NB | 0.8453 | 0.8653 | 0.8445 | 0.8644 | 0.8449 | 0.8651 | 0.8453 | 0.8653 |
TL+LDA | 0.9476 | 0.9403 | 0.9480 | 0.9407 | 0.9488 | 0.9415 | 0.9476 | 0.9403 |
No. | Class | F1-score | Precision | Recall | AUC |
---|---|---|---|---|---|
1 | Nihatbey | 0.826 | 0.809 | 0.844 | 0.9854 |
2 | Çiftçi | 0.857 | 0.848 | 0.867 | 0.9903 |
3 | Sarı98 | 0.924 | 0.942 | 0.906 | 0.9936 |
4 | İnci | 0.986 | 0.983 | 0.989 | 0.9974 |
5 | Hisar | 0.997 | 1.000 | 0.994 | 0.9997 |
6 | Aslanbey | 0.983 | 0.978 | 0.989 | 0.9986 |
7 | Akça | 0.983 | 0.989 | 0.978 | 0.9975 |
8 | Aksu | 0.969 | 0.983 | 0.956 | 0.9965 |
No. | Class | F1-score | Precision | Recall | AUC |
---|---|---|---|---|---|
1 | Nihatbey | 0.847 | 0.833 | 0.861 | 0.9859 |
2 | Çiftçi | 0.867 | 0.884 | 0.850 | 0.9907 |
3 | Sarı98 | 0.943 | 0.925 | 0.961 | 0.9964 |
4 | İnci | 0.981 | 0.978 | 0.983 | 0.9997 |
5 | Hisar | 0.997 | 1.000 | 0.994 | 1.0000 |
6 | Aslanbey | 0.966 | 0.977 | 0.956 | 0.9990 |
7 | Akça | 0.981 | 0.978 | 0.983 | 0.9998 |
8 | Aksu | 0.969 | 0.977 | 0.961 | 0.9987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kılıç, İ.; Yalçın, N. A Novel Hybrid Methodology Based on Transfer Learning, Machine Learning, and ReliefF for Chickpea Seed Variety Classification. Appl. Sci. 2025, 15, 1334. https://doi.org/10.3390/app15031334
Kılıç İ, Yalçın N. A Novel Hybrid Methodology Based on Transfer Learning, Machine Learning, and ReliefF for Chickpea Seed Variety Classification. Applied Sciences. 2025; 15(3):1334. https://doi.org/10.3390/app15031334
Chicago/Turabian StyleKılıç, İbrahim, and Nesibe Yalçın. 2025. "A Novel Hybrid Methodology Based on Transfer Learning, Machine Learning, and ReliefF for Chickpea Seed Variety Classification" Applied Sciences 15, no. 3: 1334. https://doi.org/10.3390/app15031334
APA StyleKılıç, İ., & Yalçın, N. (2025). A Novel Hybrid Methodology Based on Transfer Learning, Machine Learning, and ReliefF for Chickpea Seed Variety Classification. Applied Sciences, 15(3), 1334. https://doi.org/10.3390/app15031334