A Comparative Study of the Availability of Electric Buses in the Public Transport System
Abstract
:1. Introduction
- Random external factors not attributable to the carrier, e.g., sudden weather conditions, road traffic collisions, and information misunderstandings due to contractors;
- Internal system factors relating to day-to-day operational management;
- Technical factors resulting from the reliability of vehicles.
- Non-damageability of vehicles—resistance to the wear and tear of structural components and operational forcing, which determine the frequency of damage;
- Serviceability—effective maintenance management, the availability of spare parts, and the efficiency of service processes that minimise operational downtime;
- Reliability—the use of vehicle condition monitoring systems to plan maintenance work;
- Operating conditions—the intensity of use and the impact of the operating environment determine the wear and tear dynamics of vehicles and their availability for transport.
- The availability of vehicles for intervention tasks, e.g., police cars, military vehicles, and aircraft;
- The availability of urban public transport vehicles.
2. Research Methodology
2.1. Technical Availability Index for Vehicles
2.2. Method of Statistical Analysis of Results
- The first null hypothesis, H1.0, states that there are no significant differences in technical availability, KG(t), between electric and diesel buses over the observed operating period.
- The second null hypothesis, H2.0, states that there are no significant differences in technical availability, KG(t), between the operating periods of vehicles.
- All observations are randomly selected and independent;
- The dependent variable is measured on a quantitative scale;
- There is equality of observations in the groups—individual categories of the independent variable should be statistically equal;
- The distribution of results in the analysed groups is close to a normal distribution;
- The variances in the groups are homogeneous [29].
3. Experimental Procedure
3.1. Test Facilities and Conditions
3.2. The Results of the Study
Statistics | Diesel | Electric | ||||||
---|---|---|---|---|---|---|---|---|
33 Months | 1st Year | 2nd Year | 3rd Year | 33 Months | 1st Year | 2nd Year | 3rd Year | |
Average | 0.79 | 0.85 | 0.74 | 0.78 | 0.89 | 0.86 | 0.92 | 0.90 |
Median | 0.80 | 0.87 | 0.74 | 0.78 | 0.92 | 0.92 | 0.92 | 0.92 |
Variation | 0.01 | 0.00 | 0.01 | 0.00 | 0.02 | 0.04 | 0.00 | 0.00 |
Std. deviation | 0.08 | 0.06 | 0.07 | 0.05 | 0.12 | 0.19 | 0.04 | 0.04 |
Minimum | 0.58 | 0.71 | 0.58 | 0.71 | 0.28 | 0.28 | 0.85 | 0.83 |
Maximum | 0.90 | 0.90 | 0.83 | 0.86 | 0.99 | 0.99 | 0.98 | 0.94 |
Interquartile range | 0.32 | 0.19 | 0.25 | 0.15 | 0.71 | 0.71 | 0.13 | 0.11 |
Coefficient of variation [%] | 0.14 | 0.08 | 0.10 | 0.08 | 0.09 | 0.14 | 0.06 | 0.07 |
Drive Type/Operating Period | Kolmogorov–Smirnov | Shapiro–Wilk | ||
---|---|---|---|---|
Statistics | Significance p | Statistics | Significance p | |
diesel/33 months | 0.79 | 0.85 | 0.89 | 0.86 |
diesel/1st year | 0.80 | 0.87 | 0.92 | 0.92 |
diesel/2nd year | 0.01 | 0.00 | 0.02 | 0.04 |
diesel/3rd year | 0.08 | 0.06 | 0.12 | 0.19 |
electric/33 months | 0.58 | 0.71 | 0.28 | 0.28 |
electric/1st year | 0.90 | 0.90 | 0.99 | 0.99 |
electric/2nd year | 0.32 | 0.19 | 0.71 | 0.71 |
electric/3rd year | 0.14 | 0.08 | 0.09 | 0.14 |
Operating Period | Variable | Effect | Based on: | Statistics | Degree of Freedom df1 | Degree of Freedom df2 | Significance p |
---|---|---|---|---|---|---|---|
33 months | KG(t) | Drive type | Average | 0.004 | 1 | 64 | 0.952 |
Median | 0.031 | 1 | 64 | 0.860 | |||
Median and adjusted df | 0.031 | 1 | 42.642 | 0.861 | |||
Average cut | 0.013 | 1 | 64 | 0.908 | |||
1st year | Average | 5.457 | 1 | 20 | 0.030 | ||
Median | 2.150 | 1 | 20 | 0.158 | |||
Median and adjusted df | 2.150 | 1 | 18.281 | 0.160 | |||
Average cut | 5.322 | 1 | 20 | 0.032 | |||
2nd year | Average | 2.328 | 1 | 22 | 0.141 | ||
Median | 2.371 | 1 | 22 | 0.138 | |||
Median and adjusted df | 2.371 | 1 | 17.332 | 0.142 | |||
Average cut | 2.537 | 1 | 22 | 0.125 | |||
3rd year | Average | 0.230 | 1 | 16 | 0.638 | ||
Median | 0.276 | 1 | 16 | 0.606 | |||
Median and adjusted df | 0.276 | 1 | 15.456 | 0.607 | |||
Average cut | 0.250 | 1 | 16 | 0.624 |
Drive Type | Variable | Effect | Based on: | Statistics | Degree of Freedom df1 | Degree of Freedom df2 | Significance p |
---|---|---|---|---|---|---|---|
diesel | KG(t) | 1st and 2nd years of operation | Average | 1.667 | 1 | 21 | 0.211 |
Median | 1.628 | 1 | 21 | 0.216 | |||
Median and adjusted df | 1.628 | 1 | 19.403 | 0.217 | |||
Average cut | 1.849 | 1 | 21 | 0.188 | |||
2nd and 3rd years of operation | Average | 0.524 | 1 | 19 | 0.478 | ||
Median | 0.519 | 1 | 19 | 0.480 | |||
Median and adjusted df | 0.519 | 1 | 16.240 | 0.482 | |||
Average cut | 0.589 | 1 | 19 | 0.452 | |||
electric | 1st and 2nd years of operation | Average | 3.575 | 1 | 22 | 0.072 | |
Median | 2.419 | 1 | 22 | 0.134 | |||
Median and adjusted df | 2.419 | 1 | 11.500 | 0.147 | |||
Average cut | 3.027 | 1 | 22 | 0.096 | |||
2nd and 3rd years of operation | Average | 0.193 | 1 | 19 | 0.665 | ||
Median | 0.055 | 1 | 19 | 0.817 | |||
Median and adjusted df | 0.055 | 1 | 17.568 | 0.818 | |||
Average cut | 0.183 | 1 | 19 | 0.674 |
Operating Period | Variable | Effect | Source | Sum of Squares | Degrees of Freedom | Mean Squares | F Ratio 1. | Significance p |
---|---|---|---|---|---|---|---|---|
33 months | KG(t) | Drive type | Between phases | 0.165 | 1 | 0.165 | 16.187 | <0.001 |
Inside phases | 0.652 | 64 | 0.010 | |||||
Total | 0.817 | 65 | ||||||
1st year | Between phases | 0.012 | 1 | 0.012 | 3.814 | 0.065 | ||
Inside phases | 0.064 | 20 | 0.003 | |||||
Total | 0.077 | 21 | ||||||
2nd year | Between phases | 0.187 | 1 | 0.187 | 56.346 | <0.001 | ||
Inside phases | 0.073 | 22 | 0.003 | |||||
Total | 0.260 | 23 | ||||||
3rd year | Between phases | 0.066 | 1 | 0.066 | 29.796 | <0.001 | ||
Inside phases | 0.035 | 16 | 0.002 | |||||
Total | 0.101 | 17 |
Test | Statistics | Degrees of Freedom df1 | Degrees of Freedom df2 | Significance p |
---|---|---|---|---|
Welch | 3.814 | 1 | 16.877 | 0.068 |
Brown–Forsythe | 3.814 | 1 | 16.877 | 0.068 |
4. Discussion of Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daraio, C.; Diana, M.; Di Costa, F.; Leporelli, C.; Matteucci, G.; Nastasi, A. Efficiency and effectiveness in the urban public transport sector: Critical review with directions for future research. Eur. J. Oper. Res. 2016, 248, 1–20. [Google Scholar] [CrossRef]
- Świderski, A. Inżynieria Jakości w Wybranych Obszarach Transportu; Motor Transport Institute: Warsaw, Poland, 2018. [Google Scholar]
- Zwierzchowska, M. Ocena jakości usług komunikacji miejskiej—Dobór zmiennych do badania metodą delficką. Autobusy 2018, 19, 18–21. [Google Scholar]
- Trivedi, S.K.; Bobbio, A. Reliability and Availability Engineering: Modeling, Analysis, and Applications, 1st ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Woropay, M.; Szubartowski, M.; Migawa, K. Model oceny i kształtowania gotowości operacyjnej podsystemu wykonawczego w systemie transportowym. In Wydawnictwo i Zakład Poligrafii Instytutu Technologii i Eksploatacji; Instytut Technologii Eksploatacji: Radom, Poland, 2003. [Google Scholar]
- Jardine, A.K.S. Optimizing Maintenance and Replacement Decisions. In Asset Management Excellence: Optimizing Life—Cycle Decision, 2nd ed.; Campbell, J.D., Jardine, A.K.S., McGlynn, J., Eds.; CRC Press—Taylor and Francis Group: Boca Raton, FL, USA, 2011; pp. 259–300. [Google Scholar]
- Wu, F.; Niknam, S.A.; Kobza, J.E. A cost-effective degradation-based maintenance strategy under imperfect repair. Reliab. Eng. Syst. Saf. 2015, 144, 234–243. [Google Scholar] [CrossRef]
- Laizans, A.; Graurs, I.; Rubenis, A.; Utehin, G. Economic Viability of Electric Public Busses: Regional Perspective. Procedia Eng. 2015, 134, 316–321. [Google Scholar] [CrossRef]
- Raposo, H.; Farinha, J.T.; Ferreira, L.; Galar, D.P. An integrated econometric model for bus replacement and determination of reserve fleet size based on predictive maintenance. Eksploat. Niezawodn. Maint. Reliab. 2017, 19, 358–368. [Google Scholar] [CrossRef]
- Guihaire, V.; Hao, J.K.H. Transit network timetabling and vehicle assignment regulating authorities. Comput. Ind. Eng. 2010, 59, 16–23. [Google Scholar] [CrossRef]
- Kruk, Z.; Kupicz, W. Przykłady kwantyfikacji gotowości operacyjnej środków transportowych użytkowanych akcyjnie. Bezpieczeństwo Tech. Pożarnicza 2014, 2, 85–91. [Google Scholar]
- Selech, J. Prognozowanie Kosztów Obsługiwania Korekcyjnego Pojazdów Transportu Masowego; Wydawnictwo Instytutu Technologii Eksploatacji-PIB: Poznań, Poland; Radom, Poland, 2019. [Google Scholar]
- Staniak, M.; Kotliński, A. Identification the Operational Activities Impact of the Transport Process Effectiveness. Zesz. Nauk. Wyższej Szkoły Humanit. 2016, 17, 323–335. [Google Scholar] [CrossRef]
- Herder, P.M.; van Luijk, J.A.; Bruijnooge, J. Industrial application of RAM modeling development and implementation of a RAM simulation model for the Lexan plant at GE Industrial. Reliab. Eng. Syst. Saf. 2008, 93, 501–508. [Google Scholar] [CrossRef]
- Rymarz, J.; Niewczas, A.; Hołyszko, P.; Dębicka, E. Application of Spearman’s Method for the Analysis of the Causes of Long-Term Post-Failure Downtime of City Buses. Appl. Sci. 2022, 12, 2921. [Google Scholar] [CrossRef]
- Rymarz, J.; Niewczas, A.; Krzyżak, A. Comparison of operational availability of public city buses by analysis of variance. Eksploat. Niezawodn. Maint. Reliab. 2016, 18, 373–378. [Google Scholar] [CrossRef]
- Ziółkowski, J.; Oszczypała, M.; Lęgas, A.; Konwerski, J.; Małachowski, J. A method of calculating the technical readiness of aviation refuelling vehicles. Eksploat. Niezawodn. Maint. Reliab. 2024, 26, 187888. [Google Scholar] [CrossRef]
- Żurek, J.; Ziółkowski, J. Metody oceny gotowości technicznej śmigłowców z zastosowaniem procesów Markowa. In Proceedings of the XLVI Zimowa Szkoła Niezawodności, Szczyrk, Poland, 7–13 January 2018. [Google Scholar]
- Borucka, A.; Niewczas, A.; Hasilova, K. Forecasting the readiness of special vehicles using the semi-Markov model. Eksploat. Niezawodn. Maint. Reliab. 2019, 21, 662–669. [Google Scholar] [CrossRef]
- IEA. Global EV Data Explorer. 2021. Available online: https://www.iea.org/articles/global-ev-data-explorer (accessed on 17 January 2025).
- Guo, D.; Zhou, C. Potential performance analysis and future trend prediction of electric vehicle with V2G/V2H/V2B capability. AIMS Energy 2016, 4, 331–346. [Google Scholar] [CrossRef]
- Bawelska, A.; Bącela, K.; Budny, D.; Jóźwicka, K.; Kaczmarczyk, K.; Krejner, I.; Pawłowska, J.; Schodowski, G.; Stochniałek, B. Passenger transport. In Road transport in Poland in the Years 2022 and 2023; Statistical Office in Szczecin: Szczecin, Poland, 2024; pp. 78–83. [Google Scholar]
- Rynek autobusów elektrycznych w Polsce w I połowie 2023 roku. Available online: https://pire.pl/rynek-autobusow-elektrycznych-w-polsce-w-i-polowie-2023-roku/ (accessed on 16 October 2024).
- Skalski, P. Autobusy elektryczne w Polsce. Autobusy 2017, 12, 415–418. [Google Scholar]
- Ammenberg, J.; Dahlgren, S. Sustainability Assessment of Public Transport, Part I—A Multi-Criteria Assessment Method to Compare Different Bus Technologies. Sustainability 2021, 13, 825. [Google Scholar] [CrossRef]
- Dahlgren, S.; Ammenberg, J. Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies. Sustainability 2021, 13, 1273. [Google Scholar] [CrossRef]
- Samawi, G.A.; Bwaliez, O.M.; Jreissat, M.; Kandas, A. Advancing Sustainable Development in Jordan: A Business and Economic Analysis of Electric Vehicle Adoption in the Transportation Sector. World Electr. Veh. J. 2025, 16, 45. [Google Scholar] [CrossRef]
- Szkoda, M.; Lorenc, A.A. Analiza gotowości taboru kolejowego z uwzględnieniem rezerwy eksploatacyjnej. Rail Veihicles/Pojazdy Szyn. 2014, 3, 59–65. [Google Scholar] [CrossRef]
- Illowsky, B.; Dean, S. Statistics; OpenStax: Houston, TX, USA, 2020; pp. 761–765. [Google Scholar]
- Aranowska, E.; Rytel, J. Wielowymiarowa analiza wariancji—MANOVA. Psychol. Społeczna 2010, 5, 117–141. [Google Scholar]
- Ammaiyappan, B.S.; Ramalingam, S. Reliability investigation of electric vehicle. Life Cycle Reliab. Saf. Eng. 2019, 8, 141–149. [Google Scholar] [CrossRef]
- Mahmoud, M.; Garnett, R.; Ferguson, M.; Kanaroglou, P. Electric buses: A review of alternative powertrains. Renew. Sustain. Energy Rev. 2016, 62, 673–684. [Google Scholar] [CrossRef]
- Pietrzak, O.; Pietrzak, K. The Economic Effects of Electromobility in Sustainable Urban Public Transport. Energies 2021, 14, 878. [Google Scholar] [CrossRef]
Parameter | URSUS BUS CS 12 LFD | SOLARISURBINO12 ELECTRIC |
---|---|---|
Bus type | two-axle, low-floor, urban | |
Length [m] | 12.0 | 12.0 |
Door layout | 2 −2 −2 | 2 −2 −2 |
Total number of seats | 105 | 81 |
Number of seating places | 28 | 29 |
Battery capacity [KWh] | not applicable | 120 |
Charging power [KWh] | not applicable | Up to 450 |
Engine characteristic | 6 cylinders, 6.7 L, 221 kW | Two asynchronous motors in rear drive axle, maksimum total power of 240 kW |
Maximum permissible weight [kg] | 19,000 | 18,745 |
Exhaust emissions standard | Euro VI | not applicable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niewczas, A.; Mórawski, Ł.; Dębicka, E.; Rymarz, J.; Kasperek, D.; Hołyszko, P. A Comparative Study of the Availability of Electric Buses in the Public Transport System. Appl. Sci. 2025, 15, 1212. https://doi.org/10.3390/app15031212
Niewczas A, Mórawski Ł, Dębicka E, Rymarz J, Kasperek D, Hołyszko P. A Comparative Study of the Availability of Electric Buses in the Public Transport System. Applied Sciences. 2025; 15(3):1212. https://doi.org/10.3390/app15031212
Chicago/Turabian StyleNiewczas, Andrzej, Łukasz Mórawski, Ewa Dębicka, Joanna Rymarz, Dariusz Kasperek, and Piotr Hołyszko. 2025. "A Comparative Study of the Availability of Electric Buses in the Public Transport System" Applied Sciences 15, no. 3: 1212. https://doi.org/10.3390/app15031212
APA StyleNiewczas, A., Mórawski, Ł., Dębicka, E., Rymarz, J., Kasperek, D., & Hołyszko, P. (2025). A Comparative Study of the Availability of Electric Buses in the Public Transport System. Applied Sciences, 15(3), 1212. https://doi.org/10.3390/app15031212