Analysis of Mechanisms of Mandible Fractures by Lateral Impact: A Biomechanical Approach Using Finite Element Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Model
2.2. Fall Conditions
- Pitch angle: Oblique orientation of the body at time of impact of 10° or 20° to the horizontal surface. Because we aimed to simulate a lateral fall, we did not set a larger pitch angle.
- Roll angle of the body around the long axis: Rolling to a prone position from a lateral position at 0° (lateral position), 15°, or 30°.
- Lateral bending of the face: Without lateral bending or bending to the opposite side to the falling direction at 20°. For this factor, we set these two conditions because we evaluated the effects of lateral bending to the opposite side.
- Impact object: At the time of impact, the face contacts the surface of a road or concrete block. A concrete block was represented as the boundary block between the sidewalk and road. The most common size of a boundary block is shown in Figure 2. The center of the block was considered to be the impact point to the center of the head. Then, the attacked site was shifted toward the head direction by 50 mm or to the toe direction by 50 mm (represented as −50 mm). The ground was modeled as an asphalt surface with a rigid wall with a friction coefficient of 0.5. Detailed boundary conditions are shown in Table 1.
2.3. Statistical Analyses
3. Results
3.1. Kinematics of the Human Model
3.2. Distribution of the Maximum Effective Plastic Strain in the Mandible
3.3. Factors That Strongly Influenced Fracture of the Mandible
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bojino, A.; Roccia, F.; Carlaw, K.; Aquilina, P.; Rae, E.; Laverick, S.; Romeo, I.; Locca, O.; Copelli, C.; Sobrero, F.; et al. A multicentric prospective analysis of maxillofacial trauma in the elderly population. Dent. Traumatol. 2022, 38, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Matsusue, Y.; Murakami, K.; Horita, S.; Kirita, T. Maxillofacial fractures in older patients. J. Oral Maxillofac. Surg. 2011, 69, 2204–2210. [Google Scholar] [CrossRef] [PubMed]
- Fasola, A.O.; Obiechina, A.E.; Arotiba, J.T. Incidence and pattern of maxillofacial fractures in the elderly. Int. J. Oral Maxillofac. Surg. 2003, 32, 206–208. [Google Scholar] [CrossRef] [PubMed]
- Hirobe, Y.; Koshinuma, S.; Nakamura, M.; Baba, M.; Yamamoto, G.; Hitosugi, M. Factors influencing the long-term hospitalization of bicyclists and motorcyclists with oral and maxillofacial injuries. Dent. Traumatol. 2021, 37, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Machida, Y.; Tomioka, T.; Koshinuma, S.; Nakamura, M.; Yamamoto, G.; Hitosugi, M. Factors predicting oral and maxillofacial fractures after falling and factors predicting the duration of treatment. Dent. Traumatol. 2023, 39, 418–424. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kuraki, M.; Kurihara, M.; Matsusue, Y.; Murakami, K.; Horita, S.; Sugiura, T.; Kirita, T. Maxillofacial fractures resulting from falls. J. Oral Maxillofac. Surg. 2010, 68, 1602–1607. [Google Scholar] [CrossRef]
- Ito, R.; Kubota, K.; Yaguchi, S.; Furudate, K.; Tanaka, Y.; Kobayashi, W. Falls due to loss of consciousness are associated with maxillofacial fracture severity. J. Oral Maxillofac. Surg. 2020, 78, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Roccia, F.; Boffano, P.; Bianchi, F.A.; Zavattero, E. Maxillofacial fracture due to falls: Does fall modality determine pattern of injury? J. Oral Maxillofac. Res. 2014, 5, e5. [Google Scholar] [CrossRef]
- DuChesne, A.; Unnewehr, M.; Schmidt, P.F.; Sotonyi, P.; Brinkmann, B.; Piffko, J.; Fischer, G.; Bajanowski, T. Deformation characteristics of the human mandible in low impact experiments. Int. J. Leg. Med. 2003, 117, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Nogami, S.; Yamauchi, K.; Bottini, G.B.; Otake, Y.; Sai, Y.; Morishima, H.; Higuchi, K.; Ito, K.; Gaggl, A.; Takahashi, T. Fall-related mandible fractures in a Japanese population: A retrospective study. Dent. Traumatol. 2019, 35, 194–198. [Google Scholar] [CrossRef]
- Liu, Y.F.; Wang, R.; Baur, D.A.; Jiang, X.F. A finite element analysis of the stress distribution to the mandible from impact forces with various orientations of third molars. J. Zeijiang Univ. Sci. B 2018, 19, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xu, X.; Liu, Q.; Xin, P. A finite element analysis on the indication for extracting partially impacted mandibular third molars considering mandibular trauma. BMC Oral Health 2024, 24, 989. [Google Scholar] [CrossRef] [PubMed]
- Hedesiu, M.; Pavel, D.G.; Almasan, O.; Pavel, S.R.; Hedesiu, H. Three-dimentional finite element analysis on mandibular biomechanics simulation under normal and traumatic conditions. Oral 2022, 2, 221–237. [Google Scholar] [CrossRef]
- Shigeta, K.; Kitagawa, Y.; Yasuki, T. Development of next generation human FE model capable of organ injury prediction. In Proceedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles (ESV), Stuttgart, Germany, 15–18 June 2009; National Highway Traffic Safety Administration: Stuttgart, Germany, 2009. [Google Scholar]
- Watanabe, R.; Miyazaki, H.; Kitagawa, Y.; Yasuki, T. Research of collision speed dependency of pedestrian head and chest injuries using human FE model (THUMS Version 4). In Proceedings of the 22nd International Technical Conference on the Enhanced Safety of Vehicles (ESV), Washington, DC, USA, 13–16 June 2011; Volume 22, p. 31. [Google Scholar]
- Hallquist, J.O. LS-DYNA Keyword User’s Manual, Version 971; Livermore Software Technology Corporation: Livermore, CA, USA, 2007. [Google Scholar]
- Rosa, J.L.; Robin, A.; Silva, M.B.; Baldan, C.A.; Peres, M.P. Electrodeposition of copper on titanium wires: Taguchi experimental design approach. J. Mater. Process. Technol. 2009, 209, 1181–1188. [Google Scholar] [CrossRef]
- Adam, J.G.; Kerry, A.D.; Logan, E.M.; Joel, D.S. Injury prediction in a side impact crash using human body modek simulation. Accid. Anal. Prev. 2014, 64, 1–8. [Google Scholar]
- Jeffry, S.N.; Anuradha, R.; Michael, J.R.; Wang, X. Mechanical behavior of human cortical bone in cycles of advancing tensile strain for two age groups. J. Biomed. Mater. Res. A 2009, 89A, 521–529. [Google Scholar]
- Fujii, M.; Shirakawa, T.; Nakamura, M.; Baba, M.; Hitosugi, M. Factors influencing the injury severity score and the probability of survival in patients who fell from height. Sci. Rep. 2021, 11, 15561. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, Y.; Ito, D.; Nakamura, M.; Koshinuma, S.; Yamamoto, G.; Hitosugi, M. Maxillofacial injuries in cyclists: A biomechanical approach for the analysis of mechanisms of mandible fractures. J. Oral Maxillofac. Surg. 2021, 79, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Al-Harbawee, A.; Ahmed, T.; Ahmed, S.; Avery, C.; Fagiry, R.; Hamzah, H.A.; Afzaal, A.; Khan, A.; Mair, M.; Ali, M.; et al. A retrospective analysis of the impaction status of mandibular third molars as a risk factor for fractures of angle or condylar region of the mandible. Adv. Oral Maxillofac. Surg. 2021, 1, 100018. [Google Scholar] [CrossRef]
- Reitzik, M.; Lownie, J.F.; Cleaton-Jones, P.; Austin, J. Experimental fractures of monkey mandibles. Int. J. Oral Surg. 1978, 7, 100–103. [Google Scholar] [CrossRef] [PubMed]
Factor | Standard Value | |||
---|---|---|---|---|
Pitch angle | 10° | 20° | ||
Lateral bending of the face | 0° | 20° | ||
Roll angle | 0° | 15° | 30° | |
Impact object | Surface of the road | Block (Center) | Block (50 mm) | Block (−50 mm) |
Factor | Degree of Freedom | F Value | p Value | Contribution Rate |
---|---|---|---|---|
Pitch angle | 1 | 33.56 | 0.00001 | 10.10% |
Roll angle | 2 | 8.37 | 0.00186 | 4.57% |
Lateral bending of the face | 1 | 74.12 | 0.00001 | 22.70% |
Impact object | 3 | 26.13 | 0.00001 | 23.40% |
Pitch angle and roll angle | 2 | 7.03 | 0.00413 | 3.74% |
Pitch angle and lateral bending of the face | 1 | 16.79 | 0.00044 | 4.90% |
Pitch angle and falling surface | 3 | 7.70 | 0.00097 | 6.24% |
Roll angle and lateral bending of the face | 2 | 7.38 | 0.00334 | 3.96% |
Roll angle and falling surface | 6 | 4.27 | 0.00494 | 6.09% |
Impact object and lateral bending of the face | 3 | 0.68 | 0.57087 | 0% |
Error | 14.28% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomioka, T.; Ito, D.; Murai, T.; Takeda, A.; Nakamura, M.; Koshinuma, S.; Takaoka, K.; Hitosugi, M. Analysis of Mechanisms of Mandible Fractures by Lateral Impact: A Biomechanical Approach Using Finite Element Models. Appl. Sci. 2025, 15, 1205. https://doi.org/10.3390/app15031205
Tomioka T, Ito D, Murai T, Takeda A, Nakamura M, Koshinuma S, Takaoka K, Hitosugi M. Analysis of Mechanisms of Mandible Fractures by Lateral Impact: A Biomechanical Approach Using Finite Element Models. Applied Sciences. 2025; 15(3):1205. https://doi.org/10.3390/app15031205
Chicago/Turabian StyleTomioka, Takahiro, Daisuke Ito, Takato Murai, Arisa Takeda, Mami Nakamura, Shinya Koshinuma, Kazuki Takaoka, and Masahito Hitosugi. 2025. "Analysis of Mechanisms of Mandible Fractures by Lateral Impact: A Biomechanical Approach Using Finite Element Models" Applied Sciences 15, no. 3: 1205. https://doi.org/10.3390/app15031205
APA StyleTomioka, T., Ito, D., Murai, T., Takeda, A., Nakamura, M., Koshinuma, S., Takaoka, K., & Hitosugi, M. (2025). Analysis of Mechanisms of Mandible Fractures by Lateral Impact: A Biomechanical Approach Using Finite Element Models. Applied Sciences, 15(3), 1205. https://doi.org/10.3390/app15031205