Impact of Chokeberry (Aronia melanocarpa L.) Extracts on the Physicochemical Properties of Wheat Bread
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Chromatography Analysis of Chokeberry Fruits
2.2.2. Preparation of Chokeberry Fruit Extracts
2.2.3. Laboratory Baking Test of Bread
- Chokeberry fruit extract with 0 °Brix content were applied in the wheat bread with doses of 10% (m/m) (10%ChE0°Brix), 15% (m/m) (15%ChE0°Brix), 20% (m/m) (20%ChE 0°Brix), and 30% (m/m) (30%ChE0°Brix) replacing water in the recipe, respectively.
- Chokeberry fruit extract with 7.5 °Brix content were applied in the wheat bread with doses of 10% (m/m) (10%ChE7.5°Brix), 15% (m/m) (15%ChE7.5°Brix), 20% (m/m) (20%ChE7.5°Brix), 30% (m/m) (30%ChE7.5 °Brix) replacing water in the recipe, respectively.
2.2.4. Baking Process and Quality Parameters of Breads
2.2.5. TPC and Antioxidant Properties
2.2.6. Bread Crust and Crumb Color Parameters
2.2.7. Bread Crumb Texture Parameters
2.2.8. Statistical Analysis
3. Results
3.1. Chromatography Analysis of Chokeberry Fruits
3.2. Baking Process and Quality Parameters of Wheat Bread
3.3. TPC and Antioxidant Properties
3.4. Crust and Crumb Color Parameters of Wheat Breads
3.5. Crumb Texture Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jakubczyk, T.; Haber, T. Analiza zbóż i Przetworów Zbożowych: Praca Zbiorowa, Wyd. 2 popr.; Skrypty Szkoły Głównej Gospodarstwa Wiejskiego Akademii Rolniczej w Warszawie; SGGW-AR: Warszawa, Poland, 1983. [Google Scholar]
- Mollakhalili-Meybodi, N.; Sheidaei, Z.; Khorshidian, N.; Nematollahi, A.; Khanniri, E. Sensory Attributes of Wheat Bread: A Review of Influential Factors. J. Food Meas. Charact. 2023, 17, 2172–2181. [Google Scholar] [CrossRef]
- Zhu, J.; Cai, Y.; Xu, Y.; Wei, X.; Yang, Z.; Yin, Y.; Wakisaka, M.; Fang, W. Effects of heterotrophic Euglena gracilis powder on dough microstructure, rheological properties, texture, and nutritional composition of steamed bread. Food Chem. X 2024, 23, 101754. [Google Scholar] [CrossRef] [PubMed]
- Wawer, I.; Eggert, P.; Hołub, B. Aronia. Superowoc; Wektor: Warszawa, Poland, 2012. [Google Scholar]
- Ochmian, I.; Grajkowski, J.; Smolik, M. Comparison of Some Morphological Features, Quality and Chemical Content of Four Cultivars of Chokeberry Fruits (Aronia melanocarpa). Not. Bot. Horti Agrobot. 2012, 40, 253–260. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Black Chokeberry Aronia melanocarpa L.—A Qualitative Composition, Phenolic Profile and Antioxidant Potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef] [PubMed]
- Tolić, M.T.; Marković, K.; Vahčić, N.; Samarin, I.R.; Mačković, N.; Krbavčić, I.P. Polyphenolic Profile of Fresh Chokeberry and Chokeberry Products. Croat. J. Food Technol. Biotechnol. Nutr. 2018, 13, 147–153. [Google Scholar] [CrossRef]
- Du, X.; Myracle, A.D. Development and Evaluation of Kefir Products Made with Aronia or Elderberry Juice: Sensory and Phytochemical Characteristics. Int. Food Res. J. 2018, 25, 1373–1383. [Google Scholar]
- Cușmenco, T.; Bulgaru, V. Quality Characteristics and Antioxidant Activity of Goat Milk Yogurt with Fruits. Ukr. Food J. 2020, 9, 86–98. [Google Scholar] [CrossRef]
- Ryzhkova, T.; Odarchenko, A.; Silchenko, K.; Danylenko, S.; Verbytskyi, S.; Heida, I.; Kalashnikova, L.; Dmytrenko, A. Effect of Herbal Extracts Upon Enhancing the Quality of Low-Fat Cottage Cheese. Innov. Biosyst. Bioeng. 2023, 7, 22–31. [Google Scholar] [CrossRef]
- Sady, S.; Sielicka-Różyńska, M. Quality Assessment of Experimental Cookies Enriched with Freeze-Dried Black Chokeberry. Acta Sci. Pol. Technol. Aliment. 2019, 18, 463–471. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Ungureanu-Iuga, M.; Mironeasa, S.; Sturza, R. Aronia Extracts in the Production of Confectionery Masses. Appl. Sci. 2022, 12, 7664. [Google Scholar] [CrossRef]
- Petković, M.; Đurović, I.; Miletić, N.; Radovanović, J. Effect of Convective Drying Method of Chokeberry (Aronia melanocarpa L.) on Drying Kinetics, Bioactive Components and Sensory Characteristics of Bread with Chokeberry Powder. Period. Polytech. Chem. Eng. 2019, 63, 600–608. [Google Scholar] [CrossRef]
- Filipović, V.; Petković, M.; Filipović, J.; Đurović, I.; Miletić, N.; Radovanović, J.; Filipović, I. Nutritional Attributes of Wheat Bread Fortified with Convectively Dried Chokeberry Powder. Acta Agric. Serbica 2021, 26, 55–62. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Dziki, D.; Gawlik-Dziki, U.; Parol-Nadłonek, N.; Kalisz, S.; Krajewska, A.; Stępniewska, S. Wheat Bread Enriched with Black Chokeberry (Aronia melanocarpa L.) Pomace: Physicochemical Properties and Sensory Evaluation. Appl. Sci. 2023, 13, 6936. [Google Scholar] [CrossRef]
- Kaszuba, J.; Moszkowicz, A.; Adamczyk, G. Badania Jakości i Trwałości Ciastek Biszkoptowych Wzbogaconych Proszkiem z Owoców Aronii. Przegląd Zbożowo-Młynarski 2024, 6, 54–63. [Google Scholar] [CrossRef]
- Kaszuba, J.; Moszkowicz, A.; Adamczyk, G. Porównanie Jakości Ciastek Biszkoptowych Wzbogaconych Proszkiem z Owoców Aronii Przechowywanych Zamrażalniczo. Przegląd Zbożowo-Młynarski 2025, 1, 40–47. [Google Scholar] [CrossRef]
- Trinh, L.; Lowe, T.; Campbell, G.M.; Withers, P.J.; Martin, P.J. Effect of sugar on bread dough aeration during mixing. J. Food Eng. 2015, 150, 9–18. [Google Scholar] [CrossRef]
- Müller, D.C.; Nguyen, H.; Li, Q.; Schönlechner, R.; Miescher Schwenninger, S.; Wismer, W.; Gänzle, M. Enzymatic and microbial conversions to achieve sugar reduction in bread. Food Res. Int. 2021, 143, 110296. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Tanaka, A. Chemical Components and Characteristics of Black Chokeberry. J. Jpn. Soc. Food Sci. Technol. 2001, 48, 606–610. [Google Scholar] [CrossRef]
- Kokotkiewicz, A.; Jaremicz, Z.; Luczkiewicz, M. Aronia Plants: A Review of Traditional Use, Biological Activities, and Perspectives for Modern Medicine. J. Med. Food 2010, 13, 255–269. [Google Scholar] [CrossRef]
- Jarosz, M.; Dorna, H.; Szopińska, D.; Krzesiński, W.; Szwengiel, A. Grapefruit Extracts and Black Chokeberry Juice as Potential Antioxidant and Antifungal Agents for Carrot Seed Treatment. Agronomy 2024, 14, 2764. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Dührkop, K.; Nothias, L.-F.; Fleischauer, M.; Reher, R.; Ludwig, M.; Hoffmann, M.A.; Petras, D.; Gerwick, W.H.; Rousu, J.; Dorrestein, P.C.; et al. Systematic Classification of Unknown Metabolites Using High-Resolution Fragmentation Mass Spectra. Nat. Biotechnol. 2021, 39, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Wang, M.; Leber, C.A.; Nothias, L.-F.; Reher, R.; Kang, K.B.; Van Der Hooft, J.J.J.; Dorrestein, P.C.; Gerwick, W.H.; Cottrell, G.W. NPClassifier: A Deep Neural Network-Based Structural Classification Tool for Natural Products. J. Nat. Prod. 2021, 84, 2795–2807. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, G.; Pawłowska, A.M.; Bobel, I.; Szwengiel, A.; Krystyjan, M. Effect of Chokeberry (Aronia melanocarpa) Extracts on the Physicochemical Properties of Wheat Starch Pastes and Gels Stored Under Refrigerated Conditions. Molecules 2025, 30, 4213. [Google Scholar] [CrossRef]
- Method 10-05.01; Approved Methods of Analysis. Guidelines for Measurement of Volume by Rapeseed Displacement, 11th ed. AACC International: St. Paul, MN, USA, 2010.
- Method No. 44-15.02; Approved Methods of Analysis. Guidelines for Measurement of Moisture Content—Air Oven Methods, 11th ed. AACC International: St. Paul, MN, USA, 2010.
- Broeke, J.; Pérez, J.M.M.; Pascau, J. Image Processing with ImageJ: Extract and Analyze Data from Complex Images with ImageJ, the World’s Leading Image Processing Tool, 2nd ed.; Community Experience Distilled; Packt Publishing Ltd.: Birmingham, UK, 2015. [Google Scholar]
- Petrusha, O.; Daschynska, O.; Shulika, A. Development of the Measurement Method of Porosity of Bakery Products by Analysis of Digital Image. TAPR 2018, 2, 61–66. [Google Scholar] [CrossRef]
- Rathnayake, H.A.; Navaratne, S.B.; Navaratne, C.M. Porous crumb structure of leavened baked products. Int. J. Food Sci. 2018, 2018, 8187318. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Posadzka-Siupik, Z.; Kaszuba, J.; Kapusta, I.T.; Jaworska, G. Wheat–Oat Bread Enriched with Beetroot-Based Additives: Technological and Quality Aspects. Appl. Sci. 2025, 15, 11408. [Google Scholar] [CrossRef]
- Dudonné, S.; Dubé, P.; Anhê, F.F.; Pilon, G.; Marette, A.; Lemire, M.; Harris, C.; Dewailly, E.; Desjardins, Y. Comprehensive Analysis of Phenolic Compounds and Abscisic Acid Profiles of Twelve Native Canadian Berries. J. Food Compos. Anal. 2015, 44, 214–224. [Google Scholar] [CrossRef]
- Gao, N.; Shu, C.; Wang, Y.; Tian, J.; Lang, Y.; Jin, C.; Cui, X.; Jiang, H.; Liu, S.; Li, Z.; et al. Polyphenol Components in Black Chokeberry (Aronia melanocarpa) as Clinically Proven Diseases Control Factors—An Overview. Food Sci. Hum. Wellness 2024, 13, 1152–1167. [Google Scholar] [CrossRef]
- Piras, A.; Porcedda, S.; Smeriglio, A.; Trombetta, D.; Nieddu, M.; Piras, F.; Sogos, V.; Rosa, A. Chemical Composition, Nutritional, and Biological Properties of Extracts Obtained with Different Techniques from Aronia melanocarpa Berries. Molecules 2024, 29, 2577. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Weever, F.; Hübner, F.; Humpf, H.-U.; Esselen, M. Characterization of Oligomeric Proanthocyanidin-Enriched Fractions from Aronia melanocarpa (Michx.) Elliott via High-Resolution Mass Spectrometry and Investigations on Their Inhibitory Potential on Human Topoisomerases. J. Agric. Food Chem. 2021, 69, 11053–11064. [Google Scholar] [CrossRef] [PubMed]
- Kubra Sasmaz, H.; Kilic-Buyukkurt, O.; Selli, S.; Bouaziz, M.; Kelebek, H. Antioxidant Capacity, Sugar Content, and Tandem HPLC–DAD–ESI/MS Profiling of Phenolic Compounds from Aronia melanocarpa Fruits and Leaves (Nero and Viking Cultivars). ACS Omega 2024, 9, 14963–14976. [Google Scholar] [CrossRef]
- Petreska Stanoeva, J.; Balshikevska, E.; Stefova, M.; Tusevski, O.; Simic, S.G. Comparison of the Effect of Acids in Solvent Mixtures for Extraction of Phenolic Compounds From Aronia melanocarpa. Nat. Prod. Commun. 2020, 15, 1934578X20934675. [Google Scholar] [CrossRef]
- Wójcik, M.; Różyło, R.; Łysiak, G.; Kulig, R.; Cacak-Pietrzak, G. Textural and Sensory Properties of Wheat Bread Fortified with Nettle (Urtica dioica L.) Produced by the Scalded Flour Method. J. Food Process. Preserv. 2021, 45, e15851. [Google Scholar] [CrossRef]
- Akbaş, M.; Kılmaoğlu, H. Evaluation of The Effects of The Use of Vegetable and Fruit Extracts on Bread Quality Properties. Turk. J. Agric.-Food Sci. Technol. 2022, 10, 1838–1844. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Dziki, D.; Gawlik-Dziki, U.; Sułek, A.; Wójcik, M.; Krajewska, A. Dandelion Flowers as an Additive to Wheat Bread: Physical Properties of Dough and Bread Quality. Appl. Sci. 2023, 13, 477. [Google Scholar] [CrossRef]
- Pycia, K.; Pawłowska, A.M.; Posadzka, Z.; Kaszuba, J. Ground Ivy (Glechoma hederacea L.) as an Innovative Additive for Enriching Wheat Bread: Study on Flour Fermentation Properties, Dough Rheological Properties and Bread Quality. Appl. Sci. 2024, 14, 9392. [Google Scholar] [CrossRef]
- Dziki, D.; Cacak-Pietrzak, G.; Gawlik-Dziki, U.; Sułek, A.; Kocira, S.; Biernacka, B. Effect of Moldavian Dragonhead (Dracocephalum moldavica L.) Leaves on the Baking Properties of Wheat Flour and Quality of Bread. CyTA-J. Food 2019, 17, 536–543. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Różyło, R.; Dziki, D.; Gawlik-Dziki, U.; Sułek, A.; Biernacka, B. Cistus incanus L. as an Innovative Functional Additive to Wheat Bread. Foods 2019, 8, 349. [Google Scholar] [CrossRef]
- Adamczyk, G.; Posadzka, Z.; Witczak, T.; Witczak, M. Comparison of the Rheological Behavior of Fortified Rye–Wheat Dough with Buckwheat, Beetroot and Flax Fiber Powders and Their Effect on the Final Product. Foods 2023, 12, 559. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Li, Y. Dough properties, bread quality, and associated interactions with added phenolic compounds: A review. J. Funct. Foods 2019, 52, 629–639. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Zhao, Y.; Wang, D.; Wang, W. Influence of Antioxidant Dietary Fiber on Dough Properties and Bread Qualities: A Review. J. Funct. Foods 2021, 80, 104434. [Google Scholar] [CrossRef]
- Girard, A.L.; Awika, J.M. Effects of Edible Plant Polyphenols on Gluten Protein Functionality and Potential Applications of Polyphenol–Gluten Interactions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2164–2199. [Google Scholar] [CrossRef] [PubMed]
- Schefer, S.; Oest, M.; Rohn, S. Interactions between phenolic acids, proteins, and carbohydrates—Influence on dough and bread properties. Foods 2021, 10, 2798. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Sivam, A.S.; Cooney, J.; Zhou, J.; Perera, C.O.; Waterhouse, G.I.N. Effects of added fruit polyphenols and pectin on the properties of finished breads revealed by HPLC/LC-MS and Size-Exclusion HPLC. Food Res. Int. 2011, 44, 3047–3056. [Google Scholar] [CrossRef]
- Ou, S.J.L.; Yu, J.; Zhou, W.; Liu, M.H. Effects of anthocyanins on bread microstructure and their combined impact on starch digestibility. Food Chem. 2022, 374, 131744. [Google Scholar] [CrossRef]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A Review on the Characteristic Components and Potential Health Effects. Planta Medica 2008, 74, 1625–1634. [Google Scholar] [CrossRef]
- Echavarría, A.P.; Pagán, J.; Ibarz, A. Melanoidins Formed by Maillard Reaction in Food and Their Biological Activity. Food Eng. Rev. 2012, 4, 203–223. [Google Scholar] [CrossRef]
- Mesias, M.; Morales, F.J. Acrylamide in bakery products. In Acrylamide in Food: Analysis, Content and Potential Health Effects; Gökmen, V., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 131–157. [Google Scholar]
- Szwajgier, D.; Paduch, R.; Kukuła-Koch, W.; Polak-Berecka, M.; Waśko, A. Study on Biological Activity of Bread Enriched with Natural Polyphenols in Terms of Growth Inhibition of Tumor Intestine Cells. J. Med. Food 2020, 23, 181–190. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, G.; Li, Y. Bread characteristics and antioxidant activities of Maillard reaction products of white pan bread containing various sugars. LWT-Food Sci. Technol. 2018, 95, 308–315. [Google Scholar] [CrossRef]
- Mohd Jusoh, Y.M.; Chin, N.L.; Yusof, Y.A.; Abdul Rahman, R. Bread Crust Thickness Measurement Using Digital Imaging and L*a*b Colour System. J. Food Eng. 2009, 94, 366–371. [Google Scholar] [CrossRef]
- Seguchi, M.; Tabara, A.; Fukawa, I.; Ono, H.; Kumashiro, C.; Yoshino, Y.; Kusunose, C.; Yamane, C. Effects of Size of Cellulose Granules on Dough Rheology, Microscopy, and Breadmaking Properties. J. Food Sci. 2007, 72, E79–E84. [Google Scholar] [CrossRef]

| No. | NPC (Class, Probability > 0.950) * | No. of Compounds | Peak Area (%) Concentration (conc.: mg/100 g) |
|---|---|---|---|
| 1 | Anthocyanins (cyanidin-3-hexosides) (cyanidin-3-pentosides) | 3 | area: 8.13 ± 0.50 (conc.: 63.87 ± 2.29) (conc.: 24.17 ± 1.10) |
| 2 | Chalcones | 4 | area: 1.52 ± 0.10 |
| 3 | Cinnamic acids and derivatives (neochlorogenic acid) (chlorogenic acid) | 12 | area: 31.55 ± 0.37 (conc.: 123.51 ± 4.16) (conc.: 190.46 ± 11.53) |
| 4 | Dihydroflavonols | 1 | area: 1.56 ± 0.05 |
| 5 | Flavan-3-ols | 3 | area: 6.04 ± 0.46 |
| 6 | Flavonones | 4 | area: 18.85 ± 1.67 |
| 7 | Flavones | 10 | area: 1.89 ± 0.03 |
| 8 | Flavonols | 18 | area: 27.85 ± 1.07 |
| 9 | Proanthocyanins | 2 | area: 1.54 ± 0.11 |
| 10 | Simple coumarins | 1 | area: 0.01 ± 0.00 |
| 11 | Simple phenolic acids | 3 | area: 1.06 ± 0.10 |
| Sample | Baking Process Parameters | Quality Parameters of Bread | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Dough Yield [%] | Oven Loss [%] | Total Baking Loss [%] | Bread Yield [%] | Loaf Volume [cm3] | Specific Volume [cm3/g] | Crumb Moisture [%] | Bread Acidity [Acidity Degree] | Crumb Porosity [%] | |
| Bread with 0 °Brix Chokeberry Fruit Extract | |||||||||
| Control | 159.1 a ± 0.6 | 13.7 a ± 6.7 | 19.0 a ± 7.1 | 128.9 b ± 11.5 | 638.3 a ± 31.2 | 3.2 ab ± 0.2 | 44.4 ab ± 0.7 | 1.55 c ± 0.07 | 35.81 b ± 0.43 |
| 10%ChE0°Brix | 158.9 a ± 0.3 | 8.2 b ± 0.6 | 13.4 b ± 1.6 | 137.6 a ± 2.7 | 640.0 a ± 27.6 | 2.9 bc ± 0.2 | 43.6 ab ± 0.8 | 1.65 bc ± 0.07 | 40.71 ab ± 0.80 |
| 15%ChE0°Brix | 158.8 a ± 0.9 | 8.6 b ± 0.7 | 13.4 b ± 1.2 | 137.5 a ± 2.3 | 640.8 a ± 32.9 | 2.9 c ± 0.1 | 43.6 b ± 1.1 | 1.70 ab ± 0.00 | 42.53 ab ± 1.60 |
| 20%ChE0°Brix | 157.9 a ± 1.7 | 9.1 b ± 0.6 | 14.4 b ± 1.3 | 135.2 ab ± 3.1 | 638.3 a ± 45.0 | 3.2 a ± 0.2 | 45.1 a ± 0.4 | 1.80 a ± 0.00 | 43.04 ab ± 0.86 |
| 30%ChE0°Brix | 157.5 a ± 2.8 | 7.8 b ± 0.4 | 14.4 b ± 1.5 | 134.8 ab ± 2.9 | 665.0 a ± 38.9 | 3.1 abc ± 0.2 | 44.1 ab ± 0.7 | 1.75 ab ± 0.07 | 43.48 a ± 0.08 |
| Bread with 7.5 °Brix Chokeberry Fruit Extract | |||||||||
| Control | 159.1 a ± 0.6 | 13.7 a ± 6.7 | 19.0 a ± 7.1 | 128.9 b ± 11.5 | 638.3 a ± 31.2 | 3.2 a ± 0.2 | 44.4 ab ± 0.7 | 1.55 c ± 0.07 | 35.81 b ± 0.43 |
| 10%ChE7.5°Brix | 159.0 a ± 0.2 | 8.5 b ± 1.1 | 14.0 b ± 1.5 | 136.8 a ± 2.5 | 609.2 a ± 30.1 | 2.8 b ± 0.1 | 44.7 a ± 0.4 | 1.75 b ± 0.07 | 39.46 b ± 0.92 |
| 15%ChE7.5°Brix | 158.9 a ± 1.0 | 9.4 b ± 1.4 | 14.3 b ± 1.4 | 136.3 a ± 2.8 | 625.8 a ± 12.8 | 2.9 b ± 0.1 | 44.5 ab ± 1.1 | 1.95 a ± 0.07 | 42.54 b ± 0.48 |
| 20%ChE7.5°Brix | 158.8 a ± 0.0 | 8.9 b ± 0.5 | 13.6 b ± 0.7 | 137.2 a ± 1.1 | 613.3 a ± 12.1 | 2.9 b ± 0.1 | 43.2 b ± 1.4 | 1.90 a ± 0.00 | 46.77 ab ± 0.30 |
| 30%ChE7.5°Brix | 159.1 a ± 0.2 | 9.1 b ± 1.2 | 13.8 b ± 1.3 | 137.1 a ± 2.0 | 625.8 a ± 25.4 | 2.9 b ± 0.1 | 43.6 ab ± 0.3 | 2.00 a ± 0.00 | 49.13 a ± 1.21 |
| Sample | TPC [mgGAE/100 g] | ABTS+ [mmol TE/100 g] | FRAP [mmol/100 g] |
|---|---|---|---|
| Bread with 0 °Brix Chokeberry Extract | |||
| Control | 25.706 d ± 0.507 | 0.475 c ± 0.014 | 7.910 e ± 0.345 |
| 10%ChE0°Brix | 29.051 c ± 1.166 | 0.438 d ± 0.035 | 9.112 d ± 0.207 |
| 15%ChE0°Brix | 29.037 c ± 0.891 | 0.516 b ± 0.036 | 9.965 c ± 0.251 |
| 20%ChE0°Brix | 30.962 b ± 0.779 | 0.514 b ± 0.025 | 10.808 b ± 0.800 |
| 30%ChE0°Brix | 34.554 a ± 0.517 | 0.575 a ± 0.021 | 12.342 a ± 0.592 |
| Bread with 7.5 °Brix Chokeberry Extract | |||
| Control | 25.706 e ± 0.507 | 0.475 d ± 0.014 | 7.910 e ± 0.345 |
| 10%ChE7.5°Brix | 30.559 d ± 1.479 | 0.464 d ± 0.024 | 11.007 d ± 0.461 |
| 15%ChE7.5°Brix | 35.975 c ± 1.267 | 0.588 c ± 0.011 | 15.074 c ± 0.711 |
| 20%ChE7.5°Brix | 38.475 c ± 1.624 | 0.665 b ± 0.022 | 19.648 b ± 0.444 |
| 30%ChE7.5°Brix | 45.282 a ± 1.324 | 0.766 a ± 0.051 | 24.174 a ± 0.333 |
| Sample | L* | a* | b* | L* | a* | b* |
|---|---|---|---|---|---|---|
| Crumb | Crust | |||||
| Bread with 0 °Brix Chokeberry Fruit Extract | ||||||
| Control | 62.8 ab ± 2.6 | 2.8 a ± 0.2 | 20.3 a ± 0.6 | 59.6 a ± 3.0 | 11.8 a ± 1.9 | 31.1 a ± 3.0 |
| 10%ChE0°Brix | 62.6 ab ± 2.9 | 2.8 a ± 0.1 | 17.6 b ± 0.9 | 58.0 ab ± 4.1 | 12.4 a ± 1.8 | 29.6 a ± 3.3 |
| 15%ChE0°Brix | 64.3 a ± 1.4 | 2.8 a ± 0.1 | 17.9 b ± 0.5 | 55.7 b ± 0.9 | 13.4 a ± 0.8 | 29.9 a ± 3.2 |
| 20%ChE0°Brix | 60.5 b ± 1.8 | 2.8 a ± 0.1 | 16.1 c ± 0.4 | 58.6 ab ± 1.8 | 11.7 a ± 1.9 | 29.0 a ± 1.5 |
| 30%ChE0°Brix | 60.6 b ± 2.1 | 2.8 a ± 0.1 | 14.3 d ± 0.7 | 57.1 ab ± 3.2 | 11.9 a ± 1.4 | 28.5 a ± 1.7 |
| Bread with 7.5° Brix Chokeberry Fruit Extract | ||||||
| Control | 62.8 a ± 2.6 | 2.8 b ± 0.2 | 20.3 a ± 0.6 | 59.6 a ± 3.0 | 11.8 a ± 1.9 | 31.1 a ± 3.0 |
| 10%ChE7.5°Brix | 60.2 b ± 1.8 | 2.9 b ± 0.3 | 15.6 b ± 0.6 | 56.2 ab ± 2.7 | 12.5 a ± 1.1 | 28.1 ab ± 3.6 |
| 15%ChE7.5°Brix | 57.5 c ± 2.0 | 3.0 ab ± 0.2 | 13.2 c ± 0.4 | 54.0 b ± 5.5 | 12.6 a ± 2.7 | 26.8 b ± 2.9 |
| 20%ChE7.5°Brix | 55.8 c ± 2.2 | 3.1 ab ± 0.2 | 11.2 d ± 0.7 | 54.1 b ± 2.5 | 12.5 a ± 1.6 | 26.5 b ± 3.0 |
| 30%ChE7.5°Brix | 51.5 d ± 1.5 | 3.3 a ± 0.1 | 9.0 e ± 0.5 | 53.9 b ± 5.9 | 11.6 a ± 2.0 | 24.4 b ± 2.2 |
| Sample | Hardness [N] | Cohesiveness [-] | Chewiness [N] | Gumminess [N] | Elasticity [-] | Springiness [-] |
|---|---|---|---|---|---|---|
| Bread with 0 °Brix Chokeberry Fruit Extract | ||||||
| Control | 11.84 b ± 1.32 | 0.47 a ± 0.04 | 3.60 a ± 0.59 | 5.56 b ± 0.89 | 0.20 a ± 0.02 | 0.65 a ± 0.04 |
| 10%ChE0°Brix | 14.43 a ± 1.89 | 0.42 b ± 0.03 | 3.49 ab ± 0.80 | 6.07 a ± 1.11 | 0.17 b ± 0.02 | 0.57 b ± 0.03 |
| 15%ChE0°Brix | 14.29 a ± 1.57 | 0.45 ab ± 0.03 | 3.85 a ± 0.28 | 6.40 a ± 0.50 | 0.18 ab ± 0.02 | 0.60 ab ± 0.02 |
| 20%ChE0°Brix | 11.31 ab ± 0.55 | 0.44 ab ± 0.07 | 2.99 b ± 0.59 | 4.94 b ± 0.66 | 0.18 ab ± 0.03 | 0.60 ab ± 0.02 |
| 30%ChE0°Brix | 14.06 a ± 1.67 | 0.46 ab ± 0.02 | 3.92 a ± 0.63 | 6.52 a ± 0.85 | 0.19 ab ± 0.01 | 0.60 ab ± 0.03 |
| Bread with 7.5 °Brix Chokeberry Fruit Extract | ||||||
| Control | 11.84 b ± 1.32 | 0.47 a ± 0.04 | 3.60 a ± 0.59 | 5.56 b ± 0.89 | 0.20 a ± 0.02 | 0.65 a ± 0.04 |
| 10%ChE7.5°Brix | 13.09 ab ± 0.92 | 0.44 a ± 0.02 | 3.60 a ± 0.42 | 5.82 ab ± 0.41 | 0.19 ab ± 0.01 | 0.62 ab ± 0.03 |
| 15%ChE7.5°Brix | 13.71 ab ± 2.69 | 0.46 a ± 0.06 | 3.71 a ± 0.86 | 6.32 ab ± 1.32 | 0.19 ab ± 0.03 | 0.58 ab ± 0.04 |
| 20%ChE7.5°Brix | 14.98 a ± 1.39 | 0.45 a ± 0.05 | 3.95 a ± 0.66 | 6.77 a ± 0.82 | 0.19 ab ± 0.03 | 0.58 ab ± 0.04 |
| 30%ChE7.5°Brix | 13.20 ab ± 1.99 | 0.44 a ± 0.03 | 3.24 a ± 0.32 | 5.82 ab ± 0.72 | 0.17 b ± 0.02 | 0.56 b ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamczyk, G.; Posadzka-Siupik, Z.; Bobel, I.; Kowalczewski, P.Ł.; Szwengiel, A. Impact of Chokeberry (Aronia melanocarpa L.) Extracts on the Physicochemical Properties of Wheat Bread. Appl. Sci. 2025, 15, 12633. https://doi.org/10.3390/app152312633
Adamczyk G, Posadzka-Siupik Z, Bobel I, Kowalczewski PŁ, Szwengiel A. Impact of Chokeberry (Aronia melanocarpa L.) Extracts on the Physicochemical Properties of Wheat Bread. Applied Sciences. 2025; 15(23):12633. https://doi.org/10.3390/app152312633
Chicago/Turabian StyleAdamczyk, Greta, Zuzanna Posadzka-Siupik, Inna Bobel, Przemysław Łukasz Kowalczewski, and Artur Szwengiel. 2025. "Impact of Chokeberry (Aronia melanocarpa L.) Extracts on the Physicochemical Properties of Wheat Bread" Applied Sciences 15, no. 23: 12633. https://doi.org/10.3390/app152312633
APA StyleAdamczyk, G., Posadzka-Siupik, Z., Bobel, I., Kowalczewski, P. Ł., & Szwengiel, A. (2025). Impact of Chokeberry (Aronia melanocarpa L.) Extracts on the Physicochemical Properties of Wheat Bread. Applied Sciences, 15(23), 12633. https://doi.org/10.3390/app152312633

