Assessment of the Condition of the Foundations of a Building in a Mining Operations Area at Risk of Sinkholes—A Case Study
Abstract
1. Introduction
2. Building Description—Subsoil
2.1. Description of the Object of Analysis (Sinkholes)—Selected Examples
2.2. Description of the Structural System of the Planned Multi-Residential Building
2.3. Mining Conditions
2.4. Geological and Engineering Conditions
- From the surface to ca 0.5–1.9 m below the ground level: Quaternary rock formations, represented by Holocene deposits.
- From 0.5–1.9 m to 4.2–6.3 m below the ground level: Pleistocene fluvioglacial deposits, represented by silt, loamy sand, clay, silty clay, sandy loam, and fine and silty sand.
- From 4.2–6.3 to the geological boring depth (10.0–12.0 m): glacial deposits, that is, sandy loam, sandy loam with gravel, loamy sand with gravel, and fine sand inserts.
3. Methods
3.1. Geophysical Survey
3.2. Numerical Model of the Foundation Slab in the J Segment
4. Results and Discussion
4.1. Results and Interpretation of Geophysical Survey
4.2. Results and Analysis of Numerical Calculations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamdi, L.; Defaflia, N.; Merghadi, A.; Fehdi, C.; Yunus, A.P.; Dou, J.; Pham, Q.B.; Abdo, H.G.; Almohamad, H.; Al-Mutiry, M. Ground Surface Deformation Analysis Integrating InSAR and GPS Data in the Karstic Terrain of Cheria Basin, Algeria. Remote Sens. 2023, 15, 1486. [Google Scholar] [CrossRef]
- Jennings, J.N. Karst Geomorphology, 2nd ed.; Basil Blackwell: Oxford, UK; New York, NY, USA, 1985. [Google Scholar]
- White, W.B. Geomorphology and Hydrology of Karst Terrains; Oxford University Press: New York, NY, USA, 1988. [Google Scholar]
- Beck, B.F. Sinkholes and the Engineering and Environmental Impacts of Karst; American Society of Civil Engineers: Reston, VA, USA, 2012. [Google Scholar]
- Ford, D.C.; Williams, P.W. Karst Hydrogeology and Geomorphology; Wiley Publishing: Hoboken, NJ, USA, 2007. [Google Scholar]
- Castellazzi, P.; Arroyo-Domínguez, N.; Martel, R.; Calderhead, A.I.; Normand, J.C.L.; Gárfias, J.; Rivera, A. Land subsidence in major cities of Central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 102–111. [Google Scholar] [CrossRef]
- Kuniansky, E.L.; Weary, D.J.; Kaufmann, J.E. The current status of mapping karst areas and availability of public sinkhole-risk resources in karst terrains of the United States. Hydrogeol. J. 2016, 24, 613–624. [Google Scholar] [CrossRef]
- Soldo, B.; Sivand, S.M.; Afrasiabian, A.; Đurin, B. Effect of sinkholes on groundwater resources in arid and semi-arid karst area in Abarkooh, Iran. Environments 2020, 7, 26. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M.; Ali, T.A.; Abdalla, J.E.-D.; Abouleish, M. Land subsidence and sinkholes susceptibility mapping and analysis using random forest and frequency ratio models in Al Ain, UAE. Geocarto Int. 2022, 37, 315–331. [Google Scholar] [CrossRef]
- Orhan, O. Monitoring of land subsidence due to excessive groundwater extraction using small baseline subset technique in Konya, Turkey. Environ. Monit. Assess. 2021, 193, 174. [Google Scholar] [CrossRef]
- Kretschmann, J.; Efremenkov, A.B.; Khoreshok, A.A. From Mining to Post-Mining: The Sustainable Development Strategy of the German Hard Coal Mining Industry. IOP Conf. Ser. Earth Environ. Sci. 2017, 50, 012024. [Google Scholar] [CrossRef]
- Layeghi, N.; Javadi, S.A.; Jafari, M.; Arzani, H. Measuring the land use based risk of soil erosion in a mining-dominated landscape in Northern Iran. J. Ecol. Eng. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Strzałkowski, P.; Strzałkowska, E. An assessment of the impact of the degree of the filling of shallow voids on the possibility of sinkhole formation on the surface. Gospod. Surowcami Miner. 2023, 39, 173–191. [Google Scholar] [CrossRef]
- Dulias, R. The Influence of Hard Coal mining on Changes in the Relief in the Dąbrowa Basin (Wpływ Górnictwa Węgla Kamiennego na Zmiany Rzeźby w Zagłębiu Dąbrowskim). In Nauki Geograficzne w Badaniach Regionalnych, t. I, Rola Geografii Fizycznej w Badaniach Regionalnych; IG Akademii Świętokrzyskiej, Oddział Kielecki PTG: Kielce, Poland, 2007; pp. 89–94. [Google Scholar]
- Drozdek, M.; Greinert, A.; Kostecki, J.; Tokarska-Osyczka, A.; Wasylewicz, R. Theme parks in the post-mining urban areas of Sosnowiec and Zielona Góra (Parki tematyczne na miejskich terenach pokopalnianych Sosnowca i Zielonej Góry). Acta Sci. Pol. Archit. 2017, 16, 65–77. [Google Scholar] [CrossRef]
- Chaoshang, S.; Chaoyang, S.; Zhiming, Z.; Haixiao, L.; Zhenhua, L. Overburden failure characteristics and fracture evolution rule under repeated mining with multiple key strata control. Sci. Rep. 2025, 15, 28029. [Google Scholar] [CrossRef]
- Li, X.; Huan, H.; Lin, H.; Li, Z.; Du, F.; Cao, Z.; Fan, X.; Ren, H. Determination method of rational position for working face entries in coordinated mining of section coal pillars and lower sub-layer. Sci. Rep. 2025, 15, 29440. [Google Scholar] [CrossRef]
- Litwa, P. Analysis of the Causes of the Sinkhole within the Mining Area of the Former Mine. J. Min. Sci. 2021, 57, 229–239. [Google Scholar] [CrossRef]
- Qiao, Q.; Shi, G.; Yang, D.; Wang, L.; Zhang, X.; Li, S.; Bai, X. Study on the destruction law of physical and shear properties of soil in mining disturbance. Sci. Rep. 2023, 13, 17751. [Google Scholar] [CrossRef]
- Fedorowicz, J.; Fedorowicz, L.; Kadela, M. Description of limit states in the subsurface layer of loosened subsoil in view of critical state soil mechanics. Materials 2021, 14, 7288. [Google Scholar] [CrossRef]
- Malinowska, A.; Hejmanowski, R.; Rusek, J. Estimation of the Parameters Affecting the Water Pipelines on the Mining Terrains with A Use of An Adaptive Fuzzy System. Arch. Min. Sci. 2016, 61, 183–197. [Google Scholar] [CrossRef]
- Kadela, M.; Chomacki, L. Influence of Soil Type on the Stresses in the Building Structure in Face of Mining Exploitation. In Proceedings of the 11th International Conference on New Trends in Statics and Dynamics of Buildings, Bratislava, Slovakia, 20–21 October 2013. [Google Scholar]
- Chomacki, L.; Rusek, J.; Słowik, L. Machine Learning Methods in Damage Prediction of Masonry Development Exposed to the Industrial Environment of Mines. Energies 2022, 15, 3958. [Google Scholar] [CrossRef]
- Rusek, J.; Firek, K. Assessment of Technical Condition of Prefabricated Large-Block Building Structures Located in Mining Area Using the Naive Bayes Classifier. In Proceedings of the International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria, 30 June–6 July 2016; Volume 2. [Google Scholar]
- Zhu, H.; He, F.; Zhang, S.; Yang, Z. An integrated treatment technology for ground fissures of shallow coal seam mining in the mountainous area of Southwestern China: A typical case study. Gospod. Surowcami Miner. 2018, 34, 119–138. [Google Scholar] [CrossRef]
- Terrones-Saeta, J.M.; Suárez-Macías, J.; Bernardo-Sánchez, A.; de Prado, L.Á.; Fernández, M.M.; Corpas-Iglesias, F.A. Treatment of soil contaminated by mining activities to prevent contamination by encapsulation in ceramic construction materials. Materials 2021, 14, 6740. [Google Scholar] [CrossRef]
- Kadela, M.; Chomacki, L. Loads from Compressive Strain Caused by Mining Activity Illustrated with the Example of Two Buildings in Silesia. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Prague, Czech Republic, 12–16 June 2017; Volume 245. [Google Scholar] [CrossRef]
- Wódka, M.; Kamieniarz, S.; Wojciechowski, T.; Przyłucka, M.; Perski, Z.; Sikora, R.; Karwacki, K.; Jureczka, J.; Nadłonek, W.; Krieger, W.; et al. Post-mining deformations in the area affected by the former “Siersza” Hard Coal Mine in Trzebinia (southern Poland). Geol. Q. 2024, 68, 3–22. [Google Scholar] [CrossRef]
- Intrieri, E.; Confuorto, P.; Bianchini, S.; Rivolta, C.; Leva, D.; Gregolon, S.; Buchignani, V.; Fanti, R. Sinkhole risk mapping and early warning: The case of Camaiore (Italy). Front. Earth Sci. 2023, 11, 1172727. [Google Scholar] [CrossRef]
- Gutiérrez, F. Sinkhole Hazards; Oxford Research Encyclopedia of Natural Hazard Science; Oxford University Press: Oxford, UK, 2016; ISBN 9780199389407. [Google Scholar] [CrossRef]
- Walczak, S.; Witkowski, W.T.; Stoch, T.; Guzy, A. Detecting sinkholes and land surface movement in post-mining regions using multi-source remote sensing data. Remote Sens. Appl. Soc. Environ. 2025, 38, 101560. [Google Scholar] [CrossRef]
- Andronikidis, N.; Kritikakis, G.; Vafidis, A.; Hamdan, H.; Agioutantis, Z.; Steiakakis, C.; Economou, N. Geophysical Research on an Open Pit Mine for Geotechnical Planning and Future Land Reclamation: A Case Study from NW Macedonia, Greece. Sustainability 2023, 15, 14476. [Google Scholar] [CrossRef]
- Blachowski, J.; Warchala, E.; Koźma, J.; Buczyńska, A.; Bugajska, N.; Becker, M.; Janicki, D.; Kujawa, P.; Kwaśny, L.; Wajs, J.; et al. Geophysical Research of Secondary Deformations in the Post Mining Area of the Glaciotectonic Muskau Arch Geopark—Preliminary Results. Appl. Sci. 2022, 12, 1194. [Google Scholar] [CrossRef]
- Mendoza, R.; Rey, J.; Martínez, J.; Hidalgo, M.C.; Sandoval, S. Geophysical characterisation of geologic features with mining implications from ERT, TDEM and seismic reflection (Mining District of Linares-La Carolina, Spain). Ore Geol. Rev. 2021, 139, 104581. [Google Scholar] [CrossRef]
- Szajna, W.S.; Gontaszewska, A. Shallow site investigation of quaternary sands inside and in the vicinity of a sinkhole in the former lignite mining area in zielona góra (western Poland). Geol. Q. 2014, 59, 347–357. [Google Scholar] [CrossRef]
- Strzałkowski, P. Sinkhole formation hazard assessment. Environ. Earth Sci. 2019, 78, 9. [Google Scholar] [CrossRef]
- Ferentinou, M.; Witkowski, W.; Hejmanowski, R.; Grobler, H.; Malinowska, A. Detection of sinkhole occurrence, experiences from South Africa. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 77–82. [Google Scholar] [CrossRef]
- Malinowska, A.A.; Witkowski, W.T.; Hejmanowski, R.; Chang, L.; van Leijen, F.J.; Hanssen, R.F. Sinkhole occurrence monitoring over shallow abandoned coal mines with satellite-based persistent scatterer interferometry. Eng. Geol. 2019, 262, 105336. [Google Scholar] [CrossRef]
- Ścigała, R.; Duży, S.; Szafulera, K.; Jendryś, M.; Kruczkowski, M.; Dyduch, G. Assessment of sinkhole hazard in the area of shallow mining workings using electrical resistivity tomography. Energies 2021, 14, 8197. [Google Scholar] [CrossRef]
- Tunkel, M. Model Features of Sacred Wooden Architecture of Upper Silesia Based on the Analysis of Preserved Structures; Politechnika Śląska: Gliwice, Poland, 2023. [Google Scholar]
- Graniczny, M.; Kowalski, Z.; Przyłucka, M.; Zdanowski, A. The use of SAR data to monitor ground deformations caused by mining activities in the Upper Silesian coal basin DORIS (EC-FP7). Przegląd Górniczy 2014, 70, 11–19. [Google Scholar]
- Perski, Z. Subsidence of the Upper Silesian Coal Basin area due to underground mining operations determined by satellite radar interferometry (InSAR) (Osiadania terenu GZW pod wpływem eksploatacji podziemnej określane za pomocą satelitarnej interferometrii radarowej. Prz. Geol. 1999, 47, 171–174. [Google Scholar]
- Website: Polska.geoportal2.pl. Available online: https://polska.geoportal2.pl/ (accessed on 20 October 2025).
- Ciepiela, B. Niwka-Modrzejów Hard Coal Mine. Przegląd Górniczy 2010, 66, 78–80. [Google Scholar]
- Pasierb, B. Measurement Techniques of Resistive Metod. Czas. Tech. 2012, 23, 191–199. [Google Scholar] [CrossRef]
- Peter-borie, M.; Sirieix, C.; Naudet, V.; Riss, J. Electrical resistivity monitoring with buried electrodes and cables: Noise estimation with repeatability tests. Near Surf. Geophys. 2011, 9, 369–380. [Google Scholar] [CrossRef]
- Saharudin, M.A.; Maslinda, U.; Badrul Hisham, H.H.; Zakaria, M.; Amalina, M.K.A.; Nawawi, N.; Sulaiman, N.; Nordiana, M.M.; Ismail, N. Correlation between Resistivity and Ground Penetrating Radar (GPR) Methods in Understanding the Signatures in Detecting Cavities. IOP Conf. Ser. Earth Environ. Sci. 2017, 62, 12006. [Google Scholar] [CrossRef]
- Meyer, Z. Proposal for determining the soil susceptibility coefficient in the design of foundation slabs (Propozycja określania współczynnika podatności podłoża przy projektowaniu płyt fundamentowych). In Proceedings of the XXVIII Warsztaty Pracy Projektanta Konstrukcji, Wisła, Poland, 5–8 March 2013; Volume 1, pp. 343–392. [Google Scholar]
- EN 1991-1-1; Eurocode 1: Actions on Structures-Part 1-1: General Actions-Densities, Self-Weight, Imposed Loads for Buildings. The European Union: Brussels, Belgium, 2002.
- EN 1990:2002; Eurocode-Basis of Structural Design. The European Union: Brussels, Belgium, 2005.
- Romero-Ruiz, A.; Linde, N.; Keller, T.; Or, D.; Romero-Ruiz, A.; Linde, N.; Keller, T.; Or, D. A Review of Geophysical Methods for Soil Structure Characterization. Rev. Geophys. 2018, 56, 672–697. [Google Scholar] [CrossRef]














Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadela, M.; Chomacki, L.; Tunkel, M. Assessment of the Condition of the Foundations of a Building in a Mining Operations Area at Risk of Sinkholes—A Case Study. Appl. Sci. 2025, 15, 12384. https://doi.org/10.3390/app152312384
Kadela M, Chomacki L, Tunkel M. Assessment of the Condition of the Foundations of a Building in a Mining Operations Area at Risk of Sinkholes—A Case Study. Applied Sciences. 2025; 15(23):12384. https://doi.org/10.3390/app152312384
Chicago/Turabian StyleKadela, Marta, Leszek Chomacki, and Magda Tunkel. 2025. "Assessment of the Condition of the Foundations of a Building in a Mining Operations Area at Risk of Sinkholes—A Case Study" Applied Sciences 15, no. 23: 12384. https://doi.org/10.3390/app152312384
APA StyleKadela, M., Chomacki, L., & Tunkel, M. (2025). Assessment of the Condition of the Foundations of a Building in a Mining Operations Area at Risk of Sinkholes—A Case Study. Applied Sciences, 15(23), 12384. https://doi.org/10.3390/app152312384

