Sous-Vide Processing as a Method for Standardising the Quality of Beef from Holstein-Friesian Bulls: The Effect of Time on Tenderness
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Animals
2.2. Feeding and Management
2.3. Experimental Overview
Freezing and Thawing
2.4. Stage 1—Raw-Meat Characterisation and Initial Instrumental Tenderness
2.4.1. pH
2.4.2. Proximate Composition
2.4.3. Colour
2.4.4. Free Water and Plasticity
2.4.5. Classification of SM Muscles Based on WBSF Values of Conventionally Cooked Samples
2.5. Stage 2—Sous-Vide Processing and Quality Evaluation
2.5.1. Sample Preparation and Packaging
2.5.2. Sous-Vide Cooking
2.5.3. Cooking Loss and Colour Determination
2.5.4. Sensory Evaluation
2.5.5. Warner–Bratzler Shear Force
2.5.6. Statistical Analysis
3. Results
3.1. Initial Classification and Chemical Uniformity of Raw Material
3.2. The Effect of Sous-Vide (SV) Time on Cooking Loss, Instrumental Tenderness and Sensory Quality
3.3. The Effect of SV Time on Beef Colour
4. Discussion
4.1. Raw Material Quality and Initial Tenderness
4.2. Effects of Sous-Vide Processing on Quality Traits
4.3. Determination of Optimal Sous-Vide Time
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HO | Holstein–Friesian |
| I | intermediate |
| LTL | longissimus thoracis et lumborum |
| LTLT | low-temperature, long-time |
| LW | live weight |
| MS | maize silage |
| SEM | Standard error of the mean |
| SM | semimembranosus |
| SV | sous-vide |
| T | tough |
| TD | tender |
| TMR | total mixed ration |
| WBSF | Warner–Bratzler shear force |
References
- Henchion, M.; McCarthy, M.; Resconi, V.C.; Troy, D. Meat Consumption: Trends and Quality Matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef]
- Żakowska-Biemans, S.; Pieniak, Z.; Gutkowska, K.; Wierzbicki, J.; Cieszyńska, K.; Sajdakowska, M.; Kosicka-Gębska, M. Beef Consumer Segment Profiles Based on Information Source Usage in Poland. Meat Sci. 2017, 124, 105–113. [Google Scholar] [CrossRef]
- Simunović, S.; Tomasevic, I.; Djordjevic, V.Ž.; Baltić, T.; Simunovic, S.; Ćirić, J.; Djekic, I. Meat Color, Marbling, and the Evaluation of Defects in Beef and Pork at the Point of Purchase. Appl. Sci. 2024, 14, 6797. [Google Scholar] [CrossRef]
- Węglarz, A. Quality of beef from Polish Holstein-Friesian bulls as related to weight at slaughter. Ann. Anim. Sci. 2010, 10, 467–476. [Google Scholar]
- Nogalski, Z.; Pogorzelska-Przybyłek, P.; Sobczuk-Szul, M.; Nogalska, A.; Modzelewska-Kapituła, M.; Purwin, C. Carcass Characteristics and Meat Quality of Bulls and Steers Slaughtered at Two Different Ages. Ital. J. Anim. Sci. 2018, 17, 279–288. [Google Scholar] [CrossRef]
- Fořtová, J.; Del Mar Campo, M.; Valenta, J.; Needham, T.; Řehák, D.; Lebedová, N.; Bartoň, L.; Klouček, P.; Bureš, D. Preferences and Acceptance of Czech and Spanish Consumers Regarding Beef with Varying Intramuscular Fat Content. Meat Sci. 2022, 192, 108912. [Google Scholar] [CrossRef] [PubMed]
- Modzelewska-Kapituła, M.; Pietrzak-Fiećko, R.; Tkacz, K.; Draszanowska, A.; Więk, A. Influence of Sous Vide and Steam Cooking on Mineral Contents, Fatty Acid Composition and Tenderness of Semimembranosus Muscle from Holstein-Friesian Bulls. Meat Sci. 2019, 157, 107877. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Q.; Zhang, Y.; Yang, X.; Mao, Y.; Luo, X.; Hopkins, D.L.; Niu, L.; Liang, R. Sous Vide Cooking Improved the Physicochemical Parameters of Hot-Boned Bovine Semimembranosus Muscles. Meat Sci. 2023, 206, 109326. [Google Scholar] [CrossRef] [PubMed]
- Zielbauer, B.I.; Franz, J.; Viezens, B.; Vilgis, T.A. Physical Aspects of Meat Cooking: Time Dependent Thermal Protein Denaturation and Water Loss. Food Biophys. 2016, 11, 34–42. [Google Scholar] [CrossRef]
- Roy, B.C.; Bruce, H.L. Contribution of Intramuscular Connective Tissue and Its Structural Components on Meat Tenderness-Revisited: A Review. Crit. Rev. Food Sci. Nutr. 2024, 64, 9280–9310. [Google Scholar] [CrossRef] [PubMed]
- Tkacz, K.; Modzelewska-Kapituła, M.; Więk, A.; Nogalski, Z. The Applicability of Total Color Difference ΔE for Determining the Blooming Time in Longissimus lumborum and Semimembranosus Muscles from Holstein-Friesian Bulls at Different Ageing Times. Appl. Sci. 2020, 10, 8215. [Google Scholar] [CrossRef]
- Lebedová, N.; Bureš, D.; Needham, T.; Fořtová, J.; Řehák, D.; Bartoň, L. Histological Composition, Physiochemical Parameters, and Organoleptic Properties of Three Muscles from Fleckvieh Bulls and Heifers. Meat Sci. 2022, 188, 108807. [Google Scholar] [CrossRef]
- Gajaweera, C.; Chung, K.Y.; Lee, S.H.; Wijayananda, H.I.; Kwon, E.G.; Kim, H.J.; Cho, S.H.; Lee, S.H. Assessment of Carcass and Meat Quality of Longissimus thoracis and Semimembranosus Muscles of Hanwoo with Korean Beef Grading Standards. Meat Sci. 2020, 160, 107944. [Google Scholar] [CrossRef]
- Wyrwisz, J.; Moczkowska, M.; Kurek, M.; Stelmasiak, A.; Półtorak, A.; Wierzbicka, A. Influence of 21 Days of Vacuum-Aging on Color, Bloom Development, and WBSF of Beef Semimembranosus. Meat Sci. 2016, 122, 48–54. [Google Scholar] [CrossRef]
- Bown, M.; Muir, P.; Thomson, B. Dairy and Beef Breed Effects on Beef Yield, Beef Quality and Profitability: A Review. N. Z. J. Agric. Res. 2016, 59, 174–184. [Google Scholar] [CrossRef]
- Realini, C.E.; Pavan, E.; Johnson, P.L.; Font-i-Furnols, M.; Jacob, N.; Agnew, M.; Craigie, C.R.; Moon, C.D. Consumer Liking of M. Longissimus lumborum from New Zealand Pasture-Finished Lamb Is Influenced by Intramuscular Fat. Meat Sci. 2021, 173, 108380. [Google Scholar] [CrossRef]
- Gil, M.; Rudy, M.; Stanisławczyk, R.; Duma-Kocan, P. Effect of Traditional Cooking and Sous Vide Heat Treatment, Cold Storage Time and Muscle on Physicochemical and Sensory Properties of Beef Meat. Molecules 2022, 27, 7307. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Pereira, J.; Zhou, L.; Lorenzo, J.M.; Tian, X.; Zhang, W. Insight into the Effects of Sous Vide on Cathepsin B and L Activities, Protein Degradation and the Ultrastructure of Beef. Foods 2020, 9, 1441. [Google Scholar] [CrossRef]
- Baldwin, D.E. Sous Vide Cooking: A Review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef]
- Ayub, H.; Ahmad, A. Physiochemical Changes in Sous-Vide and Conventionally Cooked Meat. Int. J. Gastron. Food Sci. 2019, 17, 100145. [Google Scholar] [CrossRef]
- Naqvi, Z.B.; Thomson, P.C.; Ha, M.; Campbell, M.A.; McGill, D.M.; Friend, M.A.; Warner, R.D. Effect of Sous Vide Cooking and Ageing on Tenderness and Water-Holding Capacity of Low-Value Beef Muscles from Young and Older Animals. Meat Sci. 2021, 175, 108435. [Google Scholar] [CrossRef]
- Pandita, G.; Bhosale, Y.K.; Choudhary, P. Sous Vide: A Proposition to Nutritious and Superior Quality Cooked Food. ACS Food Sci. Technol. 2023, 3, 592–599. [Google Scholar] [CrossRef]
- Kaur, L.; Ma, R.; Boland, M. Influence of Sous Vide Processing on Meat Protein Digestibility and Structural Modifications in Beef Semimembranosus. J. Food Sci. 2023, 88, 2481–2493. [Google Scholar] [CrossRef]
- Supaphon, P.; Kerdpiboon, S.; Vénien, A.; Loison, O.; Sicard, J.; Rouel, J.; Astruc, T. Structural Changes in Local Thai Beef during Sous-Vide Cooking. Meat Sci. 2021, 175, 108442. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Hernandez, E.; Salaseviciene, A.; Ertbjerg, P. Low-Temperature Long-Time Cooking of Meat: Eating Quality and Underlying Mechanisms. Meat Sci. 2018, 143, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Kathuria, D.; Dhiman, A.K.; Attri, S. Sous Vide, a Culinary Technique for Improving Quality of Food Products: A Review. Trends Food Sci. Technol. 2022, 119, 57–68. [Google Scholar] [CrossRef]
- Destefanis, G.; Brugiapaglia, A.; Barge, M.T.; Dal Molin, E. Relationship between Beef Consumer Tenderness Perception and Warner–Bratzler Shear Force. Meat Sci. 2008, 78, 153–156. [Google Scholar] [CrossRef]
- Hernandez, P.; Navarro, J.L.; Muela, E. Textural Properties of Beef Semimembranosus Muscle Cooked by Sous Vide at Various Temperatures. LWT Food Sci. Technol. 2024, 186, 115417. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Liu, D. Sous-Vide Treatment Reduces Toughness and Improves Palatability of Beef Semimembranosus from Older Animals. Foods 2025, 14, 325. [Google Scholar] [CrossRef]
- Kim, H.W.; Setyabrata, D.; Kim, Y.H.B. Effects of Postmortem Aging and Sous Vide Cooking on Protein Digestibility of Different Bovine Muscles Including Semimembranosus. Food Chem. 2022, 367, 130731. [Google Scholar] [CrossRef]
- Purslow, P.P.; Oiseth, S.; Hughes, J.; Warner, R.D. The Structural Basis of Meat Tenderness: Insights from Beef Semimembranosus and Sous Vide Cooking. Compr. Rev. Food Sci. Food Saf. 2022, 21, 678–701. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, W.; Xiong, Y.L. Water Distribution and Protein Denaturation in Sous-Vide Cooked Semimembranosus Beef Muscle Using LF-NMR and DSC Analysis. Food Hydrocoll. 2022, 124, 107282. [Google Scholar] [CrossRef]
- Nassu, R.T.; Juárez, M.; Uttaro, B.; Aalhus, J.L. Fresh Meat Packaging: Trends for Retail and Food Service. CABI Rev. 2010, 1–9. [Google Scholar] [CrossRef]
- Christensen, L.; Ertbjerg, P.; Løje, H.; Risbo, J.; Van Den Berg, F.W.J.; Christensen, M. Relationship between Meat Toughness and Properties of Connective Tissue from Cows and Young Bulls Heat Treated at Low Temperatures for Prolonged Times. Meat Sci. 2013, 93, 787–795. [Google Scholar] [CrossRef]
- Roldán, M.; Antequera, T.; Martín, A.; Mayoral, A.I.; Ruiz, J. Effect of Different Temperature–Time Combinations on Physicochemical, Microbiological, Textural and Structural Features of Sous-Vide Cooked Lamb Loins. Meat Sci. 2013, 93, 572–578. [Google Scholar] [CrossRef]
- PN-A 82109:2010; Meat and Meat Products. Determination of Fat, Protein and Water Content—Near Infrared Transmission Spectrometry (NIT) Method Using Artificial Neural Network (ANN) Calibration. Polish Committee for Standardization: Warszawa, Poland, 2010.
- Anderson, S. Determination of Fat, Moisture, and Protein in Meat and Meat Products by Using the FOSS FoodScan near-Infrared Spectrophotometer with FOSS Artificial Neural Network Calibration Model and Associated Database: Collaborative Study. J. AOAC Int. 2007, 90, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.C.; King, D.A. (Eds.) AMSA Meat Color Measurement Guidelines; American Meat Science Association: Champaign, IL, USA, 2012; ISBN 80-05-17267-2. [Google Scholar]
- Hamm, R. Functional Properties of the Myofibrillar System and Their Measurements. In Muscle as Food; Elsevier: Amsterdam, The Netherlands, 1986; pp. 135–199. ISBN 978-0-12-084190-5. [Google Scholar]
- Zduńczyk, W.; Tkacz, K.; Pietrzak-Fiećko, R.; Bottari, B.; Modzelewska-Kapituła, M. Pork as a Source of Nutrients in a Human Diet—Comparison of Meat Obtained from Conventional and Organic Systems Offered in the Polish Market. NFS J. 2024, 37, 100199. [Google Scholar] [CrossRef]
- Bykowska, M.; Stanisz, M.; Ludwiczak, A.; Składanowska, J.; Ślósarz, P. The Effect of Muscle, Time Post-Mortem and Sex on the Quality of Meat from Fallow Deer (Dama dama) Farmed in Poland. Small Rumin. Res. 2018, 160, 12–18. [Google Scholar] [CrossRef]
- PN ISO 4121:1998; Sensory Analysis—Methodology—Evaluation of Food Products by Methods Using Scales. Polish Committee for Standardization: Warszawa, Poland, 1998.
- Tornberg, E. Effects of Heat on Meat Proteins—Implications on Structure and Quality of Meat Products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef]
- Zhu, X.; Kaur, L.; Staincliffe, M.; Boland, M. Actinidin Pretreatment and Sous Vide Cooking of Beef Brisket: Effects on Meat Microstructure, Texture and in Vitro Protein Digestibility. Meat Sci. 2018, 145, 256–265. [Google Scholar] [CrossRef]
- Isleroglu, H.; Kemerli, T.; Kaymak-Ertekin, F. Effect of Steam-Assisted Hybrid Cooking on Textural Quality Characteristics, Cooking Loss, and Free Moisture Content of Beef. Int. J. Food Prop. 2015, 18, 403–414. [Google Scholar] [CrossRef]
- Roldán, M.; Ruiz, J.; Del Pulgar, J.S.; Pérez-Palacios, T.; Antequera, T. Volatile Compound Profile of Sous-Vide Cooked Lamb Loins at Different Temperature–Time Combinations. Meat Sci. 2015, 100, 52–57. [Google Scholar] [CrossRef]
- Latoch, A.; Głuchowski, A.; Czarniecka-Skubina, E. Sous-Vide as an Alternative Method of Cooking to Improve the Quality of Meat: A Review. Foods 2023, 12, 3110. [Google Scholar] [CrossRef]
- Macharáčková, B.; Bogdanovičová, K.; Ježek, F.; Bednář, J.; Haruštiaková, D.; Kameník, J. Cooking Loss in Retail Beef Cuts: The Effect of Muscle Type, Sex, Ageing, pH, Salt and Cooking Method. Meat Sci. 2021, 171, 108270. [Google Scholar] [CrossRef] [PubMed]
- Babaoglu, M.; Aktas, N.; Igci, N.; Ertul, S. Cooking-Induced Lipid–Protein Oxidation in Kavurma (a Cooked Meat Product). J. Food Process. Preser. 2025, 2025, 3824071. [Google Scholar] [CrossRef]
- Geng, L.; Liu, K.; Zhang, H. Lipid Oxidation in Foods and Its Implications on Proteins. Front. Nutr. 2023, 10, 1192199. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Lv, R.; Zhai, P.; Wang, X.; Li, Y.; Yin, M. Molecular Mechanisms Underlying Sensory and Chemical Changes in Muscle Foods Induced by Sous-Vide Cooking: A Review. Foods 2025, 14, 2967. [Google Scholar] [CrossRef]
| Tenderness Classes | Destefanis et al.’s Criteria [26] | WBSF [N] | ||
|---|---|---|---|---|
| Mean Value | SEM | |||
| Tough | >52.68 N | 56.0 | 4.0 | |
| 55.1 | 1.7 | |||
| 79.7 | 2.9 | |||
| 54.5 | 1.3 | |||
| 54.9 | 1.8 | |||
| 58.0 | 4.0 | |||
| 52.9 | 0.3 | |||
| 53.2 | 1.2 | |||
| Intermediate | 42.87 N–52.68 N | 43.6 | 2.9 | |
| 49.8 | 2.5 | |||
| 44.7 | 2.9 | |||
| 42.9 | 1.8 | |||
| 47.7 | 1.3 | |||
| 48.8 | 1.6 | |||
| 45.7 | 2.2 | |||
| 44.0 | 4.0 | |||
| 43.5 | 1.1 | |||
| Tender | <42.87 N | 30.1 | 1.3 | |
| 42.3 | 0.5 | |||
| 33.6 | 1.3 | |||
| 36.0 | 4.0 | |||
| 40.0 | 4.0 | |||
| Summary | ||||
| Tenderness Classes | Mean WBSF Value in the Group [N] | SEM | Minimum Value [N] | Maximum Value [N] |
| Tough | 59.2 | 1.8 | 52.9 | 79.7 |
| Intermediate | 45.9 | 0.8 | 42.9 | 49.8 |
| Tender | 35.7 | 1.4 | 30.1 | 42.3 |
| Attribute | Tenderness Classes | p Value | ||
|---|---|---|---|---|
| Tough | Intermediate | Tender | ||
| pH | 5.51 ± 0.01 | 5.50 ± 0.01 | 5.50 ± 0.01 | 0.664 |
| Free water [%] | 24.0 ± 0.9 | 23.7 ± 0.7 | 25.2 ± 0.7 | 0.570 |
| Plasticity [cm2] | 3.0 ± 0.1 | 3.14 ± 0.13 | 3.17 ± 0.10 | 0.647 |
| Chemical Composition | ||||
| Moisture [%] | 72.2 ± 0.3 | 72.42 ± 0.25 | 72.5 ± 0.4 | 0.734 |
| Protein [%] | 23.2 ± 0.3 | 23.31 ± 0.26 | 22.44 ± 0.13 | 0.118 |
| Fat [%] | 3.8 ± 0.3 | 3.26 ± 0.26 | 3.4 ± 0.5 | 0.480 |
| Ash [%] | 0.86 ± 0.06 | 0.93 ± 0.08 | 1.16 ± 0.18 | 0.154 |
| Colour | ||||
| L* | 34.2 ± 0.6 | 35.6 ± 0.5 | 34.9 ± 0.5 | 0.169 |
| a* | 21.1 ± 0.4 | 20.7 ± 0.5 | 19.9 ± 0.5 | 0.265 |
| b* | 11.3 ± 0.4 | 11.3 ± 0.4 | 10.5 ± 0.4 | 0.392 |
| C* | 24.0 ± 0.5 | 23.6 ± 0.6 | 22.5 ± 0.6 | 0.266 |
| h° | 28.0 ± 0.7 | 28.4 ± 0.6 | 27.6 ± 0.5 | 0.712 |
| Attribute | SV Time (SVT) | Tenderness Classes (TC) | ||
|---|---|---|---|---|
| Tough | Intermediate | Tender | ||
| Cooking loss [%] | ||||
| 3 h | 25.8 B ± 0.8 | 25.4 B ± 1.7 | 26.6 A ± 0.8 | |
| 4 h | 27.0 AB ± 0.8 | 27.9 AB ± 0.6 | 27.4 A ± 0.9 | |
| 6 h | 29.3 A ± 1.3 | 30.2 A ± 0.5 | 28.3 A ± 0.8 | |
| p value | SVT | 0.001 | ||
| TC | 0.826 | |||
| SVT × TC | 0.551 | |||
| WBSF [N] | ||||
| 3 h | 38.3 Aa ± 1.3 | 31.4 Ab ± 1.1 | 29.8 Ab ± 1.1 | |
| 4 h | 34.1 Ba ± 1.4 | 30.4 Ab ± 1.2 | 28.1 Ab ± 1.2 | |
| 6 h | 32.5 Ba ± 2.2 | 27.6 Ab ± 1.2 | 21.3 Bc ± 1.2 | |
| p value | SVT | 0.000 | ||
| TC | 0.000 | |||
| SVT × TC | 0.371 | |||
| Sensory Evaluation | ||||
| Juiciness [points] | ||||
| 3 h | 6.81 Aa ± 0.19 | 7.35 Aa ± 0.16 | 7.30 Aa ± 0.20 | |
| 4 h | 6.79 Ab ± 0.19 | 7.06 Aa ± 0.14 | 7.4 Aa ± 0.20 | |
| 6 h | 6.77 Ab ± 0.21 | 6.85 Ab ± 0.20 | 7.53 Aa ± 0.20 | |
| p value | SVT | 0.809 | ||
| TC | 0.000 | |||
| SVT × TC | 0.095 | |||
| Tenderness [points] | ||||
| 3 h | 6.73 Ba ± 0.19 | 7.13 Ab ± 0.16 | 7.20 Bb ± 0.23 | |
| 4 h | 7.06 ABa ± 0.19 | 7.00 Ab ± 0.14 | 7.57 Bb ± 0.21 | |
| 6 h | 7.35 Ab ± 0.21 | 7.59 Ab ± 0.20 | 8.47 Aa ± 0.18 | |
| p value | SVT | 0.000 | ||
| TC | 0.000 | |||
| SVT × TC | 0.217 | |||
| Attribute | SV Time (SVT) | Tenderness Classes (TC) | ||
|---|---|---|---|---|
| Tough | Intermediate | Tender | ||
| L* | ||||
| 3 h | 52.2 A ± 0.7 | 52.0 A ± 0.4 | 54.4 A ± 0.6 | |
| 4 h | 54.0 A ± 0.8 | 53.2 A ± 0.6 | 54.0 A ± 0.4 | |
| 6 h | 55.4 A ± 0.6 | 52.4 A ± 0.5 | 55.39 A ± 0.24 | |
| p value | SVT | 0.588 | ||
| TC | 0.069 | |||
| SVT × TC | 0.11 | |||
| a* | ||||
| 3 h | 17.4 A ± 0.4 | 17.6 A ± 0.3 | 17.5 A ± 0.5 | |
| 4 h | 16.0 A ± 0.7 | 15.4 B ± 0.4 | 16.9 AB ± 0.4 | |
| 6 h | 15.8 A ± 0.4 | 14.4 B ± 0.6 | 14.2 B ± 0.5 | |
| p value | SVT | 0.000 | ||
| TC | 0.286 | |||
| SVT × TC | 0.162 | |||
| b* | ||||
| 3 h | 13.14 A ± 0.29 | 13.55 A ± 0.28 | 12.3 A ± 0.6 | |
| 4 h | 12.92 A ± 0.21 | 12.98 A ± 0.26 | 12.5 A ± 0.3 | |
| 6 h | 13.07 A ± 0.19 | 13.4 A ± 0.3 | 13.05 A ± 0.24 | |
| p value | SVT | 0.344 | ||
| TC | 0.061 | |||
| SVT × TC | 0.607 | |||
| C* | ||||
| 3 h | 21.9 A ± 0.5 | 22.2 A ± 0.4 | 21.4 A ± 0.7 | |
| 4 h | 20.6 A ± 0.6 | 20.2 B ± 0.4 | 21.0 A ± 0.4 | |
| 6 h | 20.53 A ± 0.29 | 19.7 B ± 0.6 | 19.3 A ± 0.4 | |
| p value | SVT | 0.000 | ||
| TC | 0.636 | |||
| SVT × TC | 0.422 | |||
| h° | ||||
| 3 h | 37.0 A ± 0.6 | 37.6 B ± 0.5 | 35.0 B ± 0.8 | |
| 4 h | 39.6 A ± 1.2 | 40.2 B ± 0.8 | 36.7 B ± 0.7 | |
| 6 h | 39.8 A ± 0.8 | 43.7 A ± 1.0 | 42.8 A ± 1.1 | |
| p value | SVT | 0.000 | ||
| TC | 0.063 | |||
| SVT × TC | 0.060 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkacz, K.; Nogalski, Z.; Modzelewska-Kapituła, M. Sous-Vide Processing as a Method for Standardising the Quality of Beef from Holstein-Friesian Bulls: The Effect of Time on Tenderness. Appl. Sci. 2025, 15, 12282. https://doi.org/10.3390/app152212282
Tkacz K, Nogalski Z, Modzelewska-Kapituła M. Sous-Vide Processing as a Method for Standardising the Quality of Beef from Holstein-Friesian Bulls: The Effect of Time on Tenderness. Applied Sciences. 2025; 15(22):12282. https://doi.org/10.3390/app152212282
Chicago/Turabian StyleTkacz, Katarzyna, Zenon Nogalski, and Monika Modzelewska-Kapituła. 2025. "Sous-Vide Processing as a Method for Standardising the Quality of Beef from Holstein-Friesian Bulls: The Effect of Time on Tenderness" Applied Sciences 15, no. 22: 12282. https://doi.org/10.3390/app152212282
APA StyleTkacz, K., Nogalski, Z., & Modzelewska-Kapituła, M. (2025). Sous-Vide Processing as a Method for Standardising the Quality of Beef from Holstein-Friesian Bulls: The Effect of Time on Tenderness. Applied Sciences, 15(22), 12282. https://doi.org/10.3390/app152212282

