Daily Light Integral (DLI) Mapping Challenges in a Central European Country (Slovakia)
Featured Application
Abstract
1. Introduction
- (i)
- to create a 1 mol·m−2·d−1 resolution Slovakia DLI map and explore the seasonal and regional characteristics,
- (ii)
- to create 2 and 5 mol·m−2·d−1 resolution DLI maps to show how the spatial resolution capabilities change in a local (country) and regional (Europe) context,
- (iii)
- to summarize and compare the seasonal patterns for mountainous and lowland areas with characteristic DLI values (minimum, maximum, average, range).
2. Materials and Methods
2.1. Study Area
2.2. Spatial Sampling, Data Acquisition, and Automation
3. Results
3.1. High Precision 1 mol·m−2·d−1 DLI Map
3.2. Comparison of DLI Maps for 1 mol·m−2·d−1, 2 mol·m−2·d−1 and 5 mol·m−2·d−1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takemiya, A.; Inoue, S.; Doi, M.; Kinoshita, T.; Shimazaki, K. Phototropins Promote Plant Growth in Response to Blue Light in Low Light Environments. Plant Cell 2005, 17, 1120–1127. [Google Scholar] [CrossRef]
- Bao, Y.; Liu, X.; Feng, C.-H.; Niu, M.-X.; Liu, C.; Wang, H.-L.; Yin, W.; Xia, X. Light and Light Signals Regulate Growth and Development in Woody Plants. Forests 2024, 15, 523. [Google Scholar] [CrossRef]
- Peng, Y.; Zhu, H.; Wang, Y.; Kang, J.; Hu, L.; Li, L.; Zhu, K.; Yan, J.; Bu, X.; Wang, X.; et al. Revisiting the Role of Light Signaling in Plant Responses to Salt Stress. Hortic. Res. 2025, 12, uhae262. [Google Scholar] [CrossRef]
- Wu, W.; Chen, L.; Liang, R.; Huang, S.; Li, X.; Huang, B.; Luo, H.; Zhang, M.; Wang, X.; Zhu, H. The Role of Light in Regulating Plant Growth, Development and Sugar Metabolism: A Review. Front. Plant Sci. 2025, 15, 1507628. [Google Scholar] [CrossRef]
- Goyal, A.; Szarzynska, B.; Fankhauser, C. Phototropism: At the Crossroads of Light-Signaling Pathways. Trends Plant Sci. 2013, 18, 393–401. [Google Scholar] [CrossRef]
- Kharshiing, E.; Sinha, S. Plant Productivity: Can Photoreceptors Light the Way? J. Plant Growth Regul. 2014, 34, 206–214. [Google Scholar] [CrossRef]
- Liscum, E.; Askinosie, S.K.; Leuchtman, D.L.; Morrow, J.; Willenburg, K.T.; Coats, D.R. Phototropism: Growing towards an Understanding of Plant Movement. Plant Cell 2014, 1, 38–55. [Google Scholar] [CrossRef] [PubMed]
- Paik, I.; Huq, E. Plant Photoreceptors: Multi-Functional Sensory Proteins and Their Signaling Networks. Semin. Cell Dev. Biol. 2019, 92, 114–121. [Google Scholar] [CrossRef]
- Farhangi, H.; Mozafari, V.; Roosta, H.R.; Shirani, H.; Farhangi, S.; Farhangi, M. Optimizing LED Lighting Spectra for Enhanced Growth in Controlled-Environment Vertical Farms. Sci. Rep. 2025, 15, 30152. [Google Scholar] [CrossRef]
- Kelly, N.; Choe, D.; Meng, Q.; Runkle, E.S. Promotion of Lettuce Growth under an Increasing Daily Light Integral Depends on the Combination of the Photosynthetic Photon Flux Density and Photoperiod. Sci. Hortic. 2020, 272, 109565. [Google Scholar] [CrossRef]
- Spalholz, H.; Perkins-Veazie, P.; Hernández, R. Impact of Sun-Simulated White Light and Varied Blue:Red Spectrums on the Growth, Morphology, Development, and Phytochemical Content of Green- and Red-Leaf Lettuce at Different Growth Stages. Sci. Hortic. 2020, 264, 109195. [Google Scholar] [CrossRef]
- Zhen, S.; van Iersel, M.; Bugbee, B. Why Far-Red Photons Should Be Included in the Definition of Photosynthetic Photons and the Measurement of Horticultural Fixture Efficacy. Front. Plant Sci. 2021, 12, 693445. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; van Iersel, M.W. Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms. Front. Plant Sci. 2021, 12, 619987. [Google Scholar] [CrossRef] [PubMed]
- Cope, K.R.; Snowden, M.C.; Bugbee, B. Photobiological Interactions of Blue Light and Photosynthetic Photon Flux: Effects of Monochromatic and Broad-Spectrum Light Sources. Photochem. Photobiol. 2014, 90, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Gavhane, K.P.; Hasan, M.; Singh, D.K.; Kumar, S.N.; Sahoo, R.N.; Alam, W. Determination of Optimal Daily Light Integral (DLI) for Indoor Cultivation of Iceberg Lettuce in an Indigenous Vertical Hydroponic System. Sci. Rep. 2023, 13, 10923. [Google Scholar] [CrossRef]
- Lauria, G.; Piccolo, E.L.; Ceccanti, C.; Guidi, L.; Bernardi, R.; Araniti, F.; Cotrozzi, L.; Pellegrini, E.; Moriconi, M.; Giordani, T.; et al. Supplemental Red LED Light Promotes Plant Productivity, “Photomodulates” Fruit Quality and Increases Botrytis Cinerea Tolerance in Strawberry. Postharvest Biol. Technol. 2023, 198, 112253. [Google Scholar] [CrossRef]
- Moland, S.; Mansoori, M.; Wu, B.S.; Addo, P.W.; MacPherson, S.; Lefsrud, M. Effects of daily light integral for amber and red light on the growth of lettuce using a nutrient film technique hydroponic system. Int. J. Veg. Sci. 2025, 5, 1–18. [Google Scholar] [CrossRef]
- Adame-Adame, D.Y.; Alvarado-Camarillo, D.; Valdez-Aguilar, L.A.; Cartmill, A.D.; Cartmill, D.L.; Soriano-Melgar, L.D.A.A. Daily Light Integral and Nutrient Solution Electrical Conductivity for Tomato and Bell Pepper Seedling Production in an Indoor Vertical Farm with Artificial Lighting. Horticulturae 2025, 5, 454. [Google Scholar] [CrossRef]
- Paradiso, R.; Proietti, S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Yan, Z.; Cao, X.; Bing, L.; Lin, D.; Cheng, F.; Wang, K.; Qi, Y.; Yang, Y. Assessment of the growth and quality of pepper seedlings under the combinations of daily light integral and nitrogen concentration. Hortic. Environ. Biotechnol. 2025, 2, 331–346. [Google Scholar] [CrossRef]
- Korczynski, P.C.; Logan, J.; Faust, J.E. Mapping Monthly Distribution of Daily Light Integrals across the Contiguous United States. Horttechnology 2002, 1, 12–16. [Google Scholar] [CrossRef]
- Faust, J.E.; Logan, J. Daily Light Integral: A Research Review and High-Resolution Maps of the United States. HortScience 2018, 9, 1250–1257. [Google Scholar] [CrossRef]
- Wang, Y.; Chu, Y.; Wan, Z.; Zhang, G.; Liu, L.; Yan, Z. Root Architecture, Growth and Photon Yield of Cucumber Seedlings as Influenced by Daily Light Integral at Different Stages in the Closed Transplant Production System. Horticulturae 2021, 7, 328. [Google Scholar] [CrossRef]
- Xu, W.; Lu, N.; Kikuchi, M.; Takagaki, M. Continuous Lighting and High Daily Light Integral Enhance Yield and Quality of Mass-Produced Nasturtium (Tropaeolum majus L.) in Plant Factories. Plants 2021, 10, 1203. [Google Scholar] [CrossRef]
- Jung, A.; Szabó, D.; Varga, Z.; Pék, Z.; Vohland, M.; Sipos, L. Spatially Scaled and Customised Daily Light Integral Maps for Horticulture Lighting Design. NJAS Impact Agric. Life Sci. 2024, 96, 2349522. [Google Scholar] [CrossRef]
- Jung, A.; Szabó, D.; Varga, Z.; Lausch, A.; Vohland, M.; Sipos, L. Daily Light Integral Maps for Agriculture Lighting Design in Spain. Smart Agric. Technol. 2024, 9, 100681. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Y.; Sun, Z.; Li, P.; Li, C. Mapping Monthly Distribution of Daily Light Integrals Across China. In Proceedings of the Annual Conference of ASHS, New Orleans, LA, USA, 7 August 2015. [Google Scholar]
- Blonquist, J.M.; Bugbee, B. Solar, net, and photosynthetic radiation. Agroclimatol. Link. Agric. Clim. 2020, 60, 1–49. [Google Scholar]
- Armitage, A.M.; Carlson, W.H.; Flore, J.A. The Effect of Temperature and Quantum Flux Density on the Morphology, Physiology, and Flowering of Hybrid Geraniums1. J. Am. Soc. Hortic. Sci. 1981, 106, 643–647. [Google Scholar] [CrossRef]
- Huber, B.M.; Louws, F.J.; Hernández, R. Impact of Different Daily Light Integrals and Carbon Dioxide Concentrations on the Growth, Morphology, and Production Efficiency of Tomato Seedlings. Front. Plant Sci. 2021, 12, 615853. [Google Scholar] [CrossRef]
- Degni, B.F.; Kone, G.; Gbegbe, R. Mapping of Average DLI Obtained over 17 Years in Different Regions of Côte d’Ivoire: A Sustainable Agricultural Decision-Making Tool. Open J. Appl. Sci. 2025, 5, 1310–1323. [Google Scholar] [CrossRef]
- Garcia, C.; Lopez, R.G.; Currey, C.J. Photosynthetic Daily Light Integral Has a Greater Impact on Basil Flowering than Photoperiod. HortScience 2025, 8, 1341–1349. [Google Scholar] [CrossRef]
- Melo, M.; Lapin, M.; Pecho, J. Climate in the Past and Present in the Slovak Landscapes—The Central European Context. In Landscapes and Landforms of Slovakia; Springer International Publishing: Cham, Switzerland, 2022; pp. 27–44. [Google Scholar]
- Zeleňáková, M.; Vido, J.; Portela, M.; Purcz, P.; Blištán, P.; Hlavatá, H.; Hluštík, P. Precipitation Trends over Slovakia in the Period 1981–2013. Water 2017, 9, 922. [Google Scholar] [CrossRef]
- Kišš, V.; Pagáč, J.; Tárník, A.; Čimo, J. Changes in vegetation period length in Slovakia under the conditions of climate change for 1931–2110. Sustainability 2022, 19, 12220. [Google Scholar] [CrossRef]
- Land Cover Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Land_cover_statistics (accessed on 12 September 2025).
- Ulrych, L.; Guttová, A.; Urban, P.; Hindáková, A.; Kučera, J.; Kučera, V.; Šibík, J.; Mútňanová, M. Biodiversity in Slovakia. In Global Biodiversity; Apple Academic Press: Palm Bay, FL, USA, 2018; Volume 2, pp. 325–374. [Google Scholar]
- Braun, A. Retrieval of Digital Elevation Models from Sentinel-1 Radar Data—Open Applications, Techniques, and Limitations. Open Geosci. 2021, 1, 532–569. [Google Scholar] [CrossRef]
- DLI Calculator. Available online: https://dli.suntrackertech.com/ (accessed on 23 July 2025).
- QGIS Web Site. Available online: https://www.qgis.org/ (accessed on 22 September 2025).
- Melo, M.; Lapin, M.; Kapolková, H.; Pecho, J.; Kružicová, A. Climate Trends in the Slovak Part of the Carpathians. In The Carpathians: Integrating Nature and Society Towards Sustainability; Springer: Berlin/Heidelberg, Germany, 2013; pp. 131–150. [Google Scholar]
- Zeleňáková, M.; Fendeková, M. Key Facts About Water Resources in Slovakia. In Water Resources in Slovakia: Part I: Assessment and Development; Negm, A.M., Zeleňáková, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–19. [Google Scholar]
- Slovakia—European Commission. Available online: https://agriculture.ec.europa.eu/cap-my-country/cap-strategic-plans/slovakia_en (accessed on 22 September 2025).
- Némethová, J.; Vilinová, K. Changes in the Structure of Crop Production in Slovakia after 2004 Using an Example of Selected Crops. Land 2022, 11, 249. [Google Scholar] [CrossRef]







| Mountains | Lowlands | Total | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Minimum DLI | Maximum DLI | Mean DLI | Range DLI | Minimum DLI | Maximum DLI | Mean DLI | Range DLI | DLI Range (Maxima) | DLI Range (Minima) | DLI Range (Max and Min Differences) | ||
| Spring | March | 17 | 20 | 18.5 | 3 | 19 | 22 | 20.5 | 3 | 2 | 2 | 5 |
| April | 24 | 30 | 27 | 6 | 30 | 37 | 33.5 | 7 | 7 | 6 | 13 | |
| May | 28 | 34 | 31 | 6 | 33 | 38 | 35.5 | 5 | 4 | 5 | 10 | |
| Summer | June | 33 | 39 | 36 | 6 | 40 | 43 | 41.5 | 3 | 4 | 7 | 10 |
| July | 36 | 40 | 38 | 4 | 40 | 46 | 43 | 6 | 6 | 4 | 10 | |
| August | 29 | 35 | 32 | 6 | 34 | 39 | 36.5 | 5 | 4 | 5 | 10 | |
| Autumn | September | 18 | 23 | 20.5 | 5 | 22 | 26 | 24 | 4 | 3 | 4 | 8 |
| October | 11 | 13 | 12 | 2 | 12 | 15 | 13.5 | 3 | 2 | 1 | 4 | |
| November | 6 | 8 | 7 | 2 | 8 | 10 | 9 | 2 | 2 | 2 | 4 | |
| Winter | December | 4 | 7 | 5.5 | 3 | 4 | 5 | 4.5 | 1 | 2 | 0 | 1 |
| February | 4 | 7 | 5.5 | 3 | 5 | 7 | 6 | 2 | 0 | 1 | 3 | |
| January | 9 | 12 | 10.5 | 3 | 11 | 12 | 11.5 | 1 | 0 | 2 | 3 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kundathil, A.; Varga, Z.; Szalay, K.; Sipos, L.; Jung, A. Daily Light Integral (DLI) Mapping Challenges in a Central European Country (Slovakia). Appl. Sci. 2025, 15, 12254. https://doi.org/10.3390/app152212254
Kundathil A, Varga Z, Szalay K, Sipos L, Jung A. Daily Light Integral (DLI) Mapping Challenges in a Central European Country (Slovakia). Applied Sciences. 2025; 15(22):12254. https://doi.org/10.3390/app152212254
Chicago/Turabian StyleKundathil, Anusha, Zsófia Varga, Kornél Szalay, László Sipos, and András Jung. 2025. "Daily Light Integral (DLI) Mapping Challenges in a Central European Country (Slovakia)" Applied Sciences 15, no. 22: 12254. https://doi.org/10.3390/app152212254
APA StyleKundathil, A., Varga, Z., Szalay, K., Sipos, L., & Jung, A. (2025). Daily Light Integral (DLI) Mapping Challenges in a Central European Country (Slovakia). Applied Sciences, 15(22), 12254. https://doi.org/10.3390/app152212254

