The Effect of Lightweight Wearable Resistance on the Squat and Countermovement Jumps: Does Load Dampen the Performance-Enhancing Effect of the Stretch-Shortening Cycle?
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Approach
2.2. Participants
2.3. Equipment
2.4. Vertical Jump Testing
2.5. Data Collection
2.6. Statistical Analysis
3. Results
3.1. Squat Jump
3.2. Countermovement Jump
3.3. Elastic Utilization Ratios
4. Discussion
4.1. SJ and CMJ Acute Adaptations
4.2. Eccentric Utilization Ratios
4.3. Practical Applications
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BM | Body Mass |
| CC | Contractile Component |
| CFI | Concentric Force Index |
| CI | Concentric Impulse |
| CMD | Countermovement Depth |
| CMF | Concentric Mean Force |
| CMJ | Countermovement Jump |
| CMP | Concentric Mean Power |
| CMV | Concentric Mean Velocity |
| ConT | Concentric Phase Time |
| EccT | Eccentric Phase Time |
| EUR | Elastic Utilization Ratio |
| FPP | Force at Peak Power |
| JH | Jump Height |
| MTU | Muscle–Tendon Unit |
| PEC | Parallel Elastic Component |
| PP | Peak Power |
| rCI | Relative Concentric Impulse |
| rCMF | Relative Concentric Mean Force |
| rCMP | Relative Concentric Mean Power |
| rPP | Relative Peak Power |
| SEC | Series Elastic Component |
| SJ | Squat Jump |
| SSC | Stretch-Shortening Cycle |
| TCM | Three-Component Model |
| TCT | Total Contraction Time |
| vGRF | Vertical Ground Reaction Force |
| VPP | Velocity at Peak Power |
| VJ | Vertical Jump |
| WR | Wearable Resistance |
References
- Cavagna, G.A.; Dusman, B.; Margaria, R. Positive Work Done by a Previously Stretched Muscle. J. Appl. Physiol. 1968, 24, 21–32. [Google Scholar] [CrossRef]
- Cavagna, G.A. Storage and Utilization of Elastic Energy in Skeletal Muscle. Exerc. Sport Sci. Rev. 1977, 5, 89–130. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Gerritsen, K.G.M.; Litjens, M.C.A.; Van Soest, A.J. Why Is Countermovement Jump Height Greater Than Squat Jump Height? Med. Sci. Sports Exerc. 1996, 28, 1402–1412. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Casius, L.J.R.; Sijpkens, I.W.T.; Jaspers, R.T. Humans Adjust Control to Initial Squat Depth in Vertical Squat Jumping. J. Appl. Physiol. 2008, 105, 1428–1440. [Google Scholar] [CrossRef]
- McGuigan, M.R.; Doyle, T.L.A.; Newton, M.; Edwards, D.J.; Nimphius, S.; Newton, R.U. Eccentric Utilization Ratio: Effect of Sport and Phase of Training. J. Strength Cond. Res. 2006, 20, 992–995. [Google Scholar] [CrossRef]
- Komi, P.V.; Bosco, C. Utilization of Stored Elastic Energy in Leg Extensor Muscles by Men and Women. Med. Sci. Sports Exerc. 1978, 10, 261–265. [Google Scholar]
- Van Hooren, B.; Zolotarjova, J. The Difference Between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms with Practical Applications. J. Strength Cond. Res. 2017, 31, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.B.; McNair, P.J.; Marshall, R.N. Power Absorption and Production During Slow, Large-Amplitude Stretch-Shorten Cycle Motions. Eur. J. Appl. Physiol. 2002, 87, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Finni, T.; Ikegawa, S.; Lepola, V.; Komi, P.V. In Vivo Behavior of Vastus Lateralis Muscle During Dynamic Performances. Eur. J. Sport Sci. 2001, 1, 1–13. [Google Scholar] [CrossRef]
- Hill, A.V. Production and absorption of work by muscle. Science 1960, 131, 897–903. [Google Scholar] [CrossRef]
- Ishikawa, M.; Finni, T.; Komi, P.V. Behaviour of Vastus Lateralis Muscle–Tendon During High Intensity SSC Exercises in Vivo. Acta Physiol. Scand. 2003, 178, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Kopper, B.; Csende, Z.; Sáfár, S.; Hortobágyi, T.; Tihanyi, J. Muscle Activation History at Different Vertical Jumps and Its Influence on Vertical Velocity. J. Electromyogr. Kinesiol. 2013, 23, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Kopper, B.; Csende, Z.; Trzaskoma, L.; Tihanyi, J. Stretch-Shortening Cycle Characteristics During Vertical Jumps Carried Out with Small and Large Range of Motion. J. Electromyogr. Kinesiol. 2014, 24, 233–239. [Google Scholar] [CrossRef]
- Asmussen, E.; Bonde-Petersen, F. Storage of Elastic Energy in Skeletal Muscles in Man. Acta Physiol. Scand. 1974, 91, 385–392. [Google Scholar] [CrossRef]
- Anderson, F.C.; Pandy, M.G. Storage and Utilization of Elastic Strain Energy During Jumping. J. Biomech. 1993, 26, 1413–1427. [Google Scholar] [CrossRef]
- Bosco, C.; Komi, P.V.; Ito, A. Prestretch Potentiation of Human Skeletal Muscle During Ballistic Movement. Acta Physiol. Scand. 1981, 111, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.J.; Elliott, B.C.; Wood, G.A. The Effect on Performance of Imposing a Delay During a Stretch-Shorten Cycle Movement. Med. Sci. Sports Exerc. 1991, 23, 364. [Google Scholar] [CrossRef]
- Čoh, M.; Mackala, K. Differences Between the Elite and Subelite Sprinters in Kinematic and Dynamic Determinations of Countermovement Jump and Drop Jump. J. Strength Cond. Res. 2013, 27, 3021–3027. [Google Scholar] [CrossRef]
- Van Ingen Schenau, G.J.; Bobbert, M.F.; De Haan, A. Does Elastic Energy Enhance Work and Efficiency in the Stretch-Shortening Cycle? J. Appl. Biomech. 1997, 13, 389–415. [Google Scholar] [CrossRef]
- Young, W.B.; Pryor, J.F.; Wilson, G.J. Effect of Instructions on Characteristics of Countermovement and Drop Jump Performance. J. Strength Cond. Res. 1995, 9, 232–236. [Google Scholar]
- Hrysomallis, C. The Effectiveness of Resisted Movement Training on Sprinting and Jumping Performance. J. Strength Cond. Res. 2012, 26, 299–306. [Google Scholar] [CrossRef]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Power-Time, Force-Time, and Velocity-Time Curve Analysis During the Jump Squat: Impact of Load. J. Appl. Biomech. 2008, 24, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Power-Time, Force-Time, and Velocity-Time Curve Analysis of the Countermovement Jump: Impact of Training. J. Strength Cond. Res. 2009, 23, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Feeney, D.; Stanhope, S.J.; Kaminski, T.W.; Machi, A.; Jaric, S. Loaded Vertical Jumping: Force–Velocity Relationship, Work, and Power. J. Appl. Biomech. 2016, 32, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Earp, J.E.; Newton, R.U.; Cormie, P.; Blazevich, A.J. The Influence of Loading Intensity on Muscle–Tendon Unit Behavior During Maximal Knee Extensor Stretch Shortening Cycle Exercise. Eur. J. Appl. Physiol. 2013, 114, 59–69. [Google Scholar] [CrossRef]
- Hori, N.; Newton, R.U.; Kawamori, N.; McGuigan, M.R.; Andrews, W.A.; Chapman, D.W.; Nosaka, K. Comparison of Weighted Jump Squat Training With and Without Eccentric Braking. J. Strength Cond. Res. 2008, 22, 54–65. [Google Scholar] [CrossRef]
- Cronin, J.B.; Hansen, K.T. Strength and Power Predictors of Sports Speed. J. Strength Cond. Res. 2005, 19, 349–357. [Google Scholar]
- McClenton, L.S.; Brown, L.E.; Coburn, J.W.; Kersey, R.D. The Effect of Short-Term VertiMax vs. Depth Jump Training on Vertical Jump Performance. J. Strength Cond. Res. 2008, 22, 321–325. [Google Scholar] [CrossRef]
- Sheppard, J.; Hobson, S.; Barker, M.; Taylor, K.; Chapman, D.; McGuigan, M.; Newton, R. The Effect of Training with Accentuated Eccentric Load Counter-Movement Jumps on Strength and Power Characteristics of High-Performance Volleyball Players. Int. J. Sports Sci. Coach. 2008, 3, 355–363. [Google Scholar] [CrossRef]
- Macadam, P.; Simperingham, K.D.; Cronin, J.B.; Couture, G.; Evison, C. Acute Kinematic and Kinetic Adaptations to Wearable Resistance During Vertical Jumping. Eur. J. Sport Sci. 2017, 17, 555–562. [Google Scholar] [CrossRef]
- Uthoff, A.M.; Nagahara, R.; Macadam, P.; Neville, J.; Tinwala, F.; Graham, S.P.; Cronin, J.B. Effects of forearm wearable resistance on acceleration mechanics in collegiate track sprinters. Eur. J. Sport Sci. 2020, 20, 1346–1354. [Google Scholar] [CrossRef]
- Rydså, J.I.; van den Tillaar, R. The acute effect of wearable resistance load and placement upon change of direction performance in soccer players. PLoS ONE 2020, 15, e0242493. [Google Scholar]
- Fredriksen, A.B.; van den Tillaar, R. Effect of six weeks of training with wearable resistance attached to the forearm on throwing kinematics, strength, and velocity in female handball players. J. Funct. Morphol. Kinesiol. 2025, 10, 45. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Sole, C.J.; Stone, M.H. Comparison of Methods That Assess Lower-Body Stretch-Shortening Cycle Utilization. J. Strength Cond. Res. 2016, 30, 547–554. [Google Scholar] [CrossRef]
- Janicijevic, D.N.; Knezevic, O.M.; Mirkov, D.M.; Pérez-Castilla, A.; Petrovic, M.R.; García-Ramos, A. Magnitude and Reliability of Mechanical Outputs Obtained During Loaded Squat Jumps Performed from Different Knee Angles. Sports Biomech. 2019, 20, 925–937. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Gutiérrez-Dávila, M.; González, C.; Giles, F.J.; Gallardo, D.; Rojas, F.J. Effect of Light Overloads on Countermovement Vertical Jump Performance. Rev. Int. Med. Cienc. Act. Fis. Deporte 2016, 16, 633–648. [Google Scholar]
- Harrison, A.J.; Byrne, P.; Sundar, S. The Effects of Added Mass on the Biomechanics and Performance of Countermovement Jumps. J. Sports Sci. 2019, 37, 1591–1599. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; McGuigan, M.; Freitas, T.T.; Nakamura, F.; Boullosa, D.; Valenzuela, P.; Pareja-Blanco, F. Squat and Countermovement Jump Performance Across a Range of Loads: A Comparison Between Smith Machine and Free Weight Execution Modes in Elite Sprinters. Biol. Sport 2022, 39, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.N.; Jeffreys, I. The Stretch-Shortening Cycle: Proposed Mechanisms and Methods for Enhancement. Strength Cond. J. 2010, 32, 87–99. [Google Scholar] [CrossRef]
- Nichols, T.R. Reflex Circuits. In Encyclopedia of Neuroscience; Squire, L.R., Ed.; Academic Press: Oxford, UK, 2009; pp. 73–79. [Google Scholar]
- Cronin, J.; McNair, P.J.; Marshall, R.N. Developing Explosive Power: A Comparison of Technique and Training. J. Sci. Med. Sport 2001, 4, 59–70. [Google Scholar] [CrossRef]

| Variable | 0% | 2% | 4% | 6% |
|---|---|---|---|---|
| JH (cm) | 34.3 ± 4.1 cd | 33.1 ± 3.4 d | 32.1 ± 2.6 ad | 30.5 ± 2.6 abc |
| ConT (ms) | 412 ± 50 | 389. ± 43 | 399 ± 46 | 421 ± 62 |
| CMV (m/s) | 1.14 + 0.1 d | 1.14 + 0.08 d | 1.11 + 0.1 | 1.06 + 0.1 ab |
| CI (Ns) | 197 ± 20 | 197 ± 21 | 198 ± 21 | 197 ± 19 |
| rCI (Ns/kg) | 2.59 ± 0.15 d | 2.54 ± 0.13 d | 2.51 ± 0.10 d | 2.44 ± 0.11 abc |
| CMF (N) | 1233 ± 150 bc | 1272 ± 144 a | 1277 ± 157 a | 1274 ± 145 |
| rCMF (N/kg) | 16.2 ± 0.8 | 16.4 ± 0.7 d | 16.2 ± 0.8 | 15.8 ± 0.9 b |
| CFI | 3.99 ± 0.69 | 4.28 ± 0.66 | 4.14 ± 0.69 | 3.86 ± 0.82 |
| CMP (W) | 1410 ± 231 | 1450 ± 212 | 1421 ± 259 | 1359 ± 238 |
| rCMP (W/kg) | 18.5 ± 2.1 d | 18.7 ± 1.9 d | 18 ± 2.3 | 16.8 ± 2.4 ab |
| PP (W) | 3994 ± 455 | 4002 ± 457 | 4004 ± 395 | 3943 ± 439 |
| rPP (W/kg) | 52.5 ± 4.5 d | 51.7 ± 3.8 d | 50.9 ± 2.8 d | 48.8 ± 3.6 abc |
| FPP (N) | 1672 ± 202 cd | 1707 ± 191 | 1730 ± 178 a | 1747 ± 201 a |
| VPP (m/s) | 2.39 ± 0.15 d | 2.35 ± 0.14 d | 2.32 ± 0.11 d | 2.26 ± 0.10 abc |
| Variable | 0% | 2% | 4% | 6% |
|---|---|---|---|---|
| JH (cm) | 37.6 ± 3.4 bcd | 34.5 ± 3.6 ad | 34 ± 3.6 ad | 32.7 ± 3.2 abc |
| TCT (ms) | 833 ± 74 b | 788 + 95 ad | 810 ± 72 | 830 ± 100 b |
| CMD (cm) | 34.2 ± 3.6 bcd | 31.6 ± 4.9 a | 31.5 ± 4.2 a | 31.8 ± 4.7 a |
| EccT (ms) | 561 ± 57 b | 523 ± 71 ad | 542 ± 56 | 556 ± 80 b |
| ConT (ms) | 271 ± 22 | 265 ± 29 | 269 ± 29 | 274 ± 28 |
| CMV (m/s) | 1.47 + 0.07 bcd | 1.41 + 0.08 ad | 1.40 + 0.08 a | 1.38 + 0.07 ab |
| CI (Ns) | 207 ± 22 bd | 202 ± 22 a | 204 ± 22 | 204 ± 23 a |
| rCI (Ns/kg) | 2.71 ± 0.12 bcd | 2.60 ± 0.13 ad | 2.58 ± 0.13 ad | 2.53 ± 0.12 abc |
| CMF (N) | 1516 ± 191 | 1534 ± 199 | 1546 ± 213 | 1538 ± 195 |
| rCMF (N/kg) | 19.8 ± 0.9 d | 19.7 ± 1.1 d | 19.5 ± 1.1 | 19.1 ± 1 ab |
| CFI | 7.36 ± 0.92 | 7.56 ± 1.33 d | 7.37 ± 1.2 | 7.07 ± 1.13 b |
| CMP (W) | 2229 ± 330 d | 2171 ± 334 | 2168 ± 347 | 2122 ± 328 a |
| rCMP (W/kg) | 29.1 ± 2.4 cd | 27.9 ± 2.6 d | 27.3 ± 2.6 a | 26.3 ± 2.2 ab |
| PP (W) | 4089 ± 449 d | 3985 ± 436 | 4009 ± 480 | 3952 ± 416 a |
| rPP (W/kg) | 53.6 ± 3.7 bcd | 51.3 ± 3.5 ad | 50.7 ± 3.8 ad | 49.2 ± 3.1 abc |
| FPP (N) | 1611 ± 162 cd | 1647 ± 166 | 1668 ± 193 a | 1669 ± 151 a |
| VPP (m/s) | 2.54 ± 0.11 bcd | 2.42 ± 0.13 ad | 2.4 ± 0.13 a | 2.37 ± 0.12 ab |
| Variable | 0% | 2% | 4% | 6% |
|---|---|---|---|---|
| JH (cm) | 1.11 ± 0.11 | 1.05 ± 0.07 a | 1.06 ± 0.06 | 1.07 ± 0.06 |
| ConT (ms) | 0.67 ± 0.07 | 0.69 ± 0.09 | 0.68 ± 0.1 | 0.67 ± 0.11 |
| CMV (m/s) | 1.29 ± 0.1 | 1.25 ± 0.08 a | 1.27 ± 0.1 | 1.3 ± 0.11 |
| rCI (Ns/kg) | 1.06 ± 0.13 | 1.03 ± 0.03 | 1.03 ± 0.03 | 1.03 ± 0.05 |
| rCMF (N/kg) | 1.23 ± 0.1 | 1.20 ± 0.07 | 1.21 ± 0.07 | 1.22 ± 0.09 |
| CFI | 1.87 ± 0.27 | 1.79 ± 0.32 | 1.82 ± 0.35 | 1.91 ± 0.49 |
| rCMP (W/kg) | 1.59 ± 0.17 | 1.5 ± 0.17 a | 1.54 ± 0.19 | 1.59 ± 0.24 |
| rPP (W/kg) | 1.03 ± 0.08 | 0.99 ± 0.06 | 1.00 ± 0.06 | 1.01 ± 0.06 |
| FPP (N) | 0.97 ± 0.1 | 0.97 ± 0.05 | 0.96 ± 0.06 | 0.96 ± 0.07 |
| VPP (m/s) | 1.06 + 0.06 | 1.03 + 0.04 a | 1.04 + 0.04 a | 1.05 + 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyne, H.; Cronin, J.B. The Effect of Lightweight Wearable Resistance on the Squat and Countermovement Jumps: Does Load Dampen the Performance-Enhancing Effect of the Stretch-Shortening Cycle? Appl. Sci. 2025, 15, 12206. https://doi.org/10.3390/app152212206
Kyne H, Cronin JB. The Effect of Lightweight Wearable Resistance on the Squat and Countermovement Jumps: Does Load Dampen the Performance-Enhancing Effect of the Stretch-Shortening Cycle? Applied Sciences. 2025; 15(22):12206. https://doi.org/10.3390/app152212206
Chicago/Turabian StyleKyne, Hamish, and John B. Cronin. 2025. "The Effect of Lightweight Wearable Resistance on the Squat and Countermovement Jumps: Does Load Dampen the Performance-Enhancing Effect of the Stretch-Shortening Cycle?" Applied Sciences 15, no. 22: 12206. https://doi.org/10.3390/app152212206
APA StyleKyne, H., & Cronin, J. B. (2025). The Effect of Lightweight Wearable Resistance on the Squat and Countermovement Jumps: Does Load Dampen the Performance-Enhancing Effect of the Stretch-Shortening Cycle? Applied Sciences, 15(22), 12206. https://doi.org/10.3390/app152212206

