A Composite Index to Identify Appropriate Locations for Rural Community Renewable Energy Projects
Abstract
1. Introduction
2. Literature Review
2.1. CRE Conceptualization
2.2. Contribution of CRE to SRD
2.3. Identification of CRE Appropriate Locations Through Composite Indices
2.4. Preconditions for the Development of CRE in Rural Areas
2.4.1. Social Capital
2.4.2. Economic Capital
2.4.3. Human Capital
2.4.4. Natural and Physical Capitals
3. Data and Methods
3.1. Study Area
3.2. Indicators
3.3. Method
3.4. Data Collection
3.5. Index Construction
3.5.1. Standardization and Normalization of Indicators
3.5.2. Weighting of Indicators and Dimensions
3.5.3. Aggregation of Indicators and Dimensions
3.5.4. Index Construction Under a Sensitivity and Robustness Analysis
4. Results
4.1. Description of Components Analysis and Weights of Indicators
4.2. Model Selection
4.3. Classification of the Northern Portugal Municipalities According to the CRERAL Index
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CRE | Community renewable energy |
| SD | Sustainable development |
| SET | Sustainable energy transition |
| RE | Renewable energy |
| SRD | Sustainable rural development |
| CRERAL | Community renewable energy in rural appropriate locations |
| PCA | Principal components analysis |
| RMT | Resource mobilization theory |
| SPAs | Special Protection Areas |
| EW | Equal weighting |
| KMO | Keiser-Meyer-Olkin |
| PC | Principal components |
| AA | Arithmetic aggregation |
| GE | Geometric aggregation |
| DSEC | Demand-side economic capital |
| SSEC | Supply-side economic capital |
| HC | Human capital |
| SC | Social capital |
| PC | Physical capital |
| NC | Natural capital |
| REP | RE potential |
| UMTS | Universal Mobile Telecommunications System |
Appendix A
Appendix A.1. Justification of the Selection of Indicators Under Each Capital Dimension
| Code | Indicator | Period | Sign | Related References |
|---|---|---|---|---|
| Demand-side economic capital (DSEC) | ||||
| POP_DEN | Population density (Total resident population per square km; all population figures refer to the population on the 1st of January) | 2014–2023 | (+) | [100,129,146,147,148] |
| NET_MIG | Per capita net migration rate (difference between the number of people entering and leaving the municipality during the year, per 1000 people) | 2014–2023 | (+) | [149,150] |
| POP_WEL | Share of population with welfare payments | 2014–2022 | (−) | [67] |
| UNE_CHG | Unemployment change | 2021 census | (−) | [151] |
| HER_INX | Herfindahl index (sum of the squared employment shares in the main four economic sectors) | 2021 census | (−) | [100,102,146] |
| FIR_DEN | Firm density (No firms per 1000 people) | 2014–2023 | (+) | [114,152,153] |
| DIS_MET | Distance to Metro Area with Population More Than 50,000 | 2024 | (−) | [100,148] |
| LAB_SEL | Labor self-containment (share of resident workers who are employed within the boundaries of the municipality) | 2021 census | (+) | [154] |
| Supply-side economic capital (SSEC) | ||||
| POP_GRW_A | Annual population growth rate | 2014–2023 | (+) | [102,146] |
| JOB_EDU | Share of registered contracts with higher education degrees on total registered contracts | 2014–2023 | (+) | [67,155] |
| INC_CAP | Per capita gross income (Gross Income/population) | 2015–2022 | (+) | [16,151] |
| FIR_CHG | Change in number of firms (ratio of net variation of companies, as difference between births and deaths, in year t, to total number of companies at the beginning of the year) | 2014–2023 | (+) | [100] |
| MUN_EXP | Share of municipal goods and services expenditures on total municipal expenditure | 2014–2022 | (+) | [147] |
| BAN_OFF | Number of bank offices per 1000 people | 2014–2023 | (+) | [146,148,153] |
| MUN_DEB | Per capita municipal debt (Municipal debt/population) | 2014–2023 | (−) | [29] |
| Human capital (HC) | ||||
| POP-GRW_10 | 10-years population growth rate (Population growth rate over a period of ten years) | 2014–2023 | (+) | [67,102] |
| POP_INM | Share of immigrant population on total population | 2014–2023 | (+) | [156,157,158] |
| POP_25_64 | Share of population between 25 and 64 years old of total population | 2014–2023 | (+) | [147] |
| POP_REP | Population replacement index (ratio of the elderly (ages 60–64) to the young (15–19)) | 2014–2023 | (+) | [33] |
| POP_EDU | Share of labor force with higher education | 2021 census | (+) | [33,100,147,152] |
| POP_FEM | Female labor force participation rate (percentage of the female population in the 16–64 age group) | 2014–2023 | (+) | [146,151] |
| PRI_EMP | Share of employment in the private sector (Number of employees in the private sector/Total number of employees) | 2021 census | (+) | [102,147] |
| SEL_EMP | Share of self-employment (proportion of the self-employed among the private sector employees) | 2021 census | (+) | [146] |
| UNE_RAT | Unemployment rate (in the 16–64 population group) | 2021 census | (+) | [146,147,148] |
| Social capital (SC) | ||||
| VOT_TUR | Ratio of voter turnout for the municipal elections to voter turnout in general elections (Proportion of eligible voters who voted at the most recent local election, related to the proportion who voted in that same year’s general election) | 2021 | (+) | [100,102] |
| COOP_No | Number of cooperatives per 1000 people | 2023 | (+) | Own proposal |
| CUL_CEN | Number of cultural, sports, or leisure centers per 1000 people | 2014–2023 | (+) | [148] |
| SOC_SER | Number of social services entities per 1000 people | 2014–2023 | (+) | [67,102] |
| HEA_CEN | Number of healthcare centers per 1000 people | 2014–2023 | (+) | [148] |
| SCH_No | Number of primary and secondary schools for the population under 16 years | 2014–2022 | (+) | [148] |
| HEA_PER | Number of healthcare personnel per 1000 people | 2014–2023 | (+) | [33,148] |
| ASSO_No | Number of clubs and associations per 1000 people | 2023 | (+) | [148] |
| POP_B&R | Share of population born and residing in the municipality relative to total population | 2021 census | (+) | Own proposal |
| Physical capital (PC) | ||||
| POP_WAS | Share of population centers with selective waste disposal of total population | 2023 | (+) | [97] |
| POP_PUR | Share of population with wastewater purification service of total population | 2022 | (+) | [97] |
| POP_WAT | Share of population with water supply of total population | 2022 | (+) | [97] |
| POP_SEW | Share of population with a sewage system of total population | 2022 | (+) | [97] |
| POP_INT | Share of the population with broadband wireless internet of total population | 2023 | (+) | [67,98] |
| POP_UMT | Share of population with Universal Mobile Telecommunications System (UMTS) service of total population | 2023 | (+) | Own proposal |
| Natural Capital (NC) | ||||
| PRO_LAN | Share of protected land area on total land area (Maximum area included in some protection figure: Natura 2000 Network, Special Protection Areas (SPAs) and protected areas) | 2014–2022 | (+) | [33,100] |
| TOU_PLA | Number of places in tourist accommodation per 1000 people | 2014–2023 | (+) | Own proposal based on Eimermann [101] |
| CUL_INT | Number of goods of cultural interest per square km of land area | 2014–2023 | (+) | Own proposal based on Korsgaard et al. [149] |
| FOR_AGR | Share of forest and agricultural land area relative to total land area | 2015, 2019 | (+) | Own proposal based on Dammers and Keiner [149] |
| SEC_HOM | Share of second homes | 2021 census | (+) | Own proposal |
| BAT_QUA | Number of bath areas with quality controls per 1000 people | 2014–2023 | (+) | [152] |
| FOR_FIR | Share of land area annually burned in forest fires | 2023 | (−) | Own proposal |
| ECO_FIR | Share of certified ecological producers relative to the total number of firms in the agro-forestry industry | 2019 | (+) | [67,100,149] |
| RE potential (REP) | ||||
| POT_SOL | Solar potential (in W/m2) | 2024 | (+) | [69,71] |
| POT_WIN | Wind potential (in W/m2) | 2024 | (+) | [69,71] |
| POT_GEO | Geothermal potential (in MW/m2) | 2024 | (+) | [159,160] |
| POT_BGS | Biogas potential (in m3) | 2019 | (+) | [69,71,161] |
| POT_SHY | Small hydro potential (in km2) | 2024 | (+) | [162] |
| PRO_LAN_RN2000 | Share of land area included in the Red Natura 2000 | 2022 | (−) | [69] |
| ICP_WIN | Installed capacity in wind parks | 2024 | (+) | Own proposal based on Langer et al. [161] |
| ICP_SOL | Installed capacity in solar plants | 2024 | (+) | Own proposal based on Langer et al. [161] |
| ICP_SHY | Installed capacity in small hydro plants | 2024 | (−) | Own proposal based on Corcoran et al. [162] |
Appendix A.2. Justification of the Selection of Indicators Under Each Capital Dimension
Appendix A.3. Descriptive Statistics
| Mean | SD | Min | Max | |
|---|---|---|---|---|
| Demand-Side Economic Capital (DSEC) | ||||
| POP_DEN | 41.230 | 26.878 | 8.827 | 103.176 |
| NET_MIG | 2.619 | 4.152 | −6.016 | 12.494 |
| POP_WEL | 331.262 | 276.574 | 63.600 | 1215.200 |
| UNE_CHG | 308.822 | 242.166 | 59.000 | 1212.000 |
| HER_INX | 0.392 | 0.049 | 0.337 | 0.481 |
| FIR_DEN | 166.078 | 45.941 | 89.190 | 246.618 |
| DIS_MET | 138.663 | 48.438 | 69.985 | 259.350 |
| LAB_SEL | 0.874 | 0.137 | 0.580 | 1.290 |
| Supply-Side Economic Capital (SSEC) | ||||
| POP_GRW_A | −0.008 | 0.005 | −0.016 | 0.003 |
| JOB_EDU | 14.499 | 3.610 | 5.620 | 27.290 |
| INC_CAP | 6275.950 | 808.910 | 5081.976 | 9063.640 |
| FIR_CHG | 0.017 | 0.012 | −0.006 | 0.046 |
| MUN_EXP | 29.309 | 7.084 | 16.589 | 43.511 |
| BAN_OFF | 0.376 | 0.126 | 0.180 | 0.709 |
| MUN_DEB | 783.081 | 807.158 | 23.100 | 3986.313 |
| Human Capital (HC) | ||||
| POP-GRW_10 | 0.466 | 1.753 | −0.810 | 7.505 |
| POP_INM | 15.165 | 11.081 | 4.976 | 55.558 |
| POP_25_64 | 0.496 | 0.027 | 0.437 | 0.549 |
| POP_REP | 1.843 | 0.441 | 1.159 | 2.966 |
| POP_EDU | 0.068 | 0.019 | 0.042 | 0.157 |
| POP_FEM | 0.294 | 0.022 | 0.244 | 0.340 |
| PRI_EMP | 0.753 | 0.040 | 0.649 | 0.835 |
| SEL_EMP | 0.202 | 0.063 | 0.084 | 0.408 |
| UNE_RAT | 7.407 | 1.543 | 4.600 | 10.040 |
| Social Capital (SC) | ||||
| VOT_TUR | 1.871 | 0.240 | 1.504 | 2.579 |
| COOP_No | 0.009 | 0.029 | 0.000 | 0.152 |
| CUL_CEN | 0.344 | 0.225 | 0.056 | 0.877 |
| SOC_SER | 1.106 | 1.361 | 0.196 | 9.480 |
| HEA_CEN | 0.488 | 0.119 | 0.315 | 0.942 |
| SCH_No | 0.008 | 0.003 | 0.004 | 0.014 |
| HEA_PER | 8.951 | 5.898 | 4.604 | 39.334 |
| ASSO_No | 4.282 | 2.335 | 0.000 | 12.990 |
| POP_B&R | 0.869 | 0.023 | 0.795 | 0.918 |
| Physical Capital (PC) | ||||
| POP_WAS | 46.369 | 17.346 | 20.000 | 99.200 |
| POP_PUR | 78.622 | 17.637 | 40.500 | 100.000 |
| POP_WAT | 52.550 | 17.998 | 17.961 | 98.241 |
| POP_SEW | 71.835 | 23.552 | 22.111 | 100.000 |
| POP_INT | 0.200 | 0.025 | 0.146 | 0.268 |
| POP_UMT | 39.468 | 4.335 | 28.969 | 47.942 |
| Natural Capital (NC) | ||||
| PRO_LAN | 11.244 | 18.732 | 0.000 | 61.900 |
| TOU_PLA | 33.203 | 39.651 | 1.703 | 265.823 |
| CUL_INT | 0.052 | 0.041 | 0.006 | 0.202 |
| FOR_AGR | 1.054 | 0.129 | 0.819 | 1.339 |
| SEC_HOM | 0.381 | 0.068 | 0.218 | 0.536 |
| BAT_QUA | 0.046 | 0.085 | 0.000 | 0.380 |
| FOR_FIR | 0.942 | 1.316 | 0.000 | 4.660 |
| ECO_FIR | 1.519 | 1.886 | 0.000 | 9.600 |
| RE Potential (REP) | ||||
| POT_SOL | 4.108 | 0.141 | 3.825 | 4.328 |
| POT_WIN | 251.824 | 85.255 | 108.489 | 475.144 |
| POT_GEO | 189.587 | 18.000 | 156.938 | 213.667 |
| POT_BGS | 13.530 | 17.723 | 0.050 | 100.725 |
| POT_SHY | 44,662.845 | 35,863.562 | 4434.251 | 155,923.755 |
| PRO_LAN_RN2000 | 22.489 | 25.022 | 0.000 | 94.800 |
| ICP_WIN | 22.677 | 45.090 | 0.000 | 198.800 |
| ICP_SOL | 1.096 | 7.302 | 0.000 | 48.990 |
| ICP_SHY | 2.627 | 6.405 | 0.000 | 30.000 |
Appendix A.4. Data Analysis and Transformation
| Asymmetry | Transformation Method | Asymmetry | |
|---|---|---|---|
| (Before Transformation) | (After Transformation) | ||
| Demand-Side Economic Capital (DSEC) | |||
| POP_DEN | 0.757 | Logarithm | −0.066 |
| NET_MIG | 0.010 | No transformation | |
| POP_WEL | 1.690 | Logarithm | 0.240 |
| UNE_CHG | 1.907 | Logarithm | 0.341 |
| HER_INX | 0.457 | Reverse square | −0.196 |
| FIR_DEN | 0.210 | Square root | 0.017 |
| DIS_MET | 0.490 | Fourth root | 0.048 |
| LAB_SEL | 0.377 | Square root | 0.020 |
| Supply-Side Economic Capital (SSEC) | |||
| POP_GRW_A | 0.427 | No transformation | |
| JOB_EDU | 0.893 | Cube root | −0.054 |
| INC_CAP | 1.068 | Reverse square | 0.053 |
| FIR_CHG | 0.096 | No transformation | |
| MUN_EXP | 0.315 | Fourth root | −0.013 |
| BAN_OFF | 1.050 | Logarithm | 0.002 |
| MUN_DEB | 2.751 | Fourth root | 0.523 |
| Human Capital (HC) | |||
| POP-GRW_10 | 2.465 | Reverse | 0.736 |
| POP_INM | 1.899 | Reverse | 0.539 |
| POP_25_64 | −0.358 | Quadratic | −0.015 |
| POP_REP | 0.501 | Logarithm | 0.100 |
| POP_EDU | 2.431 | Reverse | −0.110 |
| POP_FEM | −0.255 | Cube | 0.044 |
| PRI_EMP | −0.390 | Quadratic | −0.046 |
| SEL_EMP | 0.777 | Fourth root | 0.106 |
| UNE_RAT | −0.007 | No transformation | |
| Social Capital (SC) | |||
| VOT_TUR | 1.112 | Reverse square | −0.063 |
| COOP_No | 3.639 | Fourth root | 2.339 |
| CUL_CEN | 0.701 | Cube root | 0.023 |
| SOC_SER | 5.325 | Logarithm | 0.720 |
| HEA_CEN | 1.344 | Reverse | 0.185 |
| SCH_No | 0.909 | Reverse | 0.289 |
| HEA_PER | 3.624 | Reverse | −0.202 |
| ASSO_No | 1.615 | Square root | −0.136 |
| POP_B&R | −0.716 | Cube | −0.510 |
| Physical Capital (PC) | |||
| POP_WAS | 0.761 | Logarithm | −0.056 |
| POP_PUR | −0.559 | Cube | −0.077 |
| POP_WAT | 0.271 | Square root | −0.187 |
| POP_SEW | −0.614 | Cube | 0.057 |
| POP_INT | 0.277 | Fourth root | −0.012 |
| POP_UMT | −0.663 | Cube | −0.079 |
| Natural Capital (NC) | |||
| PRO_LAN | 1.467 | Fourth root | 0.661 |
| TOU_PLA | 4.661 | Logarithm | −0.427 |
| CUL_INT | 1.843 | Logarithm | −0.044 |
| FOR_AGR | 0.467 | Reverse | 0.004 |
| SEC_HOM | 0.012 | No transformation | |
| BAT_QUA | 2.283 | Fourth root | 0.763 |
| FOR_FIR | 1.562 | Fourth root | −0.107 |
| ECO_FIR | 2.405 | Fourth root | −0.448 |
| RE Potential (REP) | |||
| POT_SOL | −0.527 | Quadratic | −3.980 |
| POT_WIN | 0.756 | Fourth root | 0.295 |
| POT_GEO | −0.535 | Quadratic | −0.180 |
| POT_BGS | 2.976 | Fourth root | 0.005 |
| POT_SHY | 1.318 | Logarithm | −0.124 |
| PRO_LAN_RN2000 | 0.852 | Fourth root | 0.162 |
| ICP_WIN | 2.507 | Fourth root | 0.784 |
| ICP_SOL | 6.482 | No transformation | |
| ICP_SHY | 3.350 | Fourth root | 1.101 |
Appendix A.5. Scores of the CRERAL Index and Sub-Indices for the 45 Northern Portugal Municipalities
| Municipalities | CRERAL | DSEC | SSEC | HC | SC | NC | PC | REP |
|---|---|---|---|---|---|---|---|---|
| Arcos de Valdevez | 0.4958 | 0.0875 | 0.0841 | 0.0512 | 0.0642 | 0.0513 | 0.0777 | 0.0797 |
| Melgaço | 0.4935 | 0.0863 | 0.0626 | 0.0475 | 0.0584 | 0.0843 | 0.0788 | 0.0756 |
| Monção | 0.4792 | 0.0892 | 0.0704 | 0.0520 | 0.0589 | 0.0592 | 0.0617 | 0.0878 |
| Paredes de Coura | 0.4960 | 0.0934 | 0.0852 | 0.0551 | 0.0713 | 0.0678 | 0.0513 | 0.0719 |
| Ponte de Barca | 0.4522 | 0.0798 | 0.0668 | 0.0589 | 0.0602 | 0.0600 | 0.0659 | 0.0607 |
| Vila Nova de Cerveira | 0.5139 | 0.1092 | 0.0863 | 0.0480 | 0.0606 | 0.0676 | 0.0826 | 0.0596 |
| Terras de Bouro | 0.5011 | 0.0866 | 0.0605 | 0.0859 | 0.0724 | 0.0648 | 0.0791 | 0.0519 |
| Cabeceiras de Basto | 0.4320 | 0.0686 | 0.0743 | 0.0731 | 0.0737 | 0.0387 | 0.0417 | 0.0620 |
| Vieira do Minho | 0.4476 | 0.0699 | 0.0670 | 0.0812 | 0.0934 | 0.0405 | 0.0524 | 0.0653 |
| Mondim de Basto | 0.4696 | 0.0761 | 0.0717 | 0.0750 | 0.0684 | 0.0412 | 0.0487 | 0.0665 |
| Arouva | 0.4615 | 0.0755 | 0.0798 | 0.0698 | 0.0778 | 0.0370 | 0.0478 | 0.0737 |
| Boticas | 0.4953 | 0.0699 | 0.0722 | 0.0660 | 0.0631 | 0.0911 | 0.0508 | 0.0822 |
| Chaves | 0.4893 | 0.0626 | 0.0668 | 0.0636 | 0.0687 | 0.0736 | 0.0745 | 0.0795 |
| Montalegre | 0.4979 | 0.0658 | 0.0896 | 0.0674 | 0.0747 | 0.0460 | 0.0677 | 0.0866 |
| Ribeira de Pena | 0.4469 | 0.0799 | 0.0827 | 0.0738 | 0.0483 | 0.0538 | 0.0491 | 0.0593 |
| Valpaços | 0.5220 | 0.0710 | 0.0798 | 0.0605 | 0.0568 | 0.0917 | 0.0598 | 0.1024 |
| Vila Pouca de Aguiar | 0.5037 | 0.0710 | 0.0834 | 0.0702 | 0.0599 | 0.0887 | 0.0522 | 0.0783 |
| Celorico de Basto | 0.4359 | 0.0552 | 0.0654 | 0.0978 | 0.0657 | 0.0326 | 0.0523 | 0.0687 |
| Baião | 0.4376 | 0.0659 | 0.0724 | 0.0825 | 0.0695 | 0.0289 | 0.0536 | 0.0631 |
| Cinfães | 0.4236 | 0.0556 | 0.0690 | 0.0917 | 0.0637 | 0.0192 | 0.0481 | 0.0763 |
| Resende | 0.4600 | 0.0571 | 0.0702 | 0.0871 | 0.0539 | 0.0471 | 0.0744 | 0.0701 |
| Carrazeda de Ansiães | 0.5165 | 0.0703 | 0.0577 | 0.0727 | 0.0656 | 0.0667 | 0.0715 | 0.0839 |
| Freixo de Espada á Cinta | 0.4784 | 0.0797 | 0.0566 | 0.0736 | 0.0661 | 0.0802 | 0.0836 | 0.0710 |
| Torre de Moncorvo | 0.5015 | 0.0720 | 0.0735 | 0.0662 | 0.0755 | 0.0802 | 0.0671 | 0.0820 |
| Vila Nova de Foz Côa | 0.5398 | 0.0651 | 0.0533 | 0.0593 | 0.0576 | 0.0731 | 0.1045 | 0.0656 |
| Alijó | 0.4884 | 0.0684 | 0.0846 | 0.0616 | 0.0610 | 0.0551 | 0.0654 | 0.0795 |
| Murça | 0.4540 | 0.0728 | 0.0636 | 0.0713 | 0.0502 | 0.0711 | 0.0479 | 0.0771 |
| Sabrosa | 0.5114 | 0.0854 | 0.0916 | 0.0621 | 0.0556 | 0.0924 | 0.0674 | 0.0912 |
| Santa Marta de Penaguião | 0.4579 | 0.0778 | 0.0727 | 0.0743 | 0.0733 | 0.0597 | 0.0805 | 0.0732 |
| Armamar | 0.5109 | 0.0722 | 0.0536 | 0.0691 | 0.0618 | 0.0876 | 0.0691 | 0.0446 |
| Moimenta da Beira | 0.4756 | 0.0793 | 0.0604 | 0.0645 | 0.0706 | 0.0817 | 0.0614 | 0.0817 |
| Penedono | 0.5458 | 0.0816 | 0.0997 | 0.0605 | 0.0709 | 0.0600 | 0.0643 | 0.0822 |
| São João de Pesqueira | 0.4997 | 0.0623 | 0.0553 | 0.0786 | 0.0666 | 0.0882 | 0.0865 | 0.0801 |
| Sernancelhe | 0.5193 | 0.0742 | 0.0693 | 0.0778 | 0.0737 | 0.0938 | 0.0653 | 0.0776 |
| Tabuaço | 0.5176 | 0.0614 | 0.0612 | 0.0591 | 0.0666 | 0.0718 | 0.0936 | 0.0878 |
| Tarouca | 0.5316 | 0.0705 | 0.0679 | 0.0588 | 0.0626 | 0.1053 | 0.0997 | 0.0750 |
| Alfândega de Fé | 0.5099 | 0.0685 | 0.0570 | 0.0672 | 0.0566 | 0.0971 | 0.0843 | 0.0792 |
| Bragança | 0.5195 | 0.0696 | 0.0863 | 0.0541 | 0.0783 | 0.0872 | 0.0826 | 0.0615 |
| Macedo de Cavaleiros | 0.5232 | 0.0674 | 0.0683 | 0.0603 | 0.0807 | 0.0733 | 0.0711 | 0.1022 |
| Mirando do Douro | 0.5050 | 0.0670 | 0.0556 | 0.0510 | 0.0579 | 0.0978 | 0.0865 | 0.0893 |
| Mirandela | 0.4859 | 0.0632 | 0.0689 | 0.0623 | 0.0587 | 0.0907 | 0.0701 | 0.0720 |
| Mogadouro | 0.5449 | 0.0608 | 0.0836 | 0.0630 | 0.0733 | 0.0984 | 0.0702 | 0.0955 |
| Vila Flor | 0.5231 | 0.0669 | 0.0809 | 0.0648 | 0.0485 | 0.1051 | 0.0790 | 0.0779 |
| Vimioso | 0.5042 | 0.0722 | 0.0817 | 0.0538 | 0.0477 | 0.0951 | 0.0736 | 0.0800 |
| Vinhais | 0.4544 | 0.0624 | 0.0602 | 0.0654 | 0.0548 | 0.0733 | 0.0782 | 0.0601 |
Appendix A.6. Ranking of the 45 Northern Portugal Municipalities
| CRERAL | DSEC | SSEC | HC | SC | NC | PC | REP | |
|---|---|---|---|---|---|---|---|---|
| 1 | Penedono | Vila Nova de Cerveira | Penedono | Celorico de Basto | Vieira do Minho | Vila Nova de Foz Côa | Tarouca | Valpaços |
| 2 | Mogadouro | Paredes de Coura | Sabrosa | Cinfães | Macedo de Cavaleiros | Tarouca | Vila Flor | Macedo de Cavaleiros |
| 3 | Vila Nova de Foz Côa | Monção | Montalegre | Resende | Bragança | Tabuaço | Mogadouro | Mogadouro |
| 4 | Tarouca | Arcos de Valdevez | Bragança | Terras de Bouro | Arouca | São João de Pesqueira | Mirando do Douro | Sabrosa |
| 5 | Macedo de Cavaleiros | Terras de Bouro | Vila Nova de Cerveira | Baião | Torre de Moncorvo | Mirando do Douro | Alfândega de Fé | Mirando do Douro |
| 6 | Vila Flor | Melgaço | Paredes de Coura | Vieira do Minho | Montalegre | Alfândega de Fé | Vimioso | Monção |
| 7 | Valpaços | Sabrosa | Alijó | São João de Pesqueira | Cabeceiras de Basto | Freixo de Espada á Cinta | Sernancelhe | Tabuaço |
| 8 | Bragança | Penedono | Arcos de Valdevez | Sernancelhe | Sernancelhe | Vila Nova de Cerveira | Sabrosa | Montalegre |
| 9 | Sernancelhe | Ribeira de Pena | Mogadouro | Mondim de Basto | Mogadouro | Bragança | Valpaços | Carrazeda de Ansiães |
| 10 | Tabuaço | Ponte de Barca | Vila Pouca de Aguiar | Santa Marta de Penaguião | Santa Marta de Penaguião | Santa Marta de Penaguião | Boticas | Penedono |
| 11 | Carrazeda de Ansiães | Freixo de Espada á Cinta | Ribeira de Pena | Ribeira de Pena | Terras de Bouro | Terras de Bouro | Mirandela | Boticas |
| 12 | Vila Nova de Cerveira | Moimenta da Beira | Vimioso | Freixo de Espada á Cinta | Paredes de Coura | Vila Flor | Vila Pouca de Aguiar | Torre de Moncorvo |
| 13 | Sabrosa | Santa Marta de Penaguião | Vila Flor | Cabeceiras de Basto | Penedono | Melgaço | São João de Pesqueira | Moimenta da Beira |
| 14 | Armamar | Mondim de Basto | Arouca | Carrazeda de Ansiães | Moimenta da Beira | Vinhais | Armamar | São João de Pesqueira |
| 15 | Alfândega de Fé | Arouca | Valpaços | Murça | Baião | Arcos de Valdevez | Bragança | Vimioso |
| 16 | Mirando do Douro | Sernancelhe | Cabeceiras de Basto | Vila Pouca de Aguiar | Chaves | Chaves | Melgaço | Arcos de Valdevez |
| 17 | Vimioso | Murça | Torre de Moncorvo | Arouca | Mondim de Basto | Resende | Moimenta da Beira | Chaves |
| 18 | Vila Pouca de Aguiar | Armamar | Santa Marta de Penaguião | Armamar | Tabuaço | Vimioso | Torre de Moncorvo | Alijó |
| 19 | Torre de Moncorvo | Vimioso | Baião | Montalegre | São João de Pesqueira | Carrazeda de Ansiães | Freixo de Espada á Cinta | Alfândega de Fé |
| 20 | Terras de Bouro | Torre de Moncorvo | Boticas | Alfândega de Fé | Freixo de Espada á Cinta | Macedo de Cavaleiros | Chaves | Vila Pouca de Aguiar |
| 21 | São João de Pesqueira | Valpaços | Mondim de Basto | Torre de Moncorvo | Celorico de Basto | Mogadouro | Vinhais | Vila Flor |
| 22 | Montalegre | Vila Pouca de Aguiar | Monção | Boticas | Carrazeda de Ansiães | Mirandela | Macedo de Cavaleiros | Sernancelhe |
| 23 | Paredes de Coura | Tarouca | Resende | Vinhais | Arcos de Valdevez | Armamar | Vila Nova de Foz Côa | Murça |
| 24 | Arcos de Valdevez | Carrazeda de Ansiães | Sernancelhe | Vila Flor | Cinfães | Montalegre | Tabuaço | Cinfães |
| 25 | Boticas | Vieira do Minho | Cinfães | Moimenta da Beira | Boticas | Sabrosa | Murça | Melgaço |
| 26 | Melgaço | Boticas | Mirandela | Chaves | Tarouca | Torre de Moncorvo | Paredes de Coura | Tarouca |
| 27 | Chaves | Bragança | Macedo de Cavaleiros | Mogadouro | Armamar | Ponte de Barca | Vila Nova de Cerveira | Arouca |
| 28 | Alijó | Cabeceiras de Basto | Tarouca | Mirandela | Alijó | Alijó | Carrazeda de Ansiães | Santa Marta de Penaguião |
| 29 | Mirandela | Alfândega de Fé | Vieira do Minho | Sabrosa | Vila Nova de Cerveira | Sernancelhe | Terras de Bouro | Mirandela |
| 30 | Monção | Alijó | Chaves | Alijó | Ponte de Barca | Penedono | Penedono | Paredes de Coura |
| 31 | Freixo de Espada á Cinta | Macedo de Cavaleiros | Ponte de Barca | Penedono | Vila Pouca de Aguiar | Monção | Ponte de Barca | Freixo de Espada á Cinta |
| 32 | Moimenta da Beira | Mirando do Douro | Celorico de Basto | Valpaços | Monção | Moimenta da Beira | Santa Marta de Penaguião | Resende |
| 33 | Mondim de Basto | Vila Flor | Murça | Macedo de Cavaleiros | Mirandela | Valpaços | Monção | Celorico de Basto |
| 34 | Arouca | Baião | Melgaço | Vila Nova de Foz Côa | Melgaço | Baião | Alijó | Mondim de Basto |
| 35 | Resende | Montalegre | Tabuaço | Tabuaço | Mirando do Douro | Vieira do Minho | Ribeira de Pena | Vila Nova de Foz Côa |
| 36 | Santa Marta de Penaguião | Vila Nova de Foz Côa | Terras de Bouro | Ponte de Barca | Vila Nova de Foz Côa | Celorico de Basto | Arcos de Valdevez | Vieira do Minho |
| 37 | Vinhais | Mirandela | Moimenta da Beira | Tarouca | Valpaços | Vila Pouca de Aguiar | Resende | Baião |
| 38 | Murça | Chaves | Vinhais | Paredes de Coura | Alfândega de Fé | Paredes de Coura | Montalegre | Cabeceiras de Basto |
| 39 | Ponte de Barca | Vinhais | Carrazeda de Ansiães | Bragança | Sabrosa | Boticas | Mondim de Basto | Bragança |
| 40 | Vieira do Minho | São João de Pesqueira | Alfândega de Fé | Vimioso | Vinhais | Ribeira de Pena | Vieira do Minho | Ponte de Barca |
| 41 | Ribeira de Pena | Tabuaço | Freixo de Espada á Cinta | Monção | Resende | Mondim de Basto | Cabeceiras de Basto | Vinhais |
| 42 | Baião | Mogadouro | Mirando do Douro | Arcos de Valdevez | Murça | Cinfães | Arouca | Vila Nova de Cerveira |
| 43 | Celorico de Basto | Resende | São João de Pesqueira | Mirando do Douro | Vila Flor | Murça | Celorico de Basto | Ribeira de Pena |
| 44 | Cabeceiras de Basto | Cinfães | Armamar | Vila Nova de Cerveira | Ribeira de Pena | Arouca | Baião | Terras de Bouro |
| 45 | Cinfães | Celorico de Basto | Vila Nova de Foz Côa | Melgaço | Vimioso | Cabeceiras de Basto | Cinfães | Armamar |
References
- Wehbi, H.; Kemper, N. Factors Influencing the Transition to Renewable Energy in Small- to Mid-Sized American Communities. Energy Sustain. Soc. 2025, 15, 33. [Google Scholar] [CrossRef]
- Leonhardt, R.; Noble, B.; Poelzer, G.; Fitzpatrick, P.; Belcher, K.; Holdmann, G. Advancing Local Energy Transitions: A Global Review of Government Instruments Supporting Community Energy. Energy Res. Soc. Sci. 2022, 83, 102350. [Google Scholar] [CrossRef]
- Lange-Salvia, A.; Leal Filho, W.; Londero Brandli, L.; Sapper Griebeler, J. Assessing Research Trends Related to Sustainable Development Goals: Local and Global Issues. J. Clean. Prod. 2019, 208, 841–849. [Google Scholar] [CrossRef]
- Graute, U. Local Authorities Acting Globally for Sustainable Development. Reg. Stud. 2015, 50, 1931–1942. [Google Scholar] [CrossRef]
- Poggi, F.; Firmino, A.; Amado, M. Shaping Energy Transition at Municipal Scale: A Net-Zero Energy Scenario-Based Approach. Land. Use policy 2020, 99, 104955. [Google Scholar] [CrossRef]
- Colocci, A.; Gioia, E.; Casareale, C.; Marchetti, N.; Marincioni, F. The Role of Sustainable Energy and Climate Action Plans: Synergies with Regional Sustainable Development Strategies for a Local 2030 Agenda. Environ. Dev. 2023, 47, 100894. [Google Scholar] [CrossRef]
- Palm, J.; Kojonsaari, A.-R.; Magnusson, D. Toward Energy Democracy: Municipal Energy Actions in Local Renewable Energy Projects. Energy Res. Soc. Sci. 2025, 120, 103921. [Google Scholar] [CrossRef]
- Schmieder, L.; Scheer, D.; Gaiser, J.; Jendritzki, I.; Kraus, B. Municipalities as Change Agents? Reconsidering Roles and Policies in Local Energy Sector-Coupling. Energy Res. Soc. Sci. 2023, 103, 103210. [Google Scholar] [CrossRef]
- Kozera, A.; Standar, A.; Stanisławska, J.; Rosa, A. Investments in Renewable Energy in Rural Communes: An Analysis of Regional Disparities in Poland. Energies 2024, 17, 6185. [Google Scholar] [CrossRef]
- Sanz-Cuadrado, C.; Narvarte, L.; Cristóbal, A.B. Energy Valorization Strategies in Rural Renewable Energy Communities: A Path to Social Revitalization and Sustainable Development. Energies 2025, 18, 2561. [Google Scholar] [CrossRef]
- Clausen, L.T.; Rudolph, D. Renewable Energy for Sustainable Rural Development: Synergies and Mismatches. Energy Policy 2020, 138, 111289. [Google Scholar] [CrossRef]
- Hicks, J.; Ison, N. Community-Owned Renewable Energy (CRE): Opportunities for Rural Australia. Rural Soc. 2011, 20, 244–255. [Google Scholar] [CrossRef]
- Süsser, D.; Kannen, A. Renewables? Yes, Please!’: Perceptions and Assessment of Community Transition Induced by Renewable-Energy Projects in North Frisia. Sustain. Sci. 2017, 12, 563–578. [Google Scholar] [CrossRef]
- Martens, K. Investigating Subnational Success Conditions to Foster Renewable Energy Community Co-Operatives. Energy Policy 2022, 162, 112796. [Google Scholar] [CrossRef]
- Hain, J.J.; Ault, G.W.; Galloway, S.J.; Cruden, A.; McDonald, J.R. Additional Renewable Energy Growth through Small-Scale Community Orientated Energy Policies. Energy Policy 2005, 33, 1199–1212. [Google Scholar] [CrossRef]
- Magnani, N.; Maretti, M.; Salvatore, R.; Scotti, I. Ecopreneurs, Rural Development and Alternative Socio-Technical Arrangements for Community Renewable Energy. J. Rural Stud. 2017, 52, 33–41. [Google Scholar] [CrossRef]
- Markantoni, M.; Woolvin, M. The Role of Rural Communities in the Transition to a Low-Carbon Scotland: A Review. Local Environ. 2013, 20, 202–219. [Google Scholar] [CrossRef]
- Ahmed, S.; Măgurean, A.M. Renewable Energy Communities: Towards a New Sustainable Model of Energy Production and Sharing. Energy Strategy Rev. 2024, 55, 101522. [Google Scholar] [CrossRef]
- Rogers, J.; Simmons, E.A.; Convery, I.; Weatherall, A. Social Impacts of Community Renewable Energy Projects: Findings from a Woodfuel Case Study. Energy Policy 2012, 42, 239–247. [Google Scholar] [CrossRef]
- Standal, K.; Leiren, M.D.; Alonso, I.; Azevedo, I.; Kudrenickis, I.; Maleki-Dizaji, P.; Laes, E.; Di Nucci, M.R.; Krug, M. Can Renewable Energy Communities Enable a Just Energy Transition? Exploring Alignment between Stakeholder Motivations and Needs and EU Policy in Latvia, Norway, Portugal and Spain. Energy Res. Soc. Sci. 2023, 106, 103326. [Google Scholar] [CrossRef]
- Yildiz, Ö. Financing Renewable Energy Infrastructures via Financial Citizen Participation—The Case of Germany. Renew. Energy 2014, 68, 677–685. [Google Scholar] [CrossRef]
- Simón, X.; Copena, D.; Montero, M. Strong Wind Development with No Community Participation. The Case of Galicia (1995–2009). Energy Policy 2019, 133, 110930. [Google Scholar] [CrossRef]
- Slee, B. Is There a Case for Community-Based Equity Participation in Scottish on-Shore Wind Energy Production? Gaps in Evidence and Research Needs. Renew. Sustain. Energy Rev. 2015, 41, 540–549. [Google Scholar] [CrossRef]
- Shi, Z.; Liang, F.; Pezzuolo, A. Renewable Energy Communities in Rural Areas: A Comprehensive Overview of Current Development, Challenges, and Emerging Trends. J. Clean. Prod. 2024, 484, 144336. [Google Scholar] [CrossRef]
- Seyfang, G.; Park, J.J.; Smith, A. A Thousand Flowers Blooming? An Examination of Community Energy in the UK. Energy Policy 2013, 61, 977–989. [Google Scholar] [CrossRef]
- Marinakis, V.; Papadopoulou, A.G.; Psarras, J. Local Communities towards a Sustainable Energy Future: Needs and Priorities. Int. J. Sustain. Energy 2015, 36, 296–312. [Google Scholar] [CrossRef]
- Carvalho, I.; Sousa, J.; Villar, J.; Lagarto, J.; Viveiros, C.; Barata, F. Optimal Investment and Sharing Decisions in Renewable Energy Communities with Multiple Investing Members. Energies 2025, 18, 1920. [Google Scholar] [CrossRef]
- Polzin, F.; Migendt, M.; Täube, F.A.; von Flotow, P. Public Policy Influence on Renewable Energy Investments-A Panel Data Study across OECD Countries. Energy Policy 2015, 80, 98–111. [Google Scholar] [CrossRef]
- Lowitzsch, J.; Hanke, F. Energy Transition: Financing Consumer Co-Ownership in Renewables; Palgrave Macmillan: Cham, Switzerland, 2019; pp. 139–162. [Google Scholar] [CrossRef]
- Moretti, E.; Stamponi, E. The Renewable Energy Communities in Italy and the Role of Public Administrations: The Experience of the Municipality of Assisi between Challenges and Opportunities. Sustainability 2023, 15, 11869. [Google Scholar] [CrossRef]
- Dóci, G.; Gotchev, B. When Energy Policy Meets Community: Rethinking Risk Perceptions of Renewable Energy in Germany and the Netherlands. Energy Res. Soc. Sci. 2016, 22, 26–35. [Google Scholar] [CrossRef]
- Dütschke, E.; Wesche, J.P. The Energy Transformation as a Disruptive Development at Community Level. Energy Res. Soc. Sci. 2018, 37, 251–254. [Google Scholar] [CrossRef]
- Abreu, I.; Nunes, J.M.; Mesias, F.J. Can Rural Development Be Measured? Design and Application of a Synthetic Index to Portuguese Municipalities. Soc. Indic. Res. 2019, 145, 1107–1123. [Google Scholar] [CrossRef]
- van der Schoor, T.; Scholtens, B. The Power of Friends and Neighbors: A Review of Community Energy Research. Curr. Opin. Environ. Sustain. 2019, 39, 71–80. [Google Scholar] [CrossRef]
- Walker, G.; Devine-Wright, P. Community Renewable Energy: What Should It Mean? Energy Policy 2008, 36, 497–500. [Google Scholar] [CrossRef]
- Klein, S.J.W.; Coffey, S. Building a Sustainable Energy Future, One Community at a Time. Renew. Sustain. Energy Rev. 2016, 60, 867–880. [Google Scholar] [CrossRef]
- Koirala, B.P.; Koliou, E.; Friege, J.; Hakvoort, R.A.; Herder, P.M. Energetic Communities for Community Energy: A Review of Key Issues and Trends Shaping Integrated Community Energy Systems. Renew. Sustain. Energy Rev. 2016, 56, 722–744. [Google Scholar] [CrossRef]
- López, I.; Goitia-Zabaleta, N.; Milo, A.; Gómez-Cornejo, J.; Aranzabal, I.; Gaztañaga, H.; Fernandez, E. European Energy Communities: Characteristics, Trends, Business Models and Legal Framework. Renew. Sustain. Energy Rev. 2024, 197, 114403. [Google Scholar] [CrossRef]
- Mohammadi, N. Investigation of Community Energy Business Models from an Institutional Perspective: Intermediaries and Policy Instruments in Selected Cases of Developing and Developed Countries. Sustainability 2023, 15, 8423. [Google Scholar] [CrossRef]
- Romero-Castro, N.; Ángeles López-Cabarcos, M.; Miramontes-Viña, V.; Ribeiro-Soriano, D. Sustainable Energy Transition and Circular Economy: The Heterogeneity of Potential Investors in Rural Community Renewable Energy Projects. Environ. Dev. Sustain. 2025, 27, 18051–18076. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; Campos-Celador, Á.; Terés-Zubiaga, J. Renewable Energy Cooperatives as an Instrument towards the Energy Transition in Spain. Energy Policy 2018, 123, 215–229. [Google Scholar] [CrossRef]
- Moroni, S. Energy Communities, Distributed Generation, Renewable Sources: Close Relatives or Potential Friends? Energy Res. Soc. Sci. 2024, 118, 103828. [Google Scholar] [CrossRef]
- Becker, S.; Kunze, C.; Vancea, M. Community Energy and Social Entrepreneurship: Addressing Purpose, Organisation and Embeddedness of Renewable Energy Projects. J. Clean. Prod. 2017, 147, 25–36. [Google Scholar] [CrossRef]
- Walker, G. What Are the Barriers and Incentives for Community-Owned Means of Energy Production and Use? Energy Policy 2008, 36, 4401–4405. [Google Scholar] [CrossRef]
- Walker, C.; Poelzer, G.; Leonhardt, R.; Noble, B.; Hoicka, C. COPs and ‘Robbers?’ Better Understanding Community Energy and toward a Communities of Place Then Interest Approach. Energy Res. Soc. Sci. 2022, 92, 102797. [Google Scholar] [CrossRef]
- van der Schoor, T.; Scholtens, B. Power to the People: Local Community Initiatives and the Transition to Sustainable Energy. Renew. Sustain. Energy Rev. 2015, 43, 666–675. [Google Scholar] [CrossRef]
- Dobigny, L. Sociotechnical Morphologies of Rural Energy Autonomy in Germany, Austria and France. In Local Energy Autonomy: Spaces, Scales, Politics; ISTE Ltd and John Wiley & Sons, Inc.: London, UK, 2019; pp. 185–211. [Google Scholar]
- Lode, M.L.; Felice, A.; Martinez Alonso, A.; De Silva, J.; Angulo, M.E.; Lowitzsch, J.; Coosemans, T.; Ramirez Camargo, L. Energy Communities in Rural Areas: The Participatory Case Study of Vega de Valcarce, Spain. Renew. Energy 2023, 216, 119030. [Google Scholar] [CrossRef]
- Berka, A.L.; Creamer, E. Taking Stock of the Local Impacts of Community Owned Renewable Energy: A Review and Research Agenda. Renew. Sustain. Energy Rev. 2018, 82, 3400–3419. [Google Scholar] [CrossRef]
- Morrison, C.; Ramsey, E.; Bond, D. The Role of Social Entrepreneurs in Developing Community Resilience in Remote Areas. J. Enterprising Communities 2017, 11, 95–112. [Google Scholar] [CrossRef]
- Slee, B. Social Innovation in Community Energy in Scotland: Institutional Form and Sustainability Outcomes. Glob. Transit. 2020, 2, 157–166. [Google Scholar] [CrossRef]
- Hewitt, R.J.; Bradley, N.; Compagnucci, A.B.; Barlagne, C.; Ceglarz, A.; Cremades, R.; McKeen, M.; Otto, I.M.; Slee, B. Social Innovation in Community Energy in Europe: A Review of the Evidence. Front. Energy Res. 2019, 7, 31. [Google Scholar] [CrossRef]
- Tatti, A.; Ferroni, S.; Ferrando, M.; Motta, M.; Causone, F. The Emerging Trends of Renewable Energy Communities’ Development in Italy. Sustainability 2023, 15, 6792. [Google Scholar] [CrossRef]
- Karlsson, N.P.E.; Halila, F.; Mattsson, M.; Hoveskog, M. Success Factors for Agricultural Biogas Production in Sweden: A Case Study of Business Model Innovation. J. Clean. Prod. 2017, 142, 2925–2934. [Google Scholar] [CrossRef]
- McKenna, R. The Double-Edged Sword of Decentralized Energy Autonomy. Energy Policy 2018, 113, 747–750. [Google Scholar] [CrossRef]
- Poggi, F.; Firmino, A.; Amado, M. Planning Renewable Energy in Rural Areas: Impacts on Occupation and Land Use. Energy 2018, 155, 630–640. [Google Scholar] [CrossRef]
- von Bock und Polach, C.; Kunze, C.; Maaß, O.; Grundmann, P. Bioenergy as a Socio-Technical System: The Nexus of Rules, Social Capital and Cooperation in the Development of Bioenergy Villages in Germany. Energy Res. Soc. Sci. 2015, 6, 128–135. [Google Scholar] [CrossRef]
- Schreuer, A.; Weismeier-Sammer, D. Energy Cooperatives and Local Ownership in the Field of Renewable Energy Technologies: A Literature Review; Vienna University of Economics and Business: Vienna, Austria, 2010. [Google Scholar]
- Agliata, R.; Busato, F.; Presciutti, A. MCDM-Based Analysis of Site Suitability for Renewable Energy Community Projects in the Gargano District. Sustainability 2025, 17, 6376. [Google Scholar] [CrossRef]
- Grimaldi, M.; Marra, A. Optimizing the Spatial Configuration of Renewable Energy Communities: A Model Applied in the RECMOP Project. Sustainability 2025, 17, 6744. [Google Scholar] [CrossRef]
- Abreu, I.; Mesias, F.J.; Ramajo, J. Design and Validation of an Index to Measure Development in Rural Areas through Stakeholder Participation. J. Rural Stud. 2022, 95, 235–240. [Google Scholar] [CrossRef]
- Fernández Martínez, P.; de Castro-Pardo, M.; Barroso, V.M.; Azevedo, J.C. Assessing Sustainable Rural Development Based on Ecosystem Services Vulnerability. Land 2020, 9, 222. [Google Scholar] [CrossRef]
- Boonman, A.; Fukuda, S.; Junpen, A. Spatial Multi-Criteria Land Suitability Analysis for Community-Scale Biomass Power Plant Site Selection. Energies 2025, 18, 4469. [Google Scholar] [CrossRef]
- Spyridonidou, S.; Sismani, G.; Loukogeorgaki, E.; Vagiona, D.G.; Ulanovsky, H.; Madar, D. Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach. Energies 2021, 14, 551. [Google Scholar] [CrossRef]
- Miramontes-Viña, V.; Romero-Castro, N.; López-Cabarcos, M.Á. Advancing towards a Sustainable Energy Model, Uncovering the Untapped Potential of Rural Areas. AIMS Environ. Sci. 2023, 10, 287–312. [Google Scholar] [CrossRef]
- Romero-Castro, N.; Miramontes-Viña, V.; López-Cabarcos, M.Á. Understanding the Antecedents of Entrepreneurship and Renewable Energies to Promote the Development of Community Renewable Energy in Rural Areas. Sustainability 2022, 14, 1234. [Google Scholar] [CrossRef]
- Baumgartner, D.; Schulz, T.; Seidl, I. Quantifying Entrepreneurship and Its Impact on Local Economic Performance: A Spatial Assessment in Rural Switzerland. Entrep. Reg. Dev. 2013, 25, 222–250. [Google Scholar] [CrossRef]
- Baumgartner, D.; Lehmann, B.; Weber, M.; Pütz, M. Entrepreneurship as Local Entrepreneurial Potential for Regional Development in Rural Areas. Evidence from a Delphi-Survey in Switzerland. Z. Wirtschgeogr. 2010, 54, 96–113. [Google Scholar]
- Benedek, J.; Sebestyén, T.T.; Bartók, B. Evaluation of Renewable Energy Sources in Peripheral Areas and Renewable Energy-Based Rural Development. Renew. Sustain. Energy Rev. 2018, 90, 516–535. [Google Scholar] [CrossRef]
- Díaz-Cuevas, P.; Domínguez-Bravo, J.; Prieto-Campos, A. Integrating MCDM and GIS for Renewable Energy Spatial Models: Assessing the Individual and Combined Potential for Wind, Solar and Biomass Energy in Southern Spain. Clean. Technol. Environ. Policy 2019, 21, 1855–1869. [Google Scholar] [CrossRef]
- Sliz-Szkliniarz, B. Assessment of the Renewable Energy-Mix and Land Use Trade-off at a Regional Level: A Case Study for the Kujawsko-Pomorskie Voivodship. Land Use Policy 2013, 35, 257–270. [Google Scholar] [CrossRef]
- Winkler, B.; Lemke, S.; Ritter, J.; Lewandowski, I. Integrated Assessment of Renewable Energy Potential: Approach and Application in Rural South Africa. Environ. Innov. Soc. Transit. 2017, 24, 17–31. [Google Scholar] [CrossRef]
- Jenkins, J.C. Resource Mobilization Theory and the Study of Social Movements. Annu. Rev. Sociol. 1983, 9, 527–553. [Google Scholar] [CrossRef]
- McCarthy, J.D.; Zald, M.N. Resource Mobilization and Social Movements: A Partial Theory. Am. J. Sociol. 1977, 82, 1212–1241. [Google Scholar] [CrossRef]
- Bomberg, E.; McEwen, N. Mobilizing Community Energy. Energy Policy 2012, 51, 435–444. [Google Scholar] [CrossRef]
- Gregg, J.S.; Nyborg, S.; Hansen, M.; Schwanitz, V.J.; Wierling, A.; Zeiss, J.P.; Delvaux, S.; Saenz, V.; Polo-Alvarez, L.; Candelise, C.; et al. Collective Action and Social Innovation in the Energy Sector: A Mobilization Model Perspective. Energies 2020, 13, 651. [Google Scholar] [CrossRef]
- Mignon, I.; Rüdinger, A. The Impact of Systemic Factors on the Deployment of Cooperative Projects within Renewable Electricity Production—An International Comparison. Renew. Sustain. Energy Rev. 2016, 65, 478–488. [Google Scholar] [CrossRef]
- Süsser, D.; Döring, M.; Ratter, B.M.W. Harvesting Energy: Place and Local Entrepreneurship in Community-Based Renewable Energy Transition. Energy Policy 2017, 101, 332–341. [Google Scholar] [CrossRef]
- Broughel, A.E.; Hampl, N. Community Financing of Renewable Energy Projects in Austria and Switzerland: Profiles of Potential Investors. Energy Policy 2018, 123, 722–736. [Google Scholar] [CrossRef]
- Romero-Castro, N.; Piñeiro-Chousa, J.; Pérez-Pico, A. Dealing with Heterogeneity and Complexity in the Analysis of the Willingness to Invest in Community Renewable Energy in Rural Areas. Technol. Forecast. Soc. Change 2021, 173, 121165. [Google Scholar] [CrossRef]
- Graziano, M.; Billing, S.L.; Kenter, J.O.; Greenhill, L. A Transformational Paradigm for Marine Renewable Energy Development. Energy Res. Soc. Sci. 2017, 23, 136–147. [Google Scholar] [CrossRef]
- Roesler, T. Community Resources for Energy Transition: Implementing Bioenergy Villages in Germany. Area 2019, 51, 268–276. [Google Scholar] [CrossRef]
- Giacovelli, G. Social Capital and Energy Transition: A Conceptual Review. Sustainability 2022, 14, 9253. [Google Scholar] [CrossRef]
- Herbes, C.; Rilling, B.; Holstenkamp, L. Ready for New Business Models? Human and Social Capital in the Management of Renewable Energy Cooperatives in Germany. Energy Policy 2021, 156, 112417. [Google Scholar] [CrossRef]
- van Veelen, B.; Haggett, C. Uncommon Ground: The Role of Different Place Attachments in Explaining Community Renewable Energy Projects. Sociol. Ruralis 2017, 57, 533–554. [Google Scholar] [CrossRef]
- Wirth, S. Communities Matter: Institutional Preconditions for Community Renewable Energy. Energy Policy 2014, 70, 236–246. [Google Scholar] [CrossRef]
- Sperling, K. How Does a Pioneer Community Energy Project Succeed in Practice? The Case of the Samsø Renewable Energy Island. Renew. Sustain. Energy Rev. 2017, 71, 884–897. [Google Scholar] [CrossRef]
- Kalkbrenner, B.J.; Roosen, J. Citizens’ Willingness to Participate in Local Renewable Energy Projects: The Role of Community and Trust in Germany. Energy Res. Soc. Sci. 2016, 13, 60–70. [Google Scholar] [CrossRef]
- Herbes, C.; Brummer, V.; Rognli, J.; Blazejewski, S.; Gericke, N. Responding to Policy Change: New Business Models for Renewable Energy Cooperatives—Barriers Perceived by Cooperatives’ Members. Energy Policy 2017, 109, 82–95. [Google Scholar] [CrossRef]
- Mey, F.; Diesendorf, M. Who Owns an Energy Transition? Strategic Action Fields and Community Wind Energy in Denmark. Energy Res. Soc. Sci. 2018, 35, 108–117. [Google Scholar] [CrossRef]
- Hall, S.; Foxon, T.J.; Bolton, R. Financing the Civic Energy Sector: How Financial Institutions Affect Ownership Models in Germany and the United Kingdom. Energy Res. Soc. Sci. 2016, 12, 5–15. [Google Scholar] [CrossRef]
- López-Cabarcos, M.Á.; Romero-Castro, N.; Miramontes-Viña, V. Autonomía Energética Local y Desarrollo Rural Sostenible. Análisis de La Pre-Disposición a Participar En Comunidades Energéticas Renovables. Rev. Galega Econ. 2020, 29, 1–25. [Google Scholar] [CrossRef]
- Cohen, J.J.; Azarova, V.; Kollmann, A.; Reichl, J. Preferences for Community Renewable Energy Investments in Europe. Energy Econ. 2021, 100, 105386. [Google Scholar] [CrossRef]
- Rogers, J.C.; Simmons, E.A.; Convery, I.; Weatherall, A. What Factors Enable Community-Leadership of Renewable Energy Projects? Lessons from a Woodfuel Heating Initiative. Local Econ. 2012, 27, 209–222. [Google Scholar] [CrossRef]
- Bergek, A.; Mignon, I.; Sundberg, G. Who Invests in Renewable Electricity Production? Empirical Evidence and Suggestions for Further Research. Energy Policy 2013, 56, 568–581. [Google Scholar] [CrossRef]
- Khan, Z.U.; Khan, A.D.; Khan, K.; AlKhatib, S.A.K.; Khan, S.; Khan, M.Q.; Ullah, A. A Review of Degradation and Reliability Analysis of a Solar PV Module. IEEE Access 2024, 12, 185036–185056. [Google Scholar] [CrossRef]
- Krakowiak-Bal, A.; Ziemianczyk, U.; Wozniak, A.; Krakowiak-bal, A. Building Entrepreneurial Capacity in Rural Areas The Use of AHP Analysis for Infrastructure Evaluation. Int. J. Entrep. Behav. Res. 2017, 23, 903–918. [Google Scholar] [CrossRef]
- Morris, W.; Henley, A.; Dowell, D. Farm Diversification, Entrepreneurship and Technology Adoption: Analysis of Upland Farmers in Wales. J. Rural Stud. 2017, 53, 132–143. [Google Scholar] [CrossRef]
- Garrod, B.; Wornell, R.; Youell, R. Re-Conceptualising Rural Resources as Countryside Capital: The Case of Rural Tourism. J. Rural Stud. 2006, 22, 117–128. [Google Scholar] [CrossRef]
- Agarwal, S.; Rahman, S.; Errington, A. Measuring the Determinants of Relative Economic Performance of Rural Areas. J. Rural Stud. 2009, 25, 309–321. [Google Scholar] [CrossRef]
- Eimermann, M. Two Sides of the Same Coin: Dutch Rural Tourism Entrepreneurs and Countryside Capital in Sweden. Rural Society 2016, 25, 55–73. [Google Scholar] [CrossRef]
- Delfmann, H.; Koster, S.; McCann, P.; Van Dijk, J. Population Change and New Firm Formation in Urban and Rural Regions. Reg. Stud. 2014, 48, 1034–1050. [Google Scholar] [CrossRef]
- Ruiz-Fuensanta, M.J.; Gutiérrez-Pedrero, M.J.; Tarancón, M.Á. The Role of Regional Determinants in the Deployment of Renewable Energy in Farms. The Case of Spain. Sustainability 2019, 11, 5937. [Google Scholar] [CrossRef]
- Rommel, J.; Radtke, J.; von Jorck, G.; Mey, F.; Yildiz, Ö. Community Renewable Energy at a Crossroads: A Think Piece on Degrowth, Technology, and the Democratization of the German Energy System. J. Clean. Prod. 2018, 197, 1746–1753. [Google Scholar] [CrossRef]
- Rego, N.; Castro, R.; Lagarto, J. Sustainable Energy Trading and Fair Benefit Allocation in Renewable Energy Communities: A Simulation Model for Portugal. Util. Policy 2025, 96, 101986. [Google Scholar] [CrossRef]
- Campos, I.; Pontes Luz, G.; Marín González, E.; Gährs, S.; Hall, S.; Holstenkamp, L. Regulatory Challenges and Opportunities for Collective Renewable Energy Prosumers in the EU. Energy Policy 2020, 138, 111212. [Google Scholar] [CrossRef]
- Delgado Viñas, C. Depopulation Processes in European Rural Areas: A Case Study of Cantabria (Spain). Eur. Countrys. 2019, 11, 341–369. [Google Scholar] [CrossRef]
- Otero Varela, A.; Gusman, I.; Patiño Romarís, C.A. Demographic Oases in Shrinking Rural Areas: Exploring Trends in Galicia (Spain) and Northern Portugal. Boletín Asoc. Geógrafos Españoles 2025. [Google Scholar] [CrossRef]
- Costa, P.; Simões, T.; Estanqueiro, A. A GIS Methodology for Planning Sustainable Renewable Energy Deployment in Portugal. Energy Power Eng. 2019, 11, 379–391. [Google Scholar] [CrossRef]
- Dupré la Tour, M.-A. Photovoltaic and Wind Energy Potential in Europe—A Systematic Review. Renew. Sustain. Energy Rev. 2023, 179, 113189. [Google Scholar] [CrossRef]
- Cato, M.S.; Arthur, L.; Keenoy, T.; Smith, R. Entrepreneurial Energy: Associative Entrepreneurship in the Renewable Energy Sector in Wales. Int. J. Entrep. Behav. Res. 2008, 14, 313–329. [Google Scholar] [CrossRef]
- Bauwens, T. Explaining the Diversity of Motivations behind Community Renewable Energy. Energy Policy 2016, 93, 278–290. [Google Scholar] [CrossRef]
- Verheul, I.; Wennekers, S.; Audretsch, D.; Thurik, R. An Eclectic Theory of Entrepreneurship: Policies, Institutions and Culture; Springer: Boston, MA, USA, 2002; ISBN 0306475561. [Google Scholar]
- Bosma, N.; Van Stel, A.; Suddle, K. The Geography of New Firm Formation: Evidence from Independent Start-Ups and New Subsidiaries in the Netherlands. Int. Entrep. Manag. J. 2008, 4, 129–146. [Google Scholar] [CrossRef]
- Tapia, C.; Abajo, B.; Feliu, E.; Mendizabal, M.; Martinez, J.A.; Fernández, J.G.; Laburu, T.; Lejarazu, A. Profiling Urban Vulnerabilities to Climate Change: An Indicator-Based Vulnerability Assessment for European Cities. Ecol. Indic. 2017, 78, 142–155. [Google Scholar] [CrossRef]
- OECD. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD: Paris, France, 2008. [Google Scholar]
- Eurostat. Methodological Manual on Territorial Typologies, 2018 ed; Eurostat: Luxembourg, 2019. [Google Scholar]
- Gan, X.; Fernandez, I.C.; Guo, J.; Wilson, M.; Zhao, Y.; Zhou, B.; Wu, J. When to Use What: Methods for Weighting and Aggregating Sustainability Indicators. Ecol. Indic. 2017, 81, 491–502. [Google Scholar] [CrossRef]
- Salvati, L.; Carlucci, M. A Composite Index of Sustainable Development at the Local Scale: Italy as a Case Study. Ecol. Indic. 2014, 43, 162–171. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H.; Yuan, C.; Liu, Z.; Fan, C. A PCA-Based Method for Construction of Composite Sustainability Indicators. Int. J. Life Cycle Assess. 2012, 17, 593–603. [Google Scholar] [CrossRef]
- Kotzee, I.; Reyers, B. Piloting a Social-Ecological Index for Measuring Flood Resilience: A Composite Index Approach. Ecol. Indic. 2016, 60, 45–53. [Google Scholar] [CrossRef]
- Schlossarek, M.; Syrovátka, M.; Vencálek, O. The Importance of Variables in Composite Indices: A Contribution to the Methodology and Application to Development Indices. Soc. Indic. Res. 2019, 145, 1125–1160. [Google Scholar] [CrossRef]
- Statistics Portugal Statistics Portugal. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_main (accessed on 12 October 2025).
- Doukas, H.; Papadopoulou, A.; Savvakis, N.; Tsoutsos, T.; Psarras, J. Assessing Energy Sustainability of Rural Communities Using Principal Component Analysis. Renew. Sustain. Energy Rev. 2012, 16, 1949–1957. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.; Wang, W. The Influence of Relational Capital on the Sustainability Risk: Findings from Chinese Non-State-Owned Manufacturing Enterprises. Sustainability 2022, 14, 6904. [Google Scholar] [CrossRef]
- Nardo, M.; Saisana, M.; Tarantola, A.; Stefano, S. Tools for Composite Indicators Building; European Comission: Ispra, Italy, 2005; pp. 1–134. [Google Scholar]
- Avramenko, A.; Silver, J.A.K. Rural Entrepreneurship: Expanding the Horizons. Int. J. Entrep. Innov. Manag. 2010, 11, 140–155. [Google Scholar] [CrossRef]
- Wüste, A.; Schmuck, P. Bioenergy Villages and Regions in Germany: An Interview Study with Initiators of Communal Bioenergy Projects on the Success Factors for Restructuring the Energy Supply of the Community. Sustainability 2012, 4, 244–256. [Google Scholar] [CrossRef]
- Henderson, J.; Weiler, S. Entrepreneurs and Job Growth: Probing the Boundaries of Time and Space. Econ. Dev. Q. 2010, 24, 23–32. [Google Scholar] [CrossRef]
- Stockdale, A. Migration: Pre-Requisite for Rural Economic Regeneration? J. Rural Stud. 2006, 22, 354–366. [Google Scholar] [CrossRef]
- Borch, O.J.; Førde, A.; Rønning, L.; Vestrum, I.K.; Alsos, G.A. Resource Configuration and Creative Practices of Community Entrepreneurs. J. Enterp. Communities People Places Glob. Econ. 2008, 2, 100–123. [Google Scholar] [CrossRef]
- ECA. Special Report No. 05. Renewable Energy for Sustainable Rural Development: Significant Potential Synergies, but Mostly Unrealized; ECA: Luxembourg, 2018. [Google Scholar]
- Esteves, A.M.; de Brito e Cunha, F.B.; Girardi, A.d.F.; Quintão, F. Transnational Networks of Energy Communities as Counterpower in the European Union Renewable Energy Transition Framework. Community Dev. J. 2024, bsae059. [Google Scholar] [CrossRef]
- Strachan, P.A.; Cowell, R.; Ellis, G.; Sherry-Brennan, F.; Toke, D. Promoting Community Renewable Energy in a Corporate Energy World. Sustain. Dev. 2015, 23, 96–109. [Google Scholar] [CrossRef]
- Musolino, M.; Farinella, D. Renewable Energy Communities as Examples of Civic and Citizen-Led Practices: A Comparative Analysis from Italy. Land 2025, 14, 603. [Google Scholar] [CrossRef]
- Starick, A.; Syrbe, R.U.; Steinhäußer, R.; Lupp, G.; Matzdorf, B.; Zander, P. Scenarios of Bioenergy Provision: Technological Developments in a Landscape Context and Their Social Effects. Environ. Dev. Sustain. 2014, 16, 575–594. [Google Scholar] [CrossRef]
- Roesler, T.; Hassler, M. Creating Niches—The Role of Policy for the Implementation of Bioenergy Village Cooperatives in Germany. Energy Policy 2019, 124, 95–101. [Google Scholar] [CrossRef]
- OECD. Linking Renewable Energy to Rural Development Executive Summary; OECD: Paris, France, 2012. [Google Scholar]
- Singh, H.V.; Bocca, R.; Gomez, P.; Dahlke, S.; Bazilian, M. The Energy Transitions Index: An Analytic Framework for Understanding the Evolving Global Energy System. Energy Strategy Rev. 2019, 26, 100382. [Google Scholar] [CrossRef]
- Kuc-Czarnecka, M.E.; Olczyk, M.; Zinecker, M. Improvements and Spatial Dependencies in Energy Transition Measures. Energies 2021, 14, 3802. [Google Scholar] [CrossRef]
- Hussain, A.; Arif, S.M.; Aslam, M. Emerging Renewable and Sustainable Energy Technologies: State of the Art. Renew. Sustain. Energy Rev. 2017, 71, 12–28. [Google Scholar] [CrossRef]
- Gormally, A.M.; Whyatt, J.D.; Timmis, R.J.; Pooley, C.G. A Regional-Scale Assessment of Local Renewable Energy Resources in Cumbria, UK. Energy Policy 2012, 50, 283–293. [Google Scholar] [CrossRef]
- Creamer, E.; Taylor Aiken, G.; van Veelen, B.; Walker, G.; Devine-Wright, P. Community Renewable Energy: What Does It Do? Walker and Devine-Wright (2008) Ten Years On. Energy Res. Soc. Sci. 2019, 57, 101223. [Google Scholar] [CrossRef]
- Martire, S.; Tuomasjukka, D.; Lindner, M.; Fitzgerald, J.; Castellani, V. Sustainability Impact Assessment for Local Energy Supplies’ Development—The Case of the Alpine Area of Lake Como, Italy. Biomass Bioenergy 2015, 83, 60–76. [Google Scholar] [CrossRef]
- Mainali, B.; Silveira, S. Using a Sustainability Index to Assess Energy Technologies for Rural Electrification. Renew. Sustain. Energy Rev. 2015, 41, 1351–1365. [Google Scholar] [CrossRef]
- Goetz, S.J.; Rupasingha, A. The Determinants of Self-Employment Growth: Insights From County-Level Data, 2000-2009. Econ. Dev. Q. 2014, 28, 42–60. [Google Scholar] [CrossRef]
- Westlund, H.; Larsson, J.P.; Olsson, A.R. Start-Ups and Local Entrepreneurial Social Capital in the Municipalities of Sweden. Reg. Stud. 2014, 48, 974–994. [Google Scholar] [CrossRef]
- Deller, S.; Kures, M.; Conroy, T. Rural Entrepreneurship and Migration. J. Rural Stud. 2019, 66, 30–42. [Google Scholar] [CrossRef]
- Dammers, E.; Keiner, M. Rural Development in Europe. disP—Plan. Rev. 2006, 42, 5–15. [Google Scholar] [CrossRef]
- Sardadvar, S.; Rocha-Akis, S. Interregional Migration within the European Union in the Aftermath of the Eastern Enlargements: A Spatial Approach. Rev. Reg. Res. 2016, 36, 51–79. [Google Scholar] [CrossRef]
- Haapanen, M.; Tervo, H. Self-Employment Duration in Urban and Rural Locations. Appl. Econ. 2009, 41, 2449–2461. [Google Scholar] [CrossRef]
- Stephens, H.M.; Partridge, M.D.; Faggian, A. Innovation, Entrepreneurship and Economic Growth in Lagging Regions. J. Reg. Sci. 2013, 53, 778–812. [Google Scholar] [CrossRef]
- Backman, M. Banks and New Firm Formation. J. Small Bus. Enterp. Dev. 2015, 22, 734–761. [Google Scholar] [CrossRef]
- Kalantaridis, C.; Bika, Z. Local Embeddedness and Rural Entrepreneurship: Case-Study Evidence from Cumbria, England. Environ. Plan. A 2006, 38, 1561–1579. [Google Scholar] [CrossRef]
- Bosworth, G. Education, Mobility and Rural Business Development. J. Small Bus. Enterp. Dev. 2009, 16, 660–677. [Google Scholar] [CrossRef]
- Kalantaridis, C.; Bika, Z. In-Migrant Entrepreneurship in Rural England: Beyond Local Embeddedness. Entrep. Reg. Dev. 2006, 18, 109–131. [Google Scholar] [CrossRef]
- Bosworth, G. Entrepreneurial In-Migrants and Economic Development in Rural England. Int. J. Entrep. Small Bus. 2008, 6, 355. [Google Scholar] [CrossRef]
- Akgün, A.A.; Baycan-Levent, T.; Nijkamp, P.; Poot, J. Roles of Local and Newcomer Entrepreneurs in Rural Development: A Comparative Meta-Analytic Study. Reg. Stud. 2011, 45, 1207–1223. [Google Scholar] [CrossRef]
- Østergaard, P.A.; Mathiesen, B.V.; Möller, B.; Lund, H. A Renewable Energy Scenario for Aalborg Municipality Based on Low-Temperature Geothermal Heat, Wind Power and Biomass. Energy 2010, 35, 4892–4901. [Google Scholar] [CrossRef]
- Colmenar-Santos, A.; Folch-Calvo, M.; Rosales-Asensio, E.; Borge-Diez, D. The Geothermal Potential in Spain. Renew. Sustain. Energy Rev. 2016, 56, 865–886. [Google Scholar] [CrossRef]
- Igliński, B.; Buczkowski, R.; Cichosz, M. Biogas Production in Poland—Current State, Potential and Perspectives. Renew. Sustain. Energy Rev. 2015, 50, 686–695. [Google Scholar] [CrossRef]
- Corcoran, L.; Coughlan, P.; McNabola, A. Energy Recovery Potential Using Micro Hydropower in Water Supply Networks in the UK and Ireland. Water Supply 2013, 13, 552–560. [Google Scholar] [CrossRef]
- Johnson, K.M.; Lichter, D.T. Rural Depopulation: Growth and Decline Processes over the Past Century. Rural Sociol. 2019, 84, 3–27. [Google Scholar] [CrossRef]
- Fraune, C. Gender Matters: Women, Renewable Energy, and Citizen Participation in Germany. Energy Res. Soc. Sci. 2015, 7, 55–65. [Google Scholar] [CrossRef]
- Dóci, G.; Vasileiadou, E. “Let’s Do It Ourselves” Individual Motivations for Investing in Renewables at Community Level. Renew. Sustain. Energy Rev. 2015, 49, 41–50. [Google Scholar] [CrossRef]
- Koirala, B.P.; Araghi, Y.; Kroesen, M.; Ghorbani, A.; Hakvoort, R.A.; Herder, P.M. Trust, Awareness, and Independence: Insights from a Socio-Psychological Factor Analysis of Citizen Knowledge and Participation in Community Energy Systems. Energy Res. Soc. Sci. 2018, 38, 33–40. [Google Scholar] [CrossRef]
- Jokinen, P.; Järvelä, M.; Huttunen, S.; Puupponen, A. Experiments in Sustainable Rural Livelihood in Finland. Int. J. Agric. Resour. Gov. Ecol. 2008, 7, 211–228. [Google Scholar] [CrossRef]
- Fuller-Love, N.; Midmore, P.; Thomas, D.; Henley, A. Entrepreneurship and Rural Economic Development: A Scenario Analysis Approach. Int. J. Entrep. Behav. Res. 2006, 12, 289–305. [Google Scholar] [CrossRef]
- Pant, L.P.; Hambly Odame, H. Broadband for a Sustainable Digital Future of Rural Communities: A Reflexive Interactive Assessment. J. Rural Stud. 2017, 54, 435–450. [Google Scholar] [CrossRef]
- Ambrey, C.L.; Fleming, C.M.; Manning, M. The Role of Natural Capital in Supporting National Income and Social Welfare. Appl. Econ. Lett. 2016, 23, 723–727. [Google Scholar] [CrossRef]
- Korsgaard, S.; Ferguson, R.; Gaddefors, J. The Best of Both Worlds: How Rural Entrepreneurs Use Placial Embeddedness and Strategic Networks to Create Opportunities. Entrep. Reg. Dev. 2015, 27, 574–598. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Rovas, D.; Delivand, M.K.; Francavilla, M.; Libutti, A.; Cammerino, R.; Monteleone, M. Conceptual Vision of Bioenergy Sector Development in Mediterranean Regions Based on Decentralized Thermochemical Systems. Sustain. Energy Technol. Assess. 2017, 23, 33–47. [Google Scholar] [CrossRef]
- Portal de Datos Abertos da Administração Pública Concelhos de Portugal. Available online: https://dados.gov.pt/es/datasets/concelhos-de-portugal/ (accessed on 14 October 2025).
- World Bank. Technical University of Denmark Global Wind Atlas; World Bank: Washington, DC, USA.
- The World Bank Global Solar Atlas. Available online: https://globalsolaratlas.info/map?s=39.662165,-8.135352&m=site&c=39.662165,-8.135352,11 (accessed on 14 October 2025).
- geoPortal Geothermal Potential Maps. Available online: https://geoportal.lneg.pt/en/ (accessed on 14 October 2025).
- SNIAmb Small Hydro Potential. Available online: https://sniambgeoogc.apambiente.pt/getogc/rest/services/SNIAmb/RdHidrografica_GeoCodificada/MapServer (accessed on 14 October 2025).
- INEGI. APREN Endogenous Energies of Portugal. Available online: https://e2p.inegi.up.pt/?Lang=PT (accessed on 14 October 2025).
- Langer, K.; Decker, T.; Roosen, J.; Menrad, K. Factors Influencing Citizens’ Acceptance and Non-Acceptance of Wind Energy in Germany. J. Clean. Prod. 2018, 175, 133–144. [Google Scholar] [CrossRef]

| DIMENSIONS/SUB-INDICES | CRERAL INDEX | |||
|---|---|---|---|---|
| MODEL | Weighting | Aggregation Methods | Weighting | Aggregation Methods |
| A | PCA | AA | PCA | AA |
| B | PCA | AA | PCA | GA |
| C | PCA | AA | EW | AA |
| D | PCA | AA | EW | GA |
| E | EW | AA | EW | AA |
| F | EW | AA | EW | GA |
| G | EW | AA | PCA | AA |
| H | EW | AA | PCA | GA |
| DSEC | Factors Loadings | PC | Factors Loadings |
|---|---|---|---|
| POP_DEN | 0.006926673 | POP_WAS | 0.360920845 |
| NET_MIG | 0.167103409 | POP_PUR | 0.573534444 |
| POP_WEL | 0.323958667 | POP_WAT | 0.012750541 |
| UNE_CHG | 0.324516188 | POP_SEW | 0.013345498 |
| HER_INX | 0.033711132 | POP_INT | 0.013008129 |
| FIR_DEN | 0.012134454 | POP_UMT | 0.012454655 |
| DIS_MET | 0.018346188 | ||
| LAB_SEL | 0.113303289 | ||
| SSEC | Factors loadings | NC | Factors loadings |
| POP_GRW_A | 0.091797222 | PRO_LAN | 0.137121330 |
| JOB_EDU | 0.085693700 | TOU_PLA | 0.371127906 |
| INC_CAP | 0.097594015 | CUL_INT | 0.082643449 |
| FIR_CHG | 0.433494263 | FOR_AGR | 0.156535815 |
| MUN_EXP | 0.116352131 | SEC_HOM | 0.024603552 |
| BAN_OFF | 0.057921595 | FOR_FIR | 0.177971776 |
| MUN_DEB | 0.117147075 | ECO_FIR | 0.049996172 |
| HC | Factors loadings | REP | Factors loadings |
| POP_GRW_10 | 0.182086462 | POT_WIN | 0.116236585 |
| POP_INM | 0.253937321 | POT_SOL | 0.083641134 |
| POP_25_64 | 0.007838982 | POT_GEO | 0.046722737 |
| POP_REP | 0.007604693 | POT_BGS | 0.068180319 |
| POP_EDU | 0.361976151 | POT_SHY | 0.191510324 |
| POP_FEM | 0.008342582 | PRO_LAN_RN2000 | 0.400504019 |
| PRI_EMP | 0.007189741 | ICP_WIN | 0.036134215 |
| SEL_EMP | 0.008125025 | ICP_SHY | 0.057070667 |
| UNE_RAT | 0.162899042 | ||
| SC | Factors loadings | ||
| VOT_TUR | 0.286808510 | ||
| COOP_No | 0.088635741 | ||
| CUL_CEN | 0.044305075 | ||
| SOC_SER | 0.087330460 | ||
| HEA_CEN | 0.027068379 | ||
| SCH_No | 0.042835509 | ||
| HEA_PER | 0.111787581 | ||
| ASSO_No | 0.036727986 | ||
| POP_B&R | 0.274500759 |
| A | B | C | D | E | F | G | H | |
|---|---|---|---|---|---|---|---|---|
| A | 1.000 | |||||||
| B | 0.979 | 1.000 | ||||||
| C | 0.737 | 0.741 | 1.000 | |||||
| D | 0.683 | 0.735 | 0.948 | 1.000 | ||||
| E | 0.676 | 0.725 | 0.782 | 0.784 | 1.000 | |||
| F | 0.671 | 0.733 | 0.776 | 0.815 | 0.987 | 1.000 | ||
| G | 0.675 | 0.685 | 0.489 | 0.499 | 0.763 | 0.734 | 1.000 | |
| H | 0.694 | 0.712 | 0.511 | 0.538 | 0.775 | 0.758 | 0.995 | 1.000 |
| A | B | C | D | E | F | G | H | Average Rank Difference | |
|---|---|---|---|---|---|---|---|---|---|
| A | 0 | 8.2016 | |||||||
| B | 4.117 | 0 | 6.9760 | ||||||
| C | 8.877 | 6.957 | 0 | 6.1147 | |||||
| D | 12.394 | 9.406 | 5.222 | 0 | 7.5055 | ||||
| E | 10.485 | 8.757 | 5.402 | 6.637 | 0 | 5.6962 | |||
| F | 11.763 | 9.324 | 6.598 | 5.754 | 2.195 | 0 | 6.3244 | ||
| G | 8.922 | 8.842 | 8.118 | 10.769 | 6.477 | 7.993 | 0 | 6.5844 | |
| H | 9.054 | 8.406 | 7.743 | 9.863 | 5.615 | 6.968 | 1.555 | 0 | 6.1505 |
| Rank | A | B | C | D |
|---|---|---|---|---|
| 1 | Vila Flor | Vila Flor | Vila Flor | Vila Flor |
| 2 | Valpaços | Tarouca | Tarouca | Tarouca |
| 3 | Tabuaço | Sernancelhe | Penedono | Armamar |
| (…) | ||||
| 43 | Ponte de Barca | Mondim de Basto | Ponte de Barca | Cabeceiras de Basto |
| 44 | Mondim de Basto | Santa Marta de Penaguião | Resende | Baião |
| 45 | Santa Marta de Penaguião | Cinfães | Cinfães | Cinfães |
| Rank | E | F | G | H |
| 1 | Penedono | Mogadouro | Valpaços | Penedono |
| 2 | Mogadouro | Penedono | Penedono | Valpaços |
| 3 | Vila Nova de Foz Côa | Tarouca | Macedo de Cavaleiros | Macedo de Cavaleiros |
| (…) | ||||
| 43 | Celorico de Basto | Baião | Cabeceiras de Basto | Vinhais |
| 44 | Cabeceiras de Basto | Celorico de Basto | Vinhais | Cabeceiras de Basto |
| 45 | Cinfães | Cinfães | Santa Marta de Penaguião | Santa Marta de Penaguião |
| CRERAL Index | DSEC | SSEC | HC | SC | NC | PC | REP | |
|---|---|---|---|---|---|---|---|---|
| Penedono | 1 | 8 | 1 | 31 | 13 | 30 | 30 | 10 |
| Mogadouro | 2 | 41 | 9 | 27 | 9 | 21 | 3 | 3 |
| Vila Nova de Foz Côa | 3 | 36 | 45 | 34 | 36 | 1 | 23 | 35 |
| (…) | ||||||||
| Celorico de Basto | 43 | 45 | 32 | 1 | 21 | 36 | 43 | 33 |
| Cabeceiras de Basto | 44 | 28 | 16 | 13 | 7 | 45 | 41 | 38 |
| Cinfães | 45 | 44 | 25 | 2 | 24 | 42 | 45 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Castro, N.; Miramontes-Viña, V.; López-Cabarcos, M.Á.; Santos-Rodrigues, H. A Composite Index to Identify Appropriate Locations for Rural Community Renewable Energy Projects. Appl. Sci. 2025, 15, 12072. https://doi.org/10.3390/app152212072
Romero-Castro N, Miramontes-Viña V, López-Cabarcos MÁ, Santos-Rodrigues H. A Composite Index to Identify Appropriate Locations for Rural Community Renewable Energy Projects. Applied Sciences. 2025; 15(22):12072. https://doi.org/10.3390/app152212072
Chicago/Turabian StyleRomero-Castro, Noelia, Vanessa Miramontes-Viña, M. Ángeles López-Cabarcos, and Helena Santos-Rodrigues. 2025. "A Composite Index to Identify Appropriate Locations for Rural Community Renewable Energy Projects" Applied Sciences 15, no. 22: 12072. https://doi.org/10.3390/app152212072
APA StyleRomero-Castro, N., Miramontes-Viña, V., López-Cabarcos, M. Á., & Santos-Rodrigues, H. (2025). A Composite Index to Identify Appropriate Locations for Rural Community Renewable Energy Projects. Applied Sciences, 15(22), 12072. https://doi.org/10.3390/app152212072

