Positional Influence in Football Passing Networks: An Analysis of the Tactical Systems and Match Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Study Design
- (i)
- Degree Centrality (the standardised Degree Centrality or out-Degree Centrality that indicates the overall level of connection performed of a player with their teammates (passes completed)). The algorithm, observed in previous works [35], stands as , in which can be considered the elements of the weighted adjacency matrix of a G with a as a vertex.
- (ii)
- Degree Prestige (the standardised Degree Prestige or in-Degree Centrality, which indicates the number of inbound links received by a player by their teammates (passes received)). The algorithm can be observed as , in which can be considered the elements of the weighted adjacency matrix of a G with a as vertex [35].
- (iii)
2.3. Data Analysis
3. Results
3.1. Playing Position x Tactical System
3.1.1. Effects of Tactical Systems on Network Metrics Across Playing Position
3.1.2. Effects of Playing Position on Network Metrics Across Tactical Systems
3.2. Playing Position x Match Outcome
3.2.1. Effects of Match Outcome on Network Metrics Across Playing Position
3.2.2. Effects of Playing Position on Network Metrics Across Match Outcomes
4. Discussion
4.1. Tactical Systems
4.2. Match Outcomes
4.3. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hewitt, A.; Greenham, G.; Norton, K. Game Style in Soccer: What Is It and Can We Quantify It? Int. J. Perform. Anal. Sport. 2016, 16, 355–372. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.; Naha, S. Defining Moments in the History of Soccer. Soccer Soc. 2019, 20, 897–902. [Google Scholar] [CrossRef]
- Sarmento, H.; Marcelino, R.; Anguera, M.T.; CampaniÇo, J.; Matos, N.; LeitÃo, J.C. Match Analysis in Football: A Systematic Review. J. Sports Sci. 2014, 32, 1831–1843. [Google Scholar] [CrossRef] [PubMed]
- Sarmento, H.; Clemente, F.M.; Araújo, D.; Davids, K.; McRobert, A.; Figueiredo, A. What Performance Analysts Need to Know About Research Trends in Association Football (2012–2016): A Systematic Review. Sports Med. 2018, 48, 799–836. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, R.; Ribeiro, J.; Couceiro, M.; Davids, K.; Garganta, J.; Marques-Aleixo, I.; Nakamura, F.; Casanova, F.; González-Víllora, S. Development of an Innovative Method for Evaluating a Network of Collective Defensive Interactions in Football. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2022, 239, 412–421. [Google Scholar] [CrossRef]
- Rice, E.; Yoshioka-Maxwell, A. Social Network Analysis as a Toolkit for the Science of Social Work. J. Soc. Soc. Work. Res. 2015, 6, 369–383. [Google Scholar] [CrossRef]
- Duch, J.; Waitzman, J.S.; Nunes Amaral, L.A. Quantifying the Performance of Individual Players in a Team Activity. PLoS ONE 2010, 5, e10937. [Google Scholar] [CrossRef]
- Grund, T.U. Network Structure and Team Performance: The Case of English Premier League Soccer Teams. Soc. Netw. 2012, 34, 682–690. [Google Scholar] [CrossRef]
- Passos, P.; Davids, K.; Araújo, D.; Paz, N.; Minguéns, J.; Mendes, J. Networks as a Novel Tool for Studying Team Ball Sports as Complex Social Systems. J. Sci. Med. Sport. 2011, 14, 170–176. [Google Scholar] [CrossRef]
- Ribeiro, J.; Silva, P.; Duarte, R.; Davids, K.; Garganta, J. Team Sports Performance Analysed Through the Lens of Social Network Theory: Implications for Research and Practice. Sports Med. 2017, 47, 1689–1696. [Google Scholar] [CrossRef]
- Machado, J.C.; Aquino, R.; Góes Júnior, A.; Júnior, J.B.; Barreira, D.; Travassos, B.; Ibáñez, S.J.; Scaglia, A.J. Macro and Micro Network Metrics as Indicators of Training Tasks Adjustment to Players’ Tactical Level. Int. J. Sports Sci. Coach. 2021, 16, 815–823. [Google Scholar] [CrossRef]
- Sarmento, H.; Clemente, F.M.; Gonçalves, E.; Harper, L.D.; Dias, D.; Figueiredo, A. Analysis of the Offensive Process of AS Monaco Professional Soccer Team: A Mixed-Method Approach. Chaos Solitons Fractals 2020, 133, 109676. [Google Scholar] [CrossRef]
- Mendes, B.; Clemente, F.M.; Maurício, N. Variance In Prominence Levels and in Patterns of Passing Sequences in Elite and Youth Soccer Players: A Network Approach. J. Hum. Kinet. 2018, 61, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Clemente, F.M.; Sarmento, H.; Aquino, R. Player Position Relationships with Centrality in the Passing Network of World Cup Soccer Teams: Win/Loss Match Comparisons. Chaos Solitons Fractals 2020, 133, 109625. [Google Scholar] [CrossRef]
- Clemente, F.M.; Martins, F.M.L.; Kalamaras, D.; Wong, D.P.; Mendes, R.S. Midfielder as the Prominent Participant in the Building Attack: A Network Analysis of National Teams in FIFA World Cup 2014. Int. J. Perform. Anal. Sport 2015, 15, 80–96. [Google Scholar] [CrossRef]
- Clemente, F.M.; Martins, F.M.L.; Kalamaras, D.; Oliveira, J.; Oliveira, P.; Mendes, R.S. The Social Network Analysis of Switzerland Football Team on FIFA World Cup 2014. J. Phys. Educ. Sport 2015, 15, 136–141. [Google Scholar] [CrossRef]
- Clemente, F.M.; Martins, F.M.L.; Mendes, R.S. Analysis of Scored and Conceded Goals by a Football Team throughout a Season: A Network Analysis. Kinesiology 2016, 48, 103–114. [Google Scholar] [CrossRef]
- Praça, G.M.; Lima, B.B.; Bredt, S.d.G.T.; e Sousa, R.B.; Clemente, F.M.; de Andrade, A.G.P. Influence of Match Status on Players’ Prominence and Teams’ Network Properties During 2018 FIFA World Cup. Front. Psychol. 2019, 10, 695. [Google Scholar] [CrossRef]
- Clemente, F.M.; Sarmento, H.; Praça, G.M.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Variations of Network Centralities Between Playing Positions in Favorable and Unfavorable Close and Unbalanced Scores During the 2018 FIFA World Cup. Front. Psychol. 2019, 10, 1802. [Google Scholar] [CrossRef]
- Aquino, R.; Machado, J.C.; Manuel Clemente, F.; Praça, G.M.; Gonçalves, L.G.C.; Melli-Neto, B.; Ferrari, J.V.S.; Vieira, L.H.P.; Puggina, E.F.; Carling, C. Comparisons of Ball Possession, Match Running Performance, Player Prominence and Team Network Properties According to Match Outcome and Playing Formation during the 2018 FIFA World Cup. Int. J. Perform. Anal. Sport 2019, 19, 1026–1037. [Google Scholar] [CrossRef]
- McLean, S.; Salmon, P.M.; Gorman, A.D.; Wickham, J.; Berber, E.; Solomon, C. The Effect of Playing Formation on the Passing Network Characteristics of a Professional Football Team. Human. Mov. 2018, 2018, 14–22. [Google Scholar] [CrossRef]
- Buldu, J.M.; Busquets, J.; Echegoyen, I.; Seirullo, F. Defining a Historic Football Team: Using Network Science to Analyze Guardiola’s FC Barcelona. Sci. Rep. 2019, 9, 13602. [Google Scholar] [CrossRef] [PubMed]
- Garrido, D.; Antequera, D.R.; Busquets, J.; López del Campo, R.; Resta Serra, R.; Jos Vielcazat, S.; Buldú, J.M. Consistency and Identifiability of Football Teams: A Network Science Perspective. Sci. Rep. 2020, 10, 19735. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Diestra, J.L.; Echegoyen, I.; Martinez, J.H.; Garrido, D.; Busquets, J.; Io, F.S.; Buldu, J.M. Pitch Networks Reveal Organizational and Spatial Patterns of Guardiola’s FC Barcelona. Chaos Solitons Fractals 2020, 138, 109934. [Google Scholar] [CrossRef]
- Immler, S.; Rappelsberger, P.; Baca, A.; Exel, J. Guardiola, Klopp, and Pochettino: The Purveyors of What? The Use of Passing Network Analysis to Identify and Compare Coaching Styles in Professional Football. Front. Sports Act. Living 2021, 3, 725554. [Google Scholar] [CrossRef]
- Martinez, J.H.; Garrido, D.; Herrera-Diestra, J.L.; Busquets, J.; Sevilla-Escoboza, R.; Buldu, J.M. Spatial and Temporal Entropies in the Spanish Football League: A Network Science Perspective. Entropy 2020, 22, 172. [Google Scholar] [CrossRef]
- Da Conceição Alves, R.J.; Dias, G.; Vaz, V.; Querido, S.; Nunes, N. Network Analysis of Offensive Dynamics in a Portuguese First Division Football Team: Insights from the 2020–2021 Season. Retos 2025, 65, 1045–1055. [Google Scholar] [CrossRef]
- Pina, T.J.; Paulo, A.; Araújo, D. Network Characteristics of Successful Performance in Association Football. A Study on the UEFA Champions League. Front. Psychol. 2017, 8, 1173. [Google Scholar] [CrossRef]
- Pappalardo, L.; Cintia, P.; Rossi, A.; Massucco, E.; Ferragina, P.; Pedreschi, D.; Giannotti, F. A Public Data Set of Spatio-Temporal Match Events in Soccer Competitions. Sci. Data 2019, 6, 236. [Google Scholar] [CrossRef]
- Cao, S. Study State Dynamics of Team Passing Networks in Soccer Games. J. Sports Sci. 2023, 43, 33–47. [Google Scholar] [CrossRef]
- Yi, Q.; Gómez-Ruano, M.-Á.; Liu, H.; Zhang, S.; Gao, B.; Wunderlich, F.; Memmert, D. Evaluation of the Technical Performance of Football Players in the UEFA Champions League. Int. J. Environ. Res. Public Health 2020, 17, 604. [Google Scholar] [CrossRef] [PubMed]
- Kahlouche, I.Z. Match-Related Technical Performance of Qualified and Eliminated Teams in the Group Stage of Qatar 2022 World Cup. Trends Sport Sci. 2023, 30, 119–125. [Google Scholar] [CrossRef]
- Liu, H.; Hopkins, W.; Gómez, A.M.; Molinuevo, S.J. Inter-Operator Reliability of Live Football Match Statistics from OPTA Sportsdata. Int. J. Perform. Anal. Sport. 2013, 13, 803–821. [Google Scholar] [CrossRef]
- Kalamaras, D. Social Networks Visualizer, Version 3.0.4; Social Networks Visualizer (SocNetV): Social Network Analysis and Visualization Software; 2014. Available online: https://socnetv.org (accessed on 13 October 2025).
- Clemente, F.M.; Martins, F.M.L.; Mendes, R.S. Social Network Analysis Applied to Team Sports Analysis; Springer Briefs in Applied Sciences and Technology; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-25854-6. [Google Scholar]
- Di Salvo, V.; Baron, R.; Tschan, H.; Calderon Montero, F.; Bachl, N.; Pigozzi, F. Performance Characteristics According to Playing Position in Elite Soccer. Int. J. Sports Med. 2007, 28, 222–227. [Google Scholar] [CrossRef]
- Pallant, J. SPSS Survival Manual: A Step by Step Guide to Data Analysis Using IBM SPSS; Routledge: London, UK, 2020; ISBN 9781003117452. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; SAGE: Newcastle, UK, 2018. [Google Scholar]
- Marôco, J. Análise Estatística Com o SPSS Statistics, 8th ed.; ReportNumber: Pêro Pinheiro, Portugal, 2021. [Google Scholar]
- Tabachnick, B.; Fidell, L.; Ullman, J. Using Multivariate Statistics, 7th ed.; Pearson: London, UK, 2021. [Google Scholar]
- Ferguson, C.J. An Effect Size Primer: A Guide for Clinicians and Researchers. Prof. Psychol. Res. Pract. 2009, 40, 532–538. [Google Scholar] [CrossRef]
- Korte, F.; Lames, M.; Link, D.; Groll, J. Play-by-Play Network Analysis in Football. Front. Psychol. 2019, 10, 1738. [Google Scholar] [CrossRef]
- Yu, Q.; Gai, Y.; Gong, B.; Gómez, M.-Á.; Cui, Y. Using Passing Network Measures to Determine the Performance Difference between Foreign and Domestic Outfielder Players in Chinese Football Super League. Int. J. Sports Sci. Coach. 2020, 15, 398–404. [Google Scholar] [CrossRef]
- McLean, S.; Salmon, P.M.; Gorman, A.D.; Dodd, K.; Solomon, C. The Communication and Passing Contributions of Playing Positions in a Professional Soccer Team. J. Hum. Kinet. 2021, 77, 223–234. [Google Scholar] [CrossRef]
- González-Rodenas, J.; Moreno-Pérez, V.; Del Campo, R.L.; Resta, R.; Coso, J. Del Evolution of Tactics in Professional Soccer: An Analysis of Team Formations from 2012 to 2021 in the Spanish LaLiga. J. Hum. Kinet. 2023, 88, 207–216. [Google Scholar] [CrossRef]
- Castellano, J.; López del Campo, R.; Resta, R.; Errekagorri, I. Uso de Los Sistemas de Juego En Las Ligas Profesionales Del Fútbol Español Con Relación a Las Variables Situacionales. Rev. Iberoam. Cienc. La Act. Física El Deporte 2025, 14, 424–443. [Google Scholar] [CrossRef]
- Alves, R.; Dias, G.; Nunes, N.A.; Querido, S.M.; Vaz, V. Social Network Analysis in Football: A Systematic Review of Performance and Tactical Applications. Front. Psychol. 2025, 16, 1659603. [Google Scholar] [CrossRef]
- Pan, P.; Peñas, C.L.; Wang, Q.; Liu, T. Evolution of Passing Network in the Soccer World Cups 2010–2022. Sci. Med. Footb. 2024, 9, 349–360. [Google Scholar] [CrossRef]
- Aquino, R.; Carling, C.; Palucci Vieira, L.H.; Martins, G.; Jabor, G.; Machado, J.; Santiago, P.; Garganta, J.; Puggina, E. Influence of Situational Variables, Team Formation, and Playing Position on Match Running Performance and Social Network Analysis in Brazilian Professional Soccer Players. J. Strength Cond. Res. 2020, 34, 808–817. [Google Scholar] [CrossRef]

| Playing Position | Degree Centrality | Proximity Prestige | Degree Prestige | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| F | p | η2 | Effect Size | F | p | η2 | Effect Size | F | p | η2 | Effect Size | |
| goalkeepers | 1.802 | 0.186 | 0.12 | Moderate Effect | 0.215 | 0.808 | 0.01 | Small Effect | 2.862 | 0.076 | 0.19 | Moderate Effect |
| central defenders | 1.162 | 0.329 | 0.08 | Moderate Effect | 3.420 | 0.049 | 0.21 | Moderate Effect | 1.144 | 0.335 | 0.08 | Moderate Effect |
| fullbacks | 1.365 | 0.274 | 0.09 | Moderate Effect | 0.116 | 0.891 | 0.01 | Small Effect | 0.553 | 0.582 | 0.04 | Small Effect |
| central midfielders | 1.881 | 0.173 | 0.13 | Moderate Effect | 1.095 | 0.350 | 0.08 | Moderate Effect | 2.149 | 0.138 | 0.14 | Moderate Effect |
| wingers | 1.402 | 0.265 | 0.10 | Moderate Effect | 2.174 | 0.135 | 0.14 | Moderate Effect | 1.641 | 0.214 | 0.11 | Moderate Effect |
| strikers | 1.741 | 0.198 | 0.12 | Moderate Effect | 0.170 | 0.844 | 0.01 | Small Effect | 1.726 | 0.198 | 0.12 | Moderate Effect |
| Tactical System | Degree Centrality | Proximity Prestige | Degree Prestige | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| F | p | η2 | Effect Size | F | p | η2 | Effect Size | F | p | η2 | Effect Size | |
| 1-4-1-4-1 | 17.612 | 0.001 | 0.68 | Very High Effect | 0.993 | 0.434 | 0.11 | Moderate Effect | 5.972 | 0.001 | 0.42 | High Effect |
| 1-4-3-3 | 19.726 | 0.001 | 0.67 | Very High Effect | 3.398 | 0.010 | 0.26 | High Effect | 6.235 | 0.001 | 0.39 | High Effect |
| 1-3-4-3 | 18.568 | 0.001 | 0.61 | Very High Effect | 4.107 | 0.003 | 0.26 | High Effect | 8.712 | 0.001 | 0.42 | High Effect |
| Playing Position | Degree Centrality | Proximity Prestige | Degree Prestige | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| F | p | η2 | Effect Size | F | p | η2 | Effect Size | F | p | η2 | Effect Size | |
| goalkeepers | 0.670 | 0.521 | 0.051 | Moderate Effect | 0.401 | 0.674 | 0.031 | Small Effect | 0.002 | 0.998 | 0.000 | Small Effect |
| central defenders | 0.988 | 0.386 | 0.073 | Moderate Effect | 1.987 | 0.158 | 0.137 | Moderate Effect | 0.997 | 0.383 | 0.074 | Moderate Effect |
| fullbacks | 1.033 | 0.371 | 0.076 | Moderate Effect | 1.962 | 0.162 | 0.136 | Moderate Effect | 0.462 | 0.635 | 0.073 | Moderate Effect |
| central midfielders | 3.088 | 0.063 | 0.198 | Moderate Effect | 0.527 | 0.597 | 0.040 | Small Effect | 2.510 | 0.102 | 0.167 | Moderate Effect |
| wingers | 2.684 | 0.088 | 0.177 | Moderate Effect | 0.144 | 0.867 | 0.011 | Small Effect | 5.874 | 0.008 | 0.320 | Moderate Effect |
| strikers | 1.018 | 0.376 | 0.075 | Moderate Effect | 0.191 | 0.827 | 0.015 | Small Effect | 0.675 | 0.518 | 0.051 | Moderate Effect |
| Match Status | Degree Centrality | Proximity Prestige | Degree Prestige | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| F | p | η2 | Effect Size | F | p | η2 | Effect Size | F | p | η2 | Effect Size | |
| Drawn | 5.649 | 0.001 | 0.54 | Very High Effect | 0.491 | 0.779 | 0.09 | Small Effect | 1.501 | 0.227 | 0.24 | Moderate Effect |
| Lost | 26.895 | 0.001 | 0.63 | Very High Effect | 2.468 | 0.040 | 0.14 | Moderate Effect | 8.373 | 0.001 | 0.35 | High Effect |
| Won | 21.714 | 0.001 | 0.69 | Very High Effect | 3.477 | 0.009 | 0.27 | High Effect | 10.126 | 0.001 | 0.51 | Very High Effect |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, R.; Dias, G.; Nunes, N.A.; Martins, F.; Querido, S.M.; Vaz, V. Positional Influence in Football Passing Networks: An Analysis of the Tactical Systems and Match Outcomes. Appl. Sci. 2025, 15, 11513. https://doi.org/10.3390/app152111513
Alves R, Dias G, Nunes NA, Martins F, Querido SM, Vaz V. Positional Influence in Football Passing Networks: An Analysis of the Tactical Systems and Match Outcomes. Applied Sciences. 2025; 15(21):11513. https://doi.org/10.3390/app152111513
Chicago/Turabian StyleAlves, Ricardo, Gonçalo Dias, Nuno André Nunes, Fernando Martins, Sérgio M. Querido, and Vasco Vaz. 2025. "Positional Influence in Football Passing Networks: An Analysis of the Tactical Systems and Match Outcomes" Applied Sciences 15, no. 21: 11513. https://doi.org/10.3390/app152111513
APA StyleAlves, R., Dias, G., Nunes, N. A., Martins, F., Querido, S. M., & Vaz, V. (2025). Positional Influence in Football Passing Networks: An Analysis of the Tactical Systems and Match Outcomes. Applied Sciences, 15(21), 11513. https://doi.org/10.3390/app152111513

