UAV Multispectral Imaging for Multi-Year Assessment of Crop Rotation Effects on Winter Rye
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Design and Agricultural Practices
2.2. Meteorological Conditions
2.3. UAV Data Acquisition
- Flight timing: To control lighting variability and optimize spectral data quality, flights were conducted between 12:00 and 14:00 local time under cloud-free conditions. This time window corresponds to peak solar elevation in Kaunas, Lithuania, during the primary monitoring months. Typical midday solar angles in this region are high: In May and June, the solar elevation is approximately 38° at 12:00 and peaks around 41° by 14:00. June, near the summer solstice, presents the highest angles of the year. In July, although the solar angle begins to decline slightly post-solstice, it remains elevated at 38–41° during the midday period. These stable high-angle conditions reduced shadow artifacts, enhanced image uniformity, and improved the accuracy and consistency of NDVI calculations across all data collection dates.
- Altitude and resolution: The drone maintained an altitude of about 45 m above ground level, resulting in an approximate ground sampling distance (GSD) of 5.243 cm per pixel.
- Overlap: Adjacent images were captured with 70% forward lap and 70% side lap, ensuring sufficient overlap for photogrammetric processing and complete coverage of each field at high resolution.
2.4. Image Processing and NDVI Computation
2.5. Statistical Analysis
3. Results
3.1. NDVI Indexes of Winter Rye at BBCH 61–69
3.2. NDVI Indexes of Winter Rye at BBCH 71–79
3.3. NDVI Indexes of Winter Rye at BBCH 83–89
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BBCH | Biologische Bundesanstalt (Federal Biological Research Centre), Bundessortenamt (Federal Plant Variety Office), and Chemical industry |
| NDVI | Normalized Difference Vegetation Index |
| MONO | Winter rye monoculture |
| MONOFH | Winter rye monoculture with fertilizers and herbicides |
| INT | Intensive crop rotation |
| TC | Three-course rotation |
| FWR | Field with row crops |
| FR | Field without row crops |
| SI | For green manure/sideration |
References
- Butkevičienė, L.M.; Skinulienė, L.; Auželienė, I.; Bogužas, V.; Pupalienė, R.; Steponavičienė, V. The Influence of Long-Term Different Crop Rotations and Monoculture on Weed Prevalence and Weed Seed Content in the Soil. Agronomy 2021, 11, 1367. [Google Scholar] [CrossRef]
- Bogužas, V.; Skinulienė, L.; Butkevičienė, L.M.; Steponavičienė, V.; Petrauskas, E.; Maršalkienė, N. The Effect of Monoculture, Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO2 Emissions, Earthworms, and Productivity of Winter Rye after a 50-Year Period. Plants 2022, 11, 431. [Google Scholar] [CrossRef]
- Bowles, T.M.; Mooshammer, M.; Socolar, Y.; Calderón, F.; Cavigelli, M.A.; Culman, S.W.; Deen, W.; Drury, C.F.; Garcia y Garcia, A.; Gaudin, A.C.M.; et al. Long-Term Evidence Shows That Crop-Rotation Diversification Increases Agricultural Resilience to Adverse Growing Conditions in North America. One Earth 2020, 2, 284–293. [Google Scholar] [CrossRef]
- Gaudin, A.C.M.; Westra, S.; Loucks, C.E.S.; Janovicek, K.; Martin, R.C.; Deen, W. Improving Resilience of Northern Field Crop Systems Using Inter-Seeded Red Clover: A Review. Agronomy 2013, 3, 148–180. [Google Scholar] [CrossRef]
- Van Eerd, L.L.; Chahal, I.; Peng, Y.; Awrey, J.C. Influence of Cover Crops at the Four Spheres: A Review of Ecosystem Services, Potential Barriers, and Future Directions for North America. Sci. Total Environ. 2023, 858, 159990. [Google Scholar] [CrossRef]
- Jankauskas, B. Modelling of Terrestrial Erosion and Change of Soil Features under Soil Erosion on the Hilly Relief of Lithuania. Int. Arch. Photogramm. Remote Sens. 2000, 33 Pt 7, 615–622. [Google Scholar]
- Skinulienė, L.; Marcinkevičienė, A.; Dorelis, M.; Bogužas, V. The Effect of Long-Term Crop Rotations for the Soil Carbon Sequestration Rate Potential and Cereal Yield. Agriculture 2024, 14, 483. [Google Scholar] [CrossRef]
- Domnariu, H.; Reardon, C.L.; Manning, V.A.; Gollany, H.T.; Trippe, K.M. Legume Cover Cropping and Nitrogen Fertilization Influence Soil Prokaryotes and Increase Carbon Content in Dryland Wheat Systems. Agric. Ecosyst. Environ. 2024, 367, 108959. [Google Scholar] [CrossRef]
- Thieme, A.; Prabhakara, K.; Jennewein, J.; Lamb, B.T.; McCarty, G.W.; Hively, W.D. Intercomparison of Same-Day Remote Sensing Data for Measuring Winter Cover Crop Biophysical Traits. Sensors 2024, 24, 2339. [Google Scholar] [CrossRef] [PubMed]
- Rebong, D.; Henriquez Inoa, S.; Moore, V.M.; Reberg-Horton, S.C.; Mirsky, S.; Murphy, J.P.; Leon, R.G. Breeding Allelopathy in Cereal Rye for Weed Suppression. Weed Sci. 2024, 72, 30–40. [Google Scholar] [CrossRef]
- Larkin, R.P.; Griffin, T.S.; Honeycutt, C.W. Rotation and Cover Crop Effects on Soilborne Potato Diseases, Tuber Yield, and Soil Microbial Communities. Plant Dis. 2010, 94, 1491–1502. [Google Scholar] [CrossRef]
- Nouri, A.; Lukas, S.; Singh, S.; Singh, S.; Machado, S. When Do Cover Crops Reduce Nitrate Leaching? A Global Meta-Analysis. Glob. Change Biol. 2022, 28, 4736–4749. [Google Scholar] [CrossRef]
- Tahir, M.; Fernández, F.G.; Ricks, N.; Mulla, D.J. EPIC Model Prediction of Winter Rye Cover Crop Effects on Crop Yield and Nitrate-N Leaching in Minnesota. Agron. J. 2025, 117, e70065. [Google Scholar] [CrossRef]
- Venkata Sai Chakradhar Reddy, D.; Sahoo, R.N.; Kondraju, T.; Rejith, R.G.; Ranjan, R.; Bhandari, A.; Moursy, A.; Tripathi, S.C.; Kumar, N. Drone-Based Multispectral Imaging for Precision Monitoring of Crop Growth Variables. Biol. Life Sci. Forum 2025, 41, 10. [Google Scholar] [CrossRef]
- Caruso, G.; Tozzini, L.; Rallo, G.; Primicerio, J.; Moriondo, M.; Palai, G.; Gucci, R. Estimating Biophysical and Geometrical Parameters of Grapevine Canopies (‘Sangiovese’) by an Unmanned Aerial Vehicle (UAV) and VIS-NIR Cameras. Vitis J. Grapevine Res. 2017, 56, 63–70. [Google Scholar] [CrossRef]
- Dong, Z.; Yao, L.; Bao, Y.; Zhang, J.; Yao, F.; Bai, L.; Zheng, P. Prediction of Soil Organic Carbon Content in Complex Vegetation Areas Based on CNN-LSTM Model. Land 2024, 13, 915. [Google Scholar] [CrossRef]
- Beisekenov, N.; Banakinaou, W.; Ajayi, A.D.; Hasegawa, H.; Tadao, A. Remote Sensing-Based Soil Organic Carbon Monitoring Using Advanced Machine Learning Techniques under Conservation Agriculture Systems. Smart Agric. Technol. 2025, 11, 101036. [Google Scholar] [CrossRef]
- Swoish, M.; Da Cunha Leme Filho, J.F.; Reiter, M.S.; Campbell, J.B.; Thomason, W.E. Comparing Satellites and Vegetation Indices for Cover Crop Biomass Estimation. Comput. Electron. Agric. 2022, 196, 106900. [Google Scholar] [CrossRef]
- Farias, G.D.; Bremm, C.; Bredemeier, C.; de Lima Menezes, J.; Alves, L.A.; Tiecher, T.; de Faccio Carvalho, P.C. Normalized Difference Vegetation Index (NDVI) for Soybean Biomass and Nutrient Uptake Estimation in Response to Production Systems and Fertilization Strategies. Front. Sustain. Food Syst. 2023, 6, 959681. [Google Scholar] [CrossRef]
- Buivydaitė, V.V.; Vaičys, M.; Motuzas, A.J. Lithuanian Soil Classification; Lietuvos Mokslas: Vilnius, Lithuania, 2001; p. 139. ISBN 9986795118. [Google Scholar]
- Nițu, A.; Florea, C.; Ivanovici, M.; Racoviteanu, A. NDVI and Beyond: Vegetation Indices as Features for Crop Recognition and Segmentation in Hyperspectral Data. Sensors 2025, 25, 3817. [Google Scholar] [CrossRef]
- Addinsoft. XLSTAT Statistical Software, Retrieved 26 October 2025; XLSTAT: Paris, France, 2025. Available online: https://www.xlstat.com (accessed on 7 October 2025).
- Tamás, A.; Kovács, E.; Horváth, É.; Juhász, C.; Radócz, L.; Rátonyi, T.; Ragán, P. Assessment of NDVI Dynamics of Maize (Zea mays L.) and Its Relation to Grain Yield in a Polyfactorial Experiment Based on Remote Sensing. Agriculture 2023, 13, 689. [Google Scholar] [CrossRef]
- Maresma, Á.; Ariza, M.; Martínez, E.; Lloveras, J.; Martínez-Casasnovas, J.A. Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard Uav Service. Remote Sens. 2016, 8, 973. [Google Scholar] [CrossRef]
- Al-Musawi, Z.K.; Vona, V.; Kulmány, I.M. Utilizing Different Crop Rotation Systems for Agricultural and Environmental Sustainability: A Review. Agronomy 2025, 15, 1966. [Google Scholar] [CrossRef]
- Atanasov, A.I.; Atanasov, A.Z.; Evstatiev, B.I. A Remote Sensing Approach for Biomass Assessment in Winter Wheat Using the NDVI Second Derivative in Terms of NIR. Sustainability 2025, 17, 7299. [Google Scholar] [CrossRef]
- Rossi, A.; Tavarini, S.; Tognoni, M.; Angelini, L.G.; Clemente, C.; Caturegli, L. Reliable NDVI Estimation in Wheat Using Low-Cost UAV-Derived RGB Vegetation Indices. Smart Agric. Technol. 2025, 12, 101452. [Google Scholar] [CrossRef]
- Cabrera-Bosquet, L.; Molero, G.; Stellacci, A.; Bort, J.; Nogués, S.; Araus, J. NDVI as a Potential Tool for Predicting Biomass, Plant Nitrogen Content and Growth in Wheat Genotypes Subjected to Different Water and Nitrogen Conditions. Cereal Res. Commun. 2011, 39, 147–159. [Google Scholar] [CrossRef]
- Barboza, T.O.C.; Ardigueri, M.; Souza, G.F.C.; Ferraz, M.A.J.; Gaudencio, J.R.F.; dos Santos, A.F. Performance of Vegetation Indices to Estimate Green Biomass Accumulation in Common Bean. AgriEngineering 2023, 5, 840–854. [Google Scholar] [CrossRef]
- Jennewein, J.S.; Davis, B.W.; Seehaver-Eagen, S.; Nicolette, J.; Pittman, J.; Hively, W.D.; Goldsmith, A.; Hidalgo, C.; Reberg-Horton, C.; Mirsky, S.B. Multi-Sensor Proximal Remote Sensing for Cover Crop Biomass Estimation at High and Moderate Spatial Resolutions. Smart Agric. Technol. 2025, 12, 101201. [Google Scholar] [CrossRef]
- Meng, J.; Du, X.; Wu, B. Generation of High Spatial and Temporal Resolution NDVI and Its Application in Crop Biomass Estimation. Int. J. Digit. Earth 2013, 6, 203–218. [Google Scholar] [CrossRef]
- Dal Lago, P.; Vavlas, N.; Kooistra, L.; De Deyn, G.B. Estimation of Nitrogen Uptake, Biomass, and Nitrogen Concentration, in Cover Crop Monocultures and Mixtures from Optical UAV Images. Smart Agric. Technol. 2024, 9, 100608. [Google Scholar] [CrossRef]
- Miller, J.O.; Shober, A.L.; Taraila, J. Assessing Relationships of Cover Crop Biomass and Nitrogen Content to Multispectral Imagery. Agron. J. 2024, 116, 1417–1427. [Google Scholar] [CrossRef]
- Poudel, A.; Burns, D.; Adhikari, R.; Duron, D.; Hendrix, J.; Gentimis, T.; Tubana, B.; Setiyono, T. Cover Crop Biomass Predictions with Unmanned Aerial Vehicle Remote Sensing and TensorFlow Machine Learning. Drones 2025, 9, 131. [Google Scholar] [CrossRef]
- Moreno-Cadena, P.; Salmeron, M.; Canisares, L.P.; Poffenbarger, H.J. Productivity Benefits of Cereal-Legume Cover Crop Mixtures under Variable Soil Nitrogen and Termination Times. Eur. J. Agron. 2024, 155, 127114. [Google Scholar] [CrossRef]
- Zani, C.F.; Manning, D.A.C.; Abbott, G.D.; Taylor, J.A.; Cooper, J.; Lopez-Capel, E. Diversified Crop Rotations and Organic Amendments as Strategies for Increasing Soil Carbon Storage and Stabilisation in UK Arable Systems. Front. Environ. Sci. 2023, 11, 26. [Google Scholar] [CrossRef]
- Tan, G.; Liu, Y.; Peng, S.; Yin, H.; Meng, D.; Tao, J.; Gu, Y.; Li, J.; Yang, S.; Xiao, N.; et al. Soil Potentials to Resist Continuous Cropping Obstacle: Three Field Cases. Environ. Res. 2021, 200, 111319. [Google Scholar] [CrossRef]
- Kartini, N.L.; Saifulloh, M.; Trigunasih, N.M.; Sukmawati, N.M.S.; Mega, I.M. Impact of Long-Term Continuous Cropping on Soil Nutrient Depletion. Ecol. Eng. Environ. Technol. 2024, 25, 18–29. [Google Scholar] [CrossRef]
- Liang, X.; Yu, S.; Ju, Y.; Wang, Y.; Yin, D. Integrated Management Practices Foster Soil Health, Productivity, and Agroecosystem Resilience. Agronomy 2025, 15, 1816. [Google Scholar] [CrossRef]
- Vajja, N.R.; Meinke, H.; Kropff, M.J.; Anten, N.P.; Whitbread, A.M.; Kumar, U.; Parsons, D. Incorporating Knowledge of Allelopathic Interactions Can Improve Productivity and Sustainability of Crop Rotations in the Semi-Arid Tropics. J. Agric. Food Res. 2025, 22, 102026. [Google Scholar] [CrossRef]
- Olofsdotter, M.; Jensen, L.B.; Courtois, B. Improving Crop Competitive Ability Using Allelopathy—An Example from Rice. Plant Breed. 2002, 121, 1–9. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil Structure as an Indicator of Soil Functions: A Review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Horel, Á.; Zsigmond, T.; Farkas, C.; Gelybó, G.; Tóth, E.; Kern, A.; Bakacsi, Z. Climate Change Alters Soil Water Dynamics under Different Land Use Types. Sustainability 2022, 14, 3908. [Google Scholar] [CrossRef]
- Bao, G.; Qin, Z.; Bao, Y.; Zhou, Y.; Li, W.; Sanjjav, A. NDVI-Based Long-Term Vegetation Dynamics and Its Response to Climatic Change in the Mongolian Plateau. Remote Sens. 2014, 6, 8337–8358. [Google Scholar] [CrossRef]
- Wang, S.; Fu, G. Modelling Soil Moisture Using Climate Data and Normalized Difference Vegetation Index Based on Nine Algorithms in Alpine Grasslands. Front. Environ. Sci. 2023, 11, 1130448. [Google Scholar] [CrossRef]
- Horn, R.; Domzzał, H.; Słowińska-Jurkiewicz, A.; van Ouwerkerk, C. Soil Compaction Processes and Their Effects on the Structure of Arable Soils and the Environment. Soil Tillage Res. 1995, 35, 23–36. [Google Scholar] [CrossRef]
- Lynch, J.P.; Mooney, S.J.; Strock, C.F.; Schneider, H.M. Future Roots for Future Soils. Plant Cell Environ. 2022, 45, 620–636. [Google Scholar] [CrossRef]
- Serrano-Grijalva, L.; Ochoa-Hueso, R.; Veen, G.F.; Repeto-Deudero, I.; Van Rijssel, S.Q.; Koorneef, G.J.; Van der Putten, W.H. Normalized Difference Vegetation Index Analysis Reveals Increase of Biomass Production and Stability during the Conversion from Conventional to Organic Farming. Glob. Change Biol. 2024, 30, e17461. [Google Scholar] [CrossRef]
- Peltonen-Sainio, P.; Jauhiainen, L.; Honkavaara, E.; Wittke, S.; Karjalainen, M.; Puttonen, E. Pre-Crop Values from Satellite Images for Various Previous and Subsequent Crop Combinations. Front. Plant Sci. 2019, 10, 462. [Google Scholar] [CrossRef] [PubMed]
- Girz, A.I.; Mattila, T.J. Within-Field Variation of Crop Yield Loss from Cover Crops. Agron. J. 2024, 116, 2922–2933. [Google Scholar] [CrossRef]
- Reuter, T.; Nahrstedt, K.; Jarmer, T.; Trautz, D. Site-Specific Management Zones for Crop Rotation Based on NDVI Images of Clover-Grass Fields. In Proceedings of the XXII N Workshop 2024, Aarhus, Denmark, 17–21 June 2024. [Google Scholar]
- Papadopoulos, G.; Zafeiriou, I.; Georgiou, E.; Oikonomou, A.; Mavroeidis, A.; Stavropoulos, P.; Kakabouki, I.; Fountas, S.; Bilalis, D. Remote Sensing Meets Agronomy: A Three-Year Field Study of Tritordeum’s Response to Enhanced Efficiency Fertilisers. Agronomy 2025, 15, 2244. [Google Scholar] [CrossRef]
- Yuan, M.; Burjel, J.C.; Martin, N.F.; Isermann, J.; Goeser, N.; Pittelkow, C.M. Advancing On-Farm Research with UAVs: Cover Crop Effects on Crop Growth and Yield. Agron. J. 2021, 113, 1071–1083. [Google Scholar] [CrossRef]
- Govaerts, B.; Verhulst, N. The Normalized Difference Vegetation Index (NDVI) Greenseeker(TM) Handheld Sensor: Toward the Integrated Evaluation of Crop Management Part A: Concepts and Case Studies; CIMMYT: Texcoco, Mexico, 2012. [Google Scholar]
- Panek, E.; Gozdowski, D. Relationship between Modis Derived Ndvi and Yield of Cereals for Selected European Countries. Agronomy 2021, 11, 340. [Google Scholar] [CrossRef]
- Panek-Chwastyk, E.; Paradowski, K.; Rutkowska, B.; Szulc, W.; Dzierżanowski, I. Advancing Early-Stage Plant Phosphorus Assessment for Winter Rye via Hyperspectral Data: A Model-Based Approach Harnessing Feedforward Neural Networks. Eur. J. Agron. 2025, 169, 127667. [Google Scholar] [CrossRef]
- Feng, D.; Yang, H.; Gao, K.; Jin, X.; Li, Z.; Nie, C.; Zhang, G.; Fang, L.; Zhou, L.; Guo, H.; et al. Time-Series NDVI and Greenness Spectral Indices in Mid-to-Late Growth Stages Enhance Maize Yield Estimation. Field Crops Res. 2025, 333, 110069. [Google Scholar] [CrossRef]
- Perry, E.; Sheffield, K.; Crawford, D.; Akpa, S.; Clancy, A.; Clark, R. Spatial and Temporal Biomass and Growth for Grain Crops Using NDVI Time Series. Remote Sens. 2022, 14, 3071. [Google Scholar] [CrossRef]



| Crop Rotation | Pre-Crop |
|---|---|
| Rye monoculture without NPK fertilizers and herbicides (MONO) | Rye monoculture without NPK fertilizers and herbicides |
| Rye monoculture with fertilizers and herbicides (MONOFH) | Rye monoculture with fertilizers and herbicides |
| Intensive (INT) | Potatoes |
| Three-course (TC) | Black fallow |
| Field with row crops (FWR) | Perennial grasses (Trifolium pratense L. + Phleum pratense L.) (second year) |
| Field without row crops (FR) | Perennial grasses (Trifolium pratense L. + Phleum pratense L.) (second year) |
| For green manure/sideration (SI) | Winter rape |
| Crop Rotations | Organic Matter Input in Rotation | |||
|---|---|---|---|---|
| Manure | Straw | Green Manure | Perennial Grasses | |
| Rye monoculture without NPK fertilizers and herbicides (MONO) | + | |||
| Rye monoculture with NPK fertilizers and herbicides (MONOFH) | + | |||
| Intensive (INT) | + | + | + | + |
| Three-course (TC) | + | + | ||
| Field with row crops (FWR) | + | + | + | |
| Field without row crops (FR) | + | + | ||
| For green manure/sideration (SI) | + | + | ||
| Year/Month | Sep. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| The sum of monthly precipitation, mm | ||||||||||||
| 2022–2023 (1 Y) | 26 | 17.7 | 30.7 | 44.1 | 66.5 | 27.6 | 30.8 | 26.7 | 14.3 | 64.0 | 36.8 | 96.2 |
| 2023–2024 (2 Y) | 11.6 | 99.1 | 30.4 | 47.0 | 27.4 | 60.2 | 13.5 | 63.0 | 41.6 | 36.8 | 109.4 | 40.9 |
| 2024–2025 (3 Y) | 40.2 | 27.0 | 40.8 | 35.0 | 23.20 | 27.0 | 33.80 | 19.90 | 31.50 | 82.30 | 118.00 | 31.30 |
| The average air temperature, °C | ||||||||||||
| 2022–2023 (1 Y) | 11.1 | 10.2 | 2.9 | −2.5 | 0.9 | 0.1 | 2.8 | 8.5 | 12.6 | 17.3 | 17.9 | 20.2 |
| 2023–2024 (2 Y) | 17.1 | 8.4 | 2.2 | 0.5 | 3.85 | 2.83 | 4.47 | 8.91 | 15.69 | 17.8 | 20.5 | 19.67 |
| 2024–2025 (3 Y) | 17.26 | 8.65 | 3.74 | 1.93 | 1.98 | −2.33 | 5.1 | 9.36 | 10.19 | 15.69 | 19.23 | 16.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorelis, M.; Vaštakaitė-Kairienė, V.; Bogužas, V. UAV Multispectral Imaging for Multi-Year Assessment of Crop Rotation Effects on Winter Rye. Appl. Sci. 2025, 15, 11491. https://doi.org/10.3390/app152111491
Dorelis M, Vaštakaitė-Kairienė V, Bogužas V. UAV Multispectral Imaging for Multi-Year Assessment of Crop Rotation Effects on Winter Rye. Applied Sciences. 2025; 15(21):11491. https://doi.org/10.3390/app152111491
Chicago/Turabian StyleDorelis, Mindaugas, Viktorija Vaštakaitė-Kairienė, and Vaclovas Bogužas. 2025. "UAV Multispectral Imaging for Multi-Year Assessment of Crop Rotation Effects on Winter Rye" Applied Sciences 15, no. 21: 11491. https://doi.org/10.3390/app152111491
APA StyleDorelis, M., Vaštakaitė-Kairienė, V., & Bogužas, V. (2025). UAV Multispectral Imaging for Multi-Year Assessment of Crop Rotation Effects on Winter Rye. Applied Sciences, 15(21), 11491. https://doi.org/10.3390/app152111491

