Production of Cytoprotective, Antioxidant, and Anti-Inflammatory Shikonin Derivatives in Root Cultures of Plagiobothrys arizonicus: A Pilot Study
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Boraginaceae Seed, Live Plant Material, and Culture
2.1.1. Aseptic Leaf Explant Culture
2.1.2. Sustained Root Culture
2.2. Analytical Methods
2.3. Bioassays
2.3.1. NQO1
2.3.2. iNOS
2.3.3. Protection Against ROS Toxicity
2.4. Statistics
3. Results and Discussion
3.1. Plant Screening and Selection
3.2. Plagiobothrys arizonicus Root Culture and Recovery Protocol Development
3.2.1. Shikonoid Recovery and Analysis
3.2.2. Preliminary Characterization
3.2.3. Fractionation
3.3. Bioactivities of Shikonoids
3.3.1. Induction of Cytoprotective Phase 2 Enzyme by Shikonoids
3.3.2. Inhibition of LPS-Activated iNOS by Shikonoids
3.3.3. Protection Against Oxidative Stress by Shikonoids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ARE | Antioxidant response element |
| CCC | Centrifugal Counter-Current Chromatography |
| HSCCC | High Speed Centrifugal Counter-Current Chromatography |
| IR | Ischemia/reperfusion |
| IAA | Indole acetic acid |
| iNOS | Inducible nitric oxide synthase |
| Keap1 | Kelch-like ECH-associated protein |
| NF-κB | Nuclear Factor Kappa-light-chain-enhancer of activated B cells |
| NQO1 | NAD(P)H:quinone oxidoreductase-1 |
| Nrf2 | NF-E2 p45-related factor 2 |
| ROS | reactive oxygen species |
| TFA | Trifluoroacetic acid |
References
- Hedges, K. Santa Ysabel Ethnobotany; San Diego Museum of Man: San Diego, CA, USA, 1986; Volume 30. [Google Scholar]
- Jin, R. Theoretical study on the antioxidant activity of alkannin and its derivatives. Appl. Mech. Mater. 2011, 138–139, 1056–1062. [Google Scholar] [CrossRef]
- Papageorgiou, V.P.; Assimopoulou, A.N.; Couladouros, E.A.; Hepworth, D.; Nicolaou, K.C. The Chemistry and Biology of Alkannin, Shikonin, and Related Naphthazarin Natural Products. Angew. Chem. Int. Ed. 1999, 38, 270–301. [Google Scholar] [CrossRef]
- Wang, R.; Yin, R.; Zhou, W.; Xu, D.; Li, S. Shikonin and its derivatives: A patent review. Expert Opin. Ther. Pat. 2012, 22, 977–997. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kim, S.Y.; Kang, T.H.; Hwang, E.J.; Kang, C.H. Pharmaceutical Composition Comprising Shikonin Derivatives from Lithospermum Erythrorhizon for Treating Diabetes Mellitus and the Use Thereof; WIPO: Geneva, Switzerland, 2010. [Google Scholar]
- Shen, C.C.; Syu, W.J.; Li, S.Y.; Lin, C.H.; Lee, G.H.; Sun, C.M. Antimicrobial activities of naphthazarins from Arnebia euchroma. J. Nat. Prod. 2002, 65, 1857–1862. [Google Scholar] [CrossRef]
- Meselhy, M.R.; Kadota, S.; Tsubono, K.; Kusai, A.; Hattori, M.; Namba, T. Shikometabolins A, B, C and D, novel dimeric naphthoquinone metabolites obtained from shikonin by human intestinal bacteria. Tetrahedron Lett. 1994, 35, 583–586. [Google Scholar] [CrossRef]
- Sevimli-Gur, C.; Akgun, I.H.; Deliloglu-Gurhan, I.; Korkmaz, K.S.; Bedir, E. Cytotoxic naphthoquinones from Alkanna cappadocica (perpendicular). J. Nat. Prod. 2010, 73, 860–864. [Google Scholar] [CrossRef]
- Kundakovic, T.; Fokialakis, N.; Dobric, S.; Pratsinis, H.; Kletsas, D.; Kovacevic, N.; Chinou, I. Evaluation of the anti-inflammatory and cytotoxic activities of naphthazarine derivatives from Onosma leptantha. Phytomedicine 2006, 13, 290–294. [Google Scholar] [CrossRef]
- Wang, F.; Yao, X.; Zhang, Y.; Tang, J. Synthesis, biological function and evaluation of Shikonin in cancer therapy. Fitoterapia 2019, 134, 329–339. [Google Scholar] [CrossRef]
- Ali, A.; Assimopoulou, A.N.; Papageorgiou, V.P.; Kolodziej, H. Structure/antileishmanial activity relationship study of naphthoquinones and dependency of the mode of action on the substitution patterns. Planta Med. 2011, 77, 2003–2012. [Google Scholar] [CrossRef]
- An, S.; Park, Y.D.; Paik, Y.K.; Jeong, T.S.; Lee, W.S. Human ACAT inhibitory effects of shikonin derivatives from Lithospermum erythrorhizon. Bioorg. Med. Chem. Lett. 2007, 17, 1112–1116. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, W.; Ding, J.; Cai, J.; Duan, W. Shikonin derivatives: Synthesis and inhibition of human telomerase. Bioorg. Med. Chem. Lett. 2002, 12, 1375–1378. [Google Scholar] [CrossRef]
- Michaelakis, A.; Strongilos, A.T.; Bouzas, E.A.; Koliopoulos, G.; Couladouros, E.A. Larvicidal activity of naturally occurring naphthoquinones and derivatives against the West Nile virus vector Culex pipiens. Parasitol. Res. 2009, 104, 657–662. [Google Scholar] [CrossRef]
- Ordoudi, S.A.; Tsermentseli, S.K.; Nenadis, N.; Assimopoulou, A.N.; Tsimidou, M.Z.; Papageorgiou, V.P. Structure-radical scavenging activity relationship of alkannin/shikonin derivatives. Food Chem. 2011, 124, 171–176. [Google Scholar] [CrossRef]
- Landa, P.; Kutil, Z.; Temml, V.; Vuorinen, A.; Malik, J.; Dvorakova, M.; Marsik, P.; Kokoska, L.; Pribylova, M.; Schuster, D.; et al. Redox and non-redox mechanism of in vitro cyclooxygenase inhibition by natural quinones. Planta Med. 2012, 78, 326–333. [Google Scholar] [CrossRef]
- Chen, X.; Yang, L.; Zhang, N.; Turpin, J.A.; Buckheit, R.W.; Osterling, C.; Oppenheim, J.J.; Howard, O.M. Shikonin, a component of chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 2003, 47, 2810–2816. [Google Scholar] [CrossRef]
- Widhalm, J.R.; Rhodes, D. Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. Hortic. Res. 2016, 3, 16046. [Google Scholar] [CrossRef]
- Yazaki, K. Lithospermum erythrorhizon cell cultures: Present and future aspects. Plant Biotechnol. 2017, 34, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Sharma, A.; Nayik, G.A.; Cooper, R.; Bhardwaj, G.; Sohal, H.S.; Mutreja, V.; Kaur, R.; Areche, F.O.; AlOudat, M.; et al. Review of Shikonin and Derivatives: Isolation, Chemistry, Biosynthesis, Pharmacology and Toxicology. Front. Pharmacol. 2022, 13, 905755. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Seo, Y.C.; No, R.H.; Lee, H.Y. Improved cosmetic activity by optimizing the Lithospermum erythrorhizon extraction process. Cytotechnology 2015, 67, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Albreht, A.; Vovk, I.; Simonovska, B.; Srbinoska, M. Identification of shikonin and its ester derivatives from the roots of Echium italicum L. J. Chromatogr. A 2009, 1216, 3156–3162. [Google Scholar] [CrossRef]
- Manjkhola, S.; Dhar, U.; Joshi, M. Organogenesis, embryogenesis, and synthetic seed production in Arnebia euchroma—A critically endangered medicinal plant of the Himalaya. In Vitro Cell. Dev. Biol. Plant 2005, 41, 244–248. [Google Scholar] [CrossRef]
- Malik, S.; Bhushan, S.; Sharma, M.; Singh Ahuja, P. Physico-chemical factors influencing the shikonin derivatives production in cell suspension cultures of Arnebia euchroma (Royle) Johnston, a medicinally important plant species. Cell Biol. Int. 2011, 35, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Renneberg, R.; Berkling, V.; Loroch, V.; Demain, A.L. Biotechnology for Beginners, 2nd ed.; Elsevier/Academic Press: Amsterdam, The Netherland, 2017. [Google Scholar]
- Ruffoni, B.; Pistelli, L.; Bertoli, A.; Pistelli, L. Plant cell cultures: Bioreactors for industrial production. Adv. Exp. Med. Biol. 2010, 698, 203–221. [Google Scholar] [CrossRef]
- Shimamoto, M. R&D strategy and knowledge creation in Japanese chemical firms, 1980–2010. In Proceedings of the Business History Conference, Business and Economic History On-line: Papers Presented at the BHC Annual Meeting, St. Louis, MO, USA, 31 March–2 April 2011. [Google Scholar]
- Fukui, H.; Tsukada, M.; Mizukami, H.; Tabata, M. Formation of stereoisomeric mixtures of naphthoquinone derivatives in Echium lycopsis callus cultures. Phytochemistry 1983, 22, 453–456. [Google Scholar] [CrossRef]
- Tabata, M. The mechanism of shikonin biosynthesis in Lithospermum cell cultures. Plant Tissue Cult. Lett. 1996, 13, 117–125. [Google Scholar] [CrossRef]
- Cuadrado, A.; Rojo, A.I.; Wells, G.; Hayes, J.D.; Cousin, S.P.; Rumsey, W.L.; Attucks, O.C.; Franklin, S.; Levonen, A.L.; Kensler, T.W.; et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 2019, 18, 295–317. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Fahey, J.W.; Kostov, R.V.; Kensler, T.W. KEAP1 and Done? Targeting the NRF2 Pathway with Sulforaphane. Trends Food Sci. Technol. 2017, 69, 257–269. [Google Scholar] [CrossRef]
- Piotrowska, M.; Swierczynski, M.; Fichna, J.; Piechota-Polanczyk, A. The Nrf2 in the pathophysiology of the intestine: Molecular mechanisms and therapeutic implications for inflammatory bowel diseases. Pharmacol. Res. 2021, 163, 105243. [Google Scholar] [CrossRef]
- Yagishita, Y.; Chartoumpekis, D.V.; Kensler, T.W.; Wakabayashi, N. NRF2 and the Moirai: Life and Death Decisions on Cell Fates. Antioxid. Redox Signal 2023, 38, 684–708. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, P.L. The role of NAD(P)H oxidoreductase (DT-Diaphorase) in the bioactivation of quinone-containing antitumor agents: A review. Free Radic. Biol. Med. 2000, 29, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Dinkova-Kostova, A.T.; Fahey, J.W.; Talalay, P. Chemical Structures of Inducers of Nicotinamide Quinone Oxidoreductase 1 (NQO1). Methods Enzymol. 2004, 382, 423–448. [Google Scholar] [CrossRef]
- Murashigi, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Thomas, E.; Davey, M.R. The Use of Ti Plasmid as a Cloning Vector for Genetic Engineering in Plants; EMBO Press: Heidelberg, Germany, 1982. [Google Scholar]
- Fujita, Y.; Hara, Y.; Suga, C.; Morimoto, T. Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon II. A new Medium for the production of shikonin derivatives. Plant Cell Rep. 1981, 1, 61–63. [Google Scholar] [CrossRef]
- Fujita, Y.; Tabata, M.; Nishi, A.; Yamada, Y. New Medium and Production of Secondary Compounds with the Two-Staged Culture Method. In Plant Tissue Culture: Methods and Applications in Agriculture; Thorpe, T.A., Ed.; Maruzen Co.: Tokyo, Japan, 1982; pp. 399–400. [Google Scholar]
- Lee, L.S.; Stephenson, K.K.; Fahey, J.W.; Parsons, T.L.; Lietman, P.S.; Andrade, A.S.; Lei, X.; Yun, H.; Soon, G.H.; Shen, P.; et al. Induction of chemoprotective phase 2 enzymes by ginseng and its components. Planta Med. 2009, 75, 1129–1133. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Ghosh, P.; Sharma, U.; Sood, S.; Sinha, A.; Gulati, A. Microwave-Assisted Efficient Extraction and Stability of Juglone in Different Solvents from Juglans regia: Quantification of Six Phenolic Constituents by Validated RP-HPLC and Evaluation of Antimicrobial Activity. Anal. Lett. 2009, 42, 2592–2609. [Google Scholar] [CrossRef]
- Assimopoulou, A.N.; Sturm, S.; Stuppner, H.; Papageorgiou, V.P. Preparative isolation and purification of alkannin/shikonin derivatives from natural products by high-speed counter-current chromatography. Biomed. Chromatogr. 2009, 23, 182–198. [Google Scholar] [CrossRef]
- Fahey, J.W.; Dinkova-Kostova, A.T.; Stephenson, K.K.; Talalay, P. The “Prochaska” Microtiter Plate Bioassay for Inducers of NQO1. Methods Enzymol. 2004, 382, 243–258. [Google Scholar] [CrossRef]
- Prochaska, H.J.; Santamaria, A.B.; Talalay, P. Rapid detection of inducers of enzymes that protect against carcinogens. Proc. Natl. Acad. Sci. USA 1992, 89, 2394–2398. [Google Scholar] [CrossRef]
- Liu, H.; Dinkova-Kostova, A.T.; Talalay, P. Coordinate regulation of enzyme markers for inflammation and for protection against oxidants and electrophiles. Proc. Natl. Acad. Sci. USA 2008, 105, 15926–15931. [Google Scholar] [CrossRef] [PubMed]
- LeBel, C.P.; Ischiropoulos, H.; Bondy, S.C. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 1992, 5, 227–231. [Google Scholar] [CrossRef]
- Tian, Y.; Daoud, A.; Shang, J. Effects of bpV(pic) and bpV(phen) on H9c2 cardiomyoblasts during both hypoxia/reoxygenation and H2O2-induced injuries. Mol. Med. Rep. 2012, 5, 852–858. [Google Scholar] [CrossRef]
- Tabata, M.; Mizukami, H.; Hiraoka, N.; Konoshima, M. Pigment formation in callus cultures of Lithospermum erythrorhizon. Phytochemistry 1974, 13, 927–932. [Google Scholar] [CrossRef]
- Wu, W.; Wu, H.; Liang, R.; Huang, S.; Meng, L.; Zhang, M.; Xie, F.; Zhu, H. Light regulates the synthesis and accumulation of plant secondary metabolites. Front. Plant Sci. 2025, 16, 1644472. [Google Scholar] [CrossRef]
- Murthy, H.N.; Dalawai, D.; Bhat, M.A.; Dandin, V.S.; Paek, K.Y.; Park, S.Y. Biotechnological Production of Useful Phytochemicals from Adventitious Root Cultures. Ref. Ser. Phytochem. 2019, 1–17. [Google Scholar] [CrossRef]
- Subramanian, M.; Gantait, S.; Jaafar, J.N.; Ismail, M.F.; Sinniah, U.R. Micropropagation of white turmeric (Curcuma zedoaria (Christm.) Roscoe) and establishment of adventitious root culture for the production of phytochemicals. Ind. Crops Prod. 2025, 223, 120101. [Google Scholar] [CrossRef]
- Deno, H.; Suga, C.; Morimoto, T.; Fujita, Y. Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon VI. Production of shikonin derivatives by a two-layer culture containing an organic solvent. Plant Cell Rep. 1987, 6, 197–199. [Google Scholar] [CrossRef]
- Shimomura, K.; Sudo, H.; Saga, H.; Kamada, H. Shikonin production and secretion by hairy root cultures of Lithospermum erythrorhizon. Plant Cell Rep. 1991, 10, 282–285. [Google Scholar] [CrossRef]
- Boehm, R.; Sommer, S.; Li, S.M.; Heide, L. Genetic engineering on shikonin biosynthesis: Expression of the bacterial ubiA gene in Lithospermum erythrorhizon. Plant Cell Physiol. 2000, 41, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Zare, K.; Nazemiyeh, H.; Movafeghi, A.; Khosrowshahli, M.; Motallebi-Azar, A.; Dadpour, M.; Omidi, Y. Bioprocess engineering of Echium italicum L.: Induction of shikonin and alkannin derivatives by two-liquid-phase suspension cultures. Plant Cell Tissue Organ Cult. 2010, 100, 157–164. [Google Scholar] [CrossRef]
- Liu, T.; Ma, C.; Yang, L.; Wang, W.; Sui, X.; Zhao, C.; Zu, Y. Optimization of shikonin homogenate extraction from Arnebia euchroma using response surface methodology. Molecules 2013, 18, 466–481. [Google Scholar] [CrossRef] [PubMed]
- Talalay, P.; De Long, M.J.; Prochaska, H.J. Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis. Proc. Natl. Acad. Sci. USA 1988, 85, 8261–8265. [Google Scholar] [CrossRef] [PubMed]
- Tanoue, Y.; Terada, A.; Sugyo, Y. Synthesis of naphthoquinone derivatives. 3. Cycloshikonin and its derivatives. A synthetic route to shikonin. J. Org. Chem. 1987, 52, 1437–1439. [Google Scholar] [CrossRef]
- Efferth, T.; Greten, H.J. Microarray-based determination of response of tumor cells to cycloshikonin. Forum Immunopathol. Dis. Ther. 2011, 2, 315–322. [Google Scholar] [CrossRef]
- Meselhy, M.R.; Kadota, S.; Tsubono, K.; Hattori, M.; Namba, T. Biotransformation of shikonin by human intestinal bacteria. Tetrahedron 1994, 50, 3081–3098. [Google Scholar] [CrossRef]
- Fahey, J.W.; Wade, K.L.; Stephenson, K.K.; Chou, F.E. Separation and purification of glucosinolates from crude plant homogenates by high-speed counter-current chromatography. J. Chromatogr. A 2003, 996, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.; Garrard, I.J.; Heuvel, R.v.D.; Sutherland, I.A.; Chou, F.E.; Fahey, J.W. Technology Transfer and Scale Up of a Potential Cancer-Preventive Plant Dynamic Extraction of Glucoraphanin. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 1913–1922. [Google Scholar] [CrossRef]
- Fahey, J.W.; Reed, J.N.; Readdy, T.L.; Pace, G.M. Somatic embryogenesis from three commercially important inbreds of Zea mays. Plant Cell Rep. 1986, 5, 35–38. [Google Scholar] [CrossRef]
- Farnham, M.W.; Wilson, P.E.; Stephenson, K.K.; Fahey, J.W. Genetic and environmental effects on glucosinolate content and chemoprotective potency of broccoli. Plant Breed. 2004, 123, 60–65. [Google Scholar] [CrossRef]
- Stephenson, K.K.; Fahey, J.W. Development of Tissue Culture Methods for the Rescue and Propagation of Endangered Moringa spp. Germplasm. Econ. Bot. 2004, 58, S116–S124. [Google Scholar] [CrossRef]
- Huang, C.-S.; Chen, H.-W.; Lin, T.-Y.; Lin, A.-H.; Lii, C.-K. Shikonin upregulates the expression of drug-metabolizing enzymes and drug transporters in primary rat hepatocytes. J. Ethnopharmacol. 2018, 216, 18–25. [Google Scholar] [CrossRef]
- Posner, G.H.; Cho, C.-G.; Green, J.V.; Zhang, Y.; Talalay, P. Design and Synthesis of Bifunctional Isothiocyanate Analogs of Sulforaphane: Correlation between Structure and Potency as Inducers of Anticarcinogenic Detoxication Enzymes. J. Med. Chem. 1994, 37, 170–176. [Google Scholar] [CrossRef]
- Gedara Prasad, R.; Hyun Choi, Y.; Kim, G.Y. Shikonin isolated from Lithospermum erythrorhizon downregulates proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglial cells by suppressing crosstalk between reactive oxygen species and NF-κB. Biomol. Ther. 2015, 23, 110–118. [Google Scholar] [CrossRef]
- Hosseini, S.; Sabouni, F.; Fereidoni, M.; Moghimi, A. Anti-inflammatory effect of shikonin on cultured astrocytes derived from rat brain. Physiol. Pharmacol. 2012, 16, 107–120. [Google Scholar]
- Liao, P.L.; Lin, C.H.; Li, C.H.; Tsai, C.H.; Ho, J.D.; Chiou, G.C.Y.; Kang, J.J.; Cheng, Y.W. Anti-inflammatory properties of shikonin contribute to improved early-stage diabetic retinopathy. Sci. Rep. 2017, 7, 44985. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Li, Y.; Li, W.; Qiu, J.; Du, J.; Wang, L.; Zhang, T. Shikonin ameliorates oxidative stress and neuroinflammation via the Akt/ERK/JNK/NF-κB signalling pathways in a model of Parkinson’s disease. Clin. Exp. Pharmacol. Physiol. 2022, 49, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Hescheler, J.; Meyer, R.; Plant, S.; Krautwurst, D.; Rosenthal, W.; Schultz, G. Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ. Res. 1991, 69, 1476–1486. [Google Scholar] [CrossRef]






| Latin Binomial (Common Name) | Source | Material Obtained | Callus * | Root * |
|---|---|---|---|---|
| Alkanna orientalis (Alkanet) | Horizon Herbs | Plant | +, 1 | +, 2 |
| Anchusa officinales (Bugloss) | Richters | Seed | +, 3 | -- |
| Borage sp. (Common Borage) | Everwilde Farms | Seed | +, 4 | -- |
| Cynoglossum amabile (Chinese Forget-Me-Not) | Everwilde Farms | Seed | +, 4 | -- |
| Echium gentianoides | Plant World Seeds | Seed | -- | +, 2 |
| Echium pininana | Plant World Seeds | Seed | +, 4 | +, 2 |
| Echium vulgare (Viper’s Bugloss) (PI 440305) | USDA (GRIN) | Seed | +, 4 | +, 2 |
| Echium wildpretii | Plant World Seeds | Seed | -- | +, 2 |
| Lithospermum erythrorhizon | Dr. James Duke | Leaves | +, 4 | -- |
| Phacelia campanularia (California Bluebell) | Everwilde Farms | Seed | -- | +, 2 |
| Phacelia tanacetifolia (Lacy Phacelia) | Everwilde Farms | Seed | -- | +, 2 |
| Plagiobothrys arizonicus (Arizona Popcornflower) (AZ930-246) | USDA (GRIN) | Seed | +, 4 | +, 4 |
| Pulmonaria sp. (Lung Wort) | Behnke Nursery | Plant | +, 4 | +, 4 |
| Symphytum peregrinum (Comfrey) | USDA (GRIN) | Root | +, 4 | -- |
| Shikonoids | Hepa1c1c7 | RAW 264.7 | H9c2 | ||
|---|---|---|---|---|---|
| NQO1 Induction | iNOS Inhibition | NQO1 Induction | ROS Suppression | Viability Protection | |
| CD (µM) | IC50 (µM) | CD (µM) | IC50 (µM) | ED50 (µM) | |
| Shikonin | 3.00 | 0.75 | 0.63 | 2.0 | 0.4 |
| Cycloshikonin | 0.23 | 0.65 | 0.25 | 0.8 | 0.4 |
| Deoxyshikonin | 0.40 | 1.70 | 1.20 | 4.2 | 1.7 |
| Naphthazarin | 1.10 | 0.75 | 0.46 | 1.0 | N/A |
| Sulforaphane | 0.20 | 0.75 | 0.90 | 1.3 | 1.1 |
| β-naphthoflavone | 0.04 | N/A | N/A | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahey, J.W.; Wade, K.L.; Stephenson, K.K.; Liu, H. Production of Cytoprotective, Antioxidant, and Anti-Inflammatory Shikonin Derivatives in Root Cultures of Plagiobothrys arizonicus: A Pilot Study. Appl. Sci. 2025, 15, 11359. https://doi.org/10.3390/app152111359
Fahey JW, Wade KL, Stephenson KK, Liu H. Production of Cytoprotective, Antioxidant, and Anti-Inflammatory Shikonin Derivatives in Root Cultures of Plagiobothrys arizonicus: A Pilot Study. Applied Sciences. 2025; 15(21):11359. https://doi.org/10.3390/app152111359
Chicago/Turabian StyleFahey, Jed W., Kristina L. Wade, Katherine K. Stephenson, and Hua Liu. 2025. "Production of Cytoprotective, Antioxidant, and Anti-Inflammatory Shikonin Derivatives in Root Cultures of Plagiobothrys arizonicus: A Pilot Study" Applied Sciences 15, no. 21: 11359. https://doi.org/10.3390/app152111359
APA StyleFahey, J. W., Wade, K. L., Stephenson, K. K., & Liu, H. (2025). Production of Cytoprotective, Antioxidant, and Anti-Inflammatory Shikonin Derivatives in Root Cultures of Plagiobothrys arizonicus: A Pilot Study. Applied Sciences, 15(21), 11359. https://doi.org/10.3390/app152111359

