Artificial Intelligence and Bioinformatics in the Malignant Progression of Gastric Cancer
Abstract
1. Introduction
2. Methods
3. Development of AI and Bioinformatics in the Field of Cancer Research
3.1. AI
3.2. Bioinformatics Analysis
4. Application of AI and Bioinformatics in the Malignant Progression of GC Research
4.1. Carcinogenesis
4.1.1. Genomics and Transcriptomics
4.1.2. Epigenomics
4.1.3. Liquid Biopsy
4.1.4. Radiomics
4.1.5. Pathomics
4.2. Progression
4.3. Metastasis
4.3.1. Lymph Node Metastasis
4.3.2. Peritoneal Metastasis
4.3.3. Distant Metastasis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, S.; Zhu, W.; Thompson, P.; Hannun, Y.A. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat. Commun. 2018, 9, 3490. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Gulfishan, M.; Kim, M.S.; Kashyap, M.K. Deciphering Cancer Complexity: Integrative Proteogenomics and Proteomics Approaches for Biomarker Discovery. Methods Mol. Biol. 2025, 2859, 211–237. [Google Scholar] [PubMed]
- Newgard, C.B. Metabolomics and Metabolic Diseases: Where Do We Stand? Cell Metab. 2017, 25, 43–56. [Google Scholar] [CrossRef]
- Mbemi, A.; Khanna, S.; Njiki, S.; Yedjou, C.G.; Tchounwou, P.B. Impact of Gene-Environment Interactions on Cancer Development. Int. J. Environ. Res. Public Health 2020, 17, 8089. [Google Scholar] [CrossRef]
- Akhoundova, D.; Rubin, M.A. Clinical application of advanced multi-omics tumor profiling: Shaping precision oncology of the future. Cancer Cell 2022, 40, 920–938. [Google Scholar] [CrossRef]
- Ghaffari, S.; Hanson, C.; Schmidt, R.E.; Bouchonville, K.J.; Offer, S.M.; Sinha, S. An integrated multi-omics approach to identify regulatory mechanisms in cancer metastatic processes. Genome Biol. 2021, 22, 19. [Google Scholar] [CrossRef]
- Heo, Y.J.; Hwa, C.; Lee, G.H.; Park, J.M.; An, J.Y. Integrative Multi-Omics Approaches in Cancer Research: From Biological Networks to Clinical Subtypes. Mol. Cells 2021, 44, 433–443. [Google Scholar] [CrossRef]
- Acosta, J.N.; Falcone, G.J.; Rajpurkar, P.; Topol, E.J. Multimodal biomedical AI. Nat. Med. 2022, 28, 1773–1784. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Sarker, I.H. AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems. SN Comput. Sci. 2022, 3, 158. [Google Scholar] [CrossRef] [PubMed]
- Bhinder, B.; Gilvary, C.; Madhukar, N.S.; Elemento, O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021, 11, 900–915. [Google Scholar] [CrossRef] [PubMed]
- Sarvepalli, S.; Vadarevu, S. Role of artificial intelligence in cancer drug discovery and development. Cancer Lett. 2025, 627, 217821. [Google Scholar] [CrossRef]
- Greener, J.G.; Kandathil, S.M.; Moffat, L.; Jones, D.T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 2022, 23, 40–55. [Google Scholar] [CrossRef]
- Cuocolo, R.; Caruso, M.; Perillo, T.; Ugga, L.; Petretta, M. Machine Learning in oncology: A clinical appraisal. Cancer Lett. 2020, 481, 55–62. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, B.; Feng, W.; Zhang, Z.; Fu, X.; Shao, H.; Wang, H.; Jin, L.; Ai, S.; Ji, Y. An ensemble deep learning model for risk stratification of invasive lung adenocarcinoma using thin-slice CT. NPJ Digit. Med. 2023, 6, 119. [Google Scholar] [CrossRef]
- Matsuoka, T.; Yashiro, M. Bioinformatics Analysis and Validation of Potential Markers Associated with Prediction and Prognosis of Gastric Cancer. Int. J. Mol. Sci. 2024, 25, 5880. [Google Scholar] [CrossRef]
- Sherman, R.M.; Salzberg, S.L. Pan-genomics in the human genome era. Nat. Rev. Genet. 2020, 21, 243–254. [Google Scholar] [CrossRef]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Kiri, S.; Ryba, T. Cancer, metastasis, and the epigenome. Mol. Cancer 2024, 23, 154. [Google Scholar] [CrossRef] [PubMed]
- Cilento, M.A.; Sweeney, C.J.; Butler, L.M. Spatial transcriptomics in cancer research and potential clinical impact: A narrative review. J. Cancer Res. Clin. Oncol. 2024, 150, 296. [Google Scholar] [CrossRef]
- Muller, J.B.; Geyer, P.E.; Colaco, A.R.; Treit, P.V.; Strauss, M.T.; Oroshi, M.; Doll, S.; Virreira Winter, S.; Bader, J.M.; Kohler, N.; et al. The proteome landscape of the kingdoms of life. Nature 2020, 582, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Zare, F.; Fleming, R.M.T. Integration of proteomic data with genome-scale metabolic models: A methodological overview. Protein Sci. 2024, 33, e5150. [Google Scholar] [CrossRef]
- Martinez-Reyes, I.; Chandel, N.S. Cancer metabolism: Looking forward. Nat. Rev. Cancer 2021, 21, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, J.C.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; et al. Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Methods 2021, 18, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Hu, X. Computational intelligence in bioinformatics and biomedicine. Methods 2024, 227, 58–59. [Google Scholar] [CrossRef]
- Ma, A.; McDermaid, A.; Xu, J.; Chang, Y.; Ma, Q. Integrative Methods and Practical Challenges for Single-Cell Multi-omics. Trends Biotechnol. 2020, 38, 1007–1022. [Google Scholar] [CrossRef]
- Yang, C.; Gong, A. Integrated bioinformatics analysis for differentially expressed genes and signaling pathways identification in gastric cancer. Int. J. Med. Sci. 2021, 18, 792–800. [Google Scholar] [CrossRef]
- Pei, X.; Luo, Y.; Zeng, H.; Jamil, M.; Liu, X.; Jiang, B. Identification and validation of key genes in gastric cancer: Insights from in silico analysis, clinical samples, and functional assays. Aging 2024, 16, 10615–10635. [Google Scholar] [CrossRef]
- Yu, C.; Chen, J.; Ma, J.; Zang, L.; Dong, F.; Sun, J.; Zheng, M. Identification of Key Genes and Signaling Pathways Associated with the Progression of Gastric Cancer. Pathol. Oncol. Res. 2020, 26, 1903–1919. [Google Scholar] [CrossRef]
- Xu, W.; Jiang, T.; Shen, K.; Zhao, D.; Zhang, M.; Zhu, W.; Liu, Y.; Xu, C. GADD45B regulates the carcinogenesis process of chronic atrophic gastritis and the metabolic pathways of gastric cancer. Front. Endocrinol. 2023, 14, 1224832. [Google Scholar] [CrossRef]
- Shao, Y.; Chen, C.; Yu, X.; Yan, J.; Guo, J.; Ye, G. Comprehensive analysis of scRNA-seq and bulk RNA-seq data via machine learning and bioinformatics reveals the role of lysine metabolism-related genes in gastric carcinogenesis. BMC Cancer 2025, 25, 644. [Google Scholar] [CrossRef]
- Duan, Y.; Xu, Y.; Dou, Y.; Xu, D. Helicobacter pylori and gastric cancer: Mechanisms and new perspectives. J. Hematol. Oncol. 2025, 18, 10. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Jian, A.; Tang, H.; Liu, W.; Liu, F.; Liu, S.; Wu, H. A Multi-Omics Study on the Effect of Helicobacter Pylori-Related Genes in the Tumor Immunity on Stomach Adenocarcinoma. Front. Cell. Infect. Microbiol. 2022, 12, 880636. [Google Scholar] [CrossRef]
- Mohamed, S.H.; Hamed, M.; Alamoudi, H.A.; Jastaniah, Z.; Alakwaa, F.M.; Reda, A. Multi-omics analysis of Helicobacter pylori-associated gastric cancer identifies hub genes as a novel therapeutic biomarker. Brief. Bioinform. 2025, 26, bbaf241. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Peng, J.; Xie, J.; Xie, Y. Comprehensive analysis of the function of helicobacter-associated ferroptosis gene YWHAE in gastric cancer through multi-omics integration, molecular docking, and machine learning. Apoptosis 2024, 29, 439–456. [Google Scholar] [CrossRef] [PubMed]
- Naseem, M.; Barzi, A.; Brezden-Masley, C.; Puccini, A.; Berger, M.D.; Tokunaga, R.; Battaglin, F.; Soni, S.; McSkane, M.; Zhang, W.; et al. Outlooks on Epstein-Barr virus associated gastric cancer. Cancer Treat. Rev. 2018, 66, 15–22. [Google Scholar] [CrossRef]
- Deng, S.Z.; Wang, X.X.; Zhao, X.Y.; Bai, Y.M.; Zhang, H.M. Exploration of the Tumor Immune Landscape and Identification of Two Novel Immunotherapy-Related Genes for Epstein-Barr virus-associated Gastric Carcinoma via Integrated Bioinformatics Analysis. Front. Surg. 2022, 9, 898733. [Google Scholar] [CrossRef]
- Carneiro, K.O.; Araujo, T.M.T.; Da Silva Mourao, R.M.; Casseb, S.M.M.; Demachki, S.; Moreira, F.C.; Dos Santos, A.; Ishak, G.; Da Costa, D.S.A.; Magalhaes, L.; et al. Transcriptional and microbial profile of gastric cancer patients infected with Epstein-Barr virus. Front. Oncol. 2025, 15, 1530430. [Google Scholar] [CrossRef]
- Hosseini, M.; Lotfi-Shahreza, M.; Nikpour, P. Integrative analysis of DNA methylation and gene expression through machine learning identifies stomach cancer diagnostic and prognostic biomarkers. J. Cell. Mol. Med. 2023, 27, 714–726. [Google Scholar] [CrossRef]
- Nikanjam, M.; Kato, S.; Kurzrock, R. Liquid biopsy: Current technology and clinical applications. J. Hematol. Oncol. 2022, 15, 131. [Google Scholar] [CrossRef]
- Michel, M.; Heidary, M.; Mechri, A.; Da Silva, K.; Gorse, M.; Dixon, V.; von Grafenstein, K.; Bianchi, C.; Hego, C.; Rampanou, A.; et al. Noninvasive Multicancer Detection Using DNA Hypomethylation of LINE-1 Retrotransposons. Clin. Cancer Res. 2025, 31, 1275–1291. [Google Scholar] [CrossRef]
- Dai, Z.; Jiang, J.; Chen, Q.; Bai, M.; Sun, Q.; Feng, Y.; Liu, D.; Wang, D.; Zhang, T.; Han, L.; et al. Combining methylated RNF180 and SFRP2 plasma biomarkers for noninvasive diagnosis of gastric cancer. Transl. Oncol. 2025, 51, 102190. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhai, Y.; Yan, X.; Wang, Z.; Zhang, H.; Xu, R.; Liu, X.; Cai, J.; Zhang, Z.; Shang, Y.; et al. Functions and Clinical Applications of Exosomes in Gastric Cancer. Int. J. Biol. Sci. 2025, 21, 2330–2345. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.R.; Zheng, Y.Q.; Hu, Y.; Ma, M.Y.; Wu, Y.J.; Liu, J.; Yang, L.P.; Zheng, J.B.; Tian, T.; Hu, P.S.; et al. Construction of exosome non-coding RNA feature for non-invasive, early detection of gastric cancer patients by machine learning: A multi-cohort study. Gut 2025, 74, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.; Doan, N.N.T.; Tran, T.H.; Huynh, L.A.K.; Doan, P.L.; Nguyen, T.H.H.; Nguyen, V.T.C.; Nguyen, G.T.H.; Nguyen, H.N.; Giang, H.; et al. Tissue of origin detection for cancer tumor using low-depth cfDNA samples through combination of tumor-specific methylation atlas and genome-wide methylation density in graph convolutional neural networks. J. Transl. Med. 2024, 22, 618. [Google Scholar] [CrossRef] [PubMed]
- Saltz, J.; Almeida, J.; Gao, Y.; Sharma, A.; Bremer, E.; DiPrima, T.; Saltz, M.; Kalpathy-Cramer, J.; Kurc, T. Towards Generation, Management, and Exploration of Combined Radiomics and Pathomics Datasets for Cancer Research. AMIA Jt. Summits Transl. Sci. Proc. 2017, 2017, 85–94. [Google Scholar] [PubMed]
- Lee, H.; Chung, J.W.; Yun, S.C.; Jung, S.W.; Yoon, Y.J.; Kim, J.H.; Cha, B.; Kayasseh, M.A.; Kim, K.O. Validation of Artificial Intelligence Computer-Aided Detection on Gastric Neoplasm in Upper Gastrointestinal Endoscopy. Diagnostics 2024, 14, 2706. [Google Scholar] [CrossRef]
- Ke, X.; Cai, X.; Bian, B.; Shen, Y.; Zhou, Y.; Liu, W.; Wang, X.; Shen, L.; Yang, J. Predicting early gastric cancer risk using machine learning: A population-based retrospective study. Digit. Health 2024, 10, 20552076241240905. [Google Scholar] [CrossRef]
- Ma, T.; Wang, H.; Ye, Z. Artificial intelligence applications in computed tomography in gastric cancer: A narrative review. Transl. Cancer Res. 2023, 12, 2379–2392. [Google Scholar] [CrossRef]
- Hu, C.; Xia, Y.; Zheng, Z.; Cao, M.; Zheng, G.; Chen, S.; Sun, J.; Chen, W.; Zheng, Q.; Pan, S.; et al. AI-based large-scale screening of gastric cancer from noncontrast CT imaging. Nat. Med. 2025, 31, 3011–3019. [Google Scholar] [CrossRef]
- Fan, L.; Li, J.; Zhang, H.; Yin, H.; Zhang, R.; Zhang, J.; Chen, X. Machine learning analysis for the noninvasive prediction of lymphovascular invasion in gastric cancer using PET/CT and enhanced CT-based radiomics and clinical variables. Abdom. Radiol. 2022, 47, 1209–1222. [Google Scholar] [CrossRef] [PubMed]
- Ramon, Y.C.S.; Sese, M.; Capdevila, C.; Aasen, T.; De Mattos-Arruda, L.; Diaz-Cano, S.J.; Hernandez-Losa, J.; Castellvi, J. Clinical implications of intratumor heterogeneity: Challenges and opportunities. J. Mol. Med. 2020, 98, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Shmatko, A.; Ghaffari Laleh, N.; Gerstung, M.; Kather, J.N. Artificial intelligence in histopathology: Enhancing cancer research and clinical oncology. Nat. Cancer 2022, 3, 1026–1038. [Google Scholar] [CrossRef]
- Baxi, V.; Edwards, R.; Montalto, M.; Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol. 2022, 35, 23–32. [Google Scholar] [CrossRef]
- Ba, W.; Wang, S.; Shang, M.; Zhang, Z.; Wu, H.; Yu, C.; Xing, R.; Wang, W.; Wang, L.; Liu, C.; et al. Assessment of deep learning assistance for the pathological diagnosis of gastric cancer. Mod. Pathol. 2022, 35, 1262–1268. [Google Scholar] [CrossRef]
- Zubair, M.; Owais, M.; Hassan, T.; Bendechache, M.; Hussain, M.; Hussain, I.; Werghi, N. An interpretable framework for gastric cancer classification using multi-channel attention mechanisms and transfer learning approach on histopathology images. Sci. Rep. 2025, 15, 13087. [Google Scholar] [CrossRef]
- Lee, J.; Cha, S.; Kim, J.; Kim, J.J.; Kim, N.; Jae Gal, S.G.; Kim, J.H.; Lee, J.H.; Choi, Y.D.; Kang, S.R.; et al. Ensemble Deep Learning Model to Predict Lymphovascular Invasion in Gastric Cancer. Cancers 2024, 16, 430. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef]
- Vuong, T.T.L.; Song, B.; Kwak, J.T.; Kim, K. Prediction of Epstein-Barr Virus Status in Gastric Cancer Biopsy Specimens Using a Deep Learning Algorithm. JAMA Netw. Open 2022, 5, e2236408. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wang, R.; Zhang, X.; Sun, Y.; Zhang, H.; Zhao, Z.; Zheng, Y.; Luo, J.; Zhang, J.; Wu, H.; et al. A deep learning model and human-machine fusion for prediction of EBV-associated gastric cancer from histopathology. Nat. Commun. 2022, 13, 2790. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; Li, S.; Xu, Y.; Liu, M.; Zhang, X.; Zhou, J.; Chen, Y.; Rong, Y.; Meng, X.; Wang, F. Dynamic gene screening enabled identification of a 10-gene panel for early detection and progression assessment of gastric cancer. Comput. Struct. Biotechnol. J. 2023, 21, 677–687. [Google Scholar] [CrossRef]
- Liu, R.; Liu, J.; Cao, Q.; Chu, Y.; Chi, H.; Zhang, J.; Fu, J.; Zhang, T.; Fan, L.; Liang, C.; et al. Identification of crucial genes through WGCNA in the progression of gastric cancer. J. Cancer 2024, 15, 3284–3296. [Google Scholar] [CrossRef]
- Zhao, Q.; Xie, J.; Xie, J.; Zhao, R.; Song, C.; Wang, H.; Rong, J.; Yan, L.; Song, Y.; Wang, F.; et al. Weighted correlation network analysis identifies FN1, COL1A1 and SERPINE1 associated with the progression and prognosis of gastric cancer. Cancer Biomark. 2021, 31, 59–75. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Li, D.; Wang, H.; Wu, Y. Integrated bioinformatics analysis for exploring hub genes and related mechanisms affecting the progression of gastric cancer. Biotechnol. Genet. Eng. Rev. 2024, 40, 4911–4922. [Google Scholar] [CrossRef]
- Sheng, T.; Ho, S.W.T.; Ooi, W.F.; Xu, C.; Xing, M.; Padmanabhan, N.; Huang, K.K.; Ma, L.; Ray, M.; Guo, Y.A.; et al. Integrative epigenomic and high-throughput functional enhancer profiling reveals determinants of enhancer heterogeneity in gastric cancer. Genome Med. 2021, 13, 158. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.W.T.; Sheng, T.; Xing, M.; Ooi, W.F.; Xu, C.; Sundar, R.; Huang, K.K.; Li, Z.; Kumar, V.; Ramnarayanan, K.; et al. Regulatory enhancer profiling of mesenchymal-type gastric cancer reveals subtype-specific epigenomic landscapes and targetable vulnerabilities. Gut 2023, 72, 226–241. [Google Scholar] [CrossRef] [PubMed]
- Razavi-Mohseni, M.; Huang, W.; Guo, Y.A.; Shigaki, D.; Ho, S.W.T.; Tan, P.; Skanderup, A.J.; Beer, M.A. Machine learning identifies activation of RUNX/AP-1 as drivers of mesenchymal and fibrotic regulatory programs in gastric cancer. Genome Res. 2024, 34, 680–695. [Google Scholar] [CrossRef]
- Yao, R.W.; Wang, Y.; Chen, L.L. Cellular functions of long noncoding RNAs. Nat. Cell Biol. 2019, 21, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Park, J.; Oh, S.; Kwack, K. Downregulation of LOC441461 Promotes Cell Growth and Motility in Human Gastric Cancer. Cancers 2022, 14, 1149. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Y.; Zhuang, T.; Xu, T.; Ji, M. SP1-Induced Upregulation of lncRNA LINC00659 Promotes Tumour Progression in Gastric Cancer by Regulating miR-370/AQP3 Axis. Front. Endocrinol. 2022, 13, 936037. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, J.; Chen, S.; Zhu, L.; Jiang, M.; Liu, A. Survival-Related lncRNA Landscape Analysis Identifies LINC01614 as an Oncogenic lncRNA in Gastric Cancer. Front. Genet. 2021, 12, 698947. [Google Scholar] [CrossRef]
- Oshi, M.; Roy, A.M.; Yan, L.; Kinoshita, S.; Tamura, Y.; Kosaka, T.; Akiyama, H.; Kunisaki, C.; Takabe, K.; Endo, I. Enhanced epithelial-mesenchymal transition signatures are linked with adverse tumor microenvironment, angiogenesis and worse survival in gastric cancer. Cancer Gene. Ther. 2024, 31, 746–754. [Google Scholar] [CrossRef]
- Shi, W.; Wang, Y.; Xu, C.; Li, Y.; Ge, S.; Bai, B.; Zhang, K.; Wang, Y.; Zheng, N.; Wang, J.; et al. Multilevel proteomic analyses reveal molecular diversity between diffuse-type and intestinal-type gastric cancer. Nat. Commun. 2023, 14, 835. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, X.; Dong, J.; Wang, K.; Jiang, W.; Fan, C.; Liu, H.; Fan, L.; Zhao, L.; Li, G. Single-cell analysis uncovers high-proliferative tumour cell subtypes and their interactions in the microenvironment of gastric cancer. J. Cell. Mol. Med. 2024, 28, e18373. [Google Scholar] [CrossRef] [PubMed]
- Gan, S.; Li, C.; Hou, R.; Tian, G.; Zhao, Y.; Ren, D.; Zhou, W.; Zhao, F.; Lv, K.; Yang, J. Dynamic changes of the immune microenvironment in the development of gastric cancer caused by inflammation. Mol. Ther. Oncol. 2024, 32, 200849. [Google Scholar] [CrossRef] [PubMed]
- Comen, E.; Norton, L.; Massague, J. Clinical implications of cancer self-seeding. Nat. Rev. Clin. Oncol. 2011, 8, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Siegel, M.B.; He, X.; Hoadley, K.A.; Hoyle, A.; Pearce, J.B.; Garrett, A.L.; Kumar, S.; Moylan, V.J.; Brady, C.M.; Van Swearingen, A.E.; et al. Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. J. Clin. Investig. 2018, 128, 1371–1383. [Google Scholar] [CrossRef]
- Zhao, Z.M.; Zhao, B.; Bai, Y.; Iamarino, A.; Gaffney, S.G.; Schlessinger, J.; Lifton, R.P.; Rimm, D.L.; Townsend, J.P. Early and multiple origins of metastatic lineages within primary tumors. Proc. Natl. Acad. Sci. USA 2016, 113, 2140–2145. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, F.; Yang, Y.; Yu, N.; Weng, X.; Yang, Y.; Gong, Z.; Huang, S.; Gan, L.; Sun, S.; et al. Integrated DNA and RNA sequencing reveals early drivers involved in metastasis of gastric cancer. Cell Death Dis. 2022, 13, 392. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, S.; Hu, Y.; Xu, X.; Cui, J.; Li, S.; Li, Z.; Ji, J.; Xing, R. Multi-regional sequencing reveals the genetic and immune heterogeneity of non-cancerous tissues in gastric cancer. J. Pathol. 2024, 263, 454–465. [Google Scholar] [CrossRef]
- Yan, B.; Dong, X.; Wu, Z.; Chen, D.; Jiang, W.; Cheng, J.; Chen, G.; Yan, J. Association of proteomics with lymph node metastasis in early gastric cancer patients. Biochim. Biophys. Acta Mol. Basis Dis. 2025, 1871, 167773. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Wu, J.; Xu, M.; Li, M.; Chen, Y.; Zhang, Y.; Chen, H.; Jiang, C. An ensemble learning model to predict lymph node metastasis in early gastric cancer. Sci. Rep. 2025, 15, 11257. [Google Scholar] [CrossRef]
- Lee, H.D.; Nam, K.H.; Shin, C.M.; Lee, H.S.; Chang, Y.H.; Yoon, H.; Park, Y.S.; Kim, N.; Lee, D.H.; Ahn, S.H.; et al. Development and Validation of Models to Predict Lymph Node Metastasis in Early Gastric Cancer Using Logistic Regression and Gradient Boosting Machine Methods. Cancer Res. Treat. 2023, 55, 1240–1249. [Google Scholar] [CrossRef]
- Ding, P.; Wu, J.; Wu, H.; Ma, W.; Li, T.; Yang, P.; Guo, H.; Tian, Y.; Yang, J.; Er, L.; et al. Preoperative liquid biopsy transcriptomic panel for risk assessment of lymph node metastasis in T1 gastric cancer. J. Exp. Clin. Cancer Res. 2025, 44, 43. [Google Scholar] [CrossRef]
- Dong, C.; Luan, F.; Tian, W.; Duan, K.; Chen, T.; Ren, J.; Li, W.; Li, D.; Zhi, Q.; Zhou, J. Identification and validation of crucial lnc-TRIM28-14 and hub genes promoting gastric cancer peritoneal metastasis. BMC Cancer 2023, 23, 76. [Google Scholar] [CrossRef]
- Fu, M.; Lin, Y.; Yang, J.; Cheng, J.; Lin, L.; Wang, G.; Long, C.; Xu, S.; Lu, J.; Li, G.; et al. Multitask machine learning-based tumor-associated collagen signatures predict peritoneal recurrence and disease-free survival in gastric cancer. Gastric. Cancer 2024, 27, 1242–1257. [Google Scholar] [CrossRef]
- Ding, P.; Wu, H.; Wu, J.; Li, T.; Gu, R.; Zhang, L.; Yang, P.; Guo, H.; Tian, Y.; He, J.; et al. Transcriptomics-based liquid biopsy panel for early non-invasive identification of peritoneal recurrence and micrometastasis in locally advanced gastric cancer. J. Exp. Clin. Cancer Res. 2024, 43, 181. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Z.; He, Y.; Hao, Z.; Wang, Q.; Zhou, K.; Zhou, W.; Wang, P.; Shan, F.; Li, Z.; et al. Accurate and Rapid Detection of Peritoneal Metastasis from Gastric Cancer by AI-Assisted Stimulated Raman Molecular Cytology. Adv. Sci. 2023, 10, e2300961. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Chen, Y.; Wang, Y. Deep learning and machine learning approaches to classify stomach distant metastatic tumors using DNA methylation profiles. Comput. Biol. Med. 2024, 175, 108496. [Google Scholar] [CrossRef]
- Qin, X.; Qiu, B.; Ge, L.; Wu, S.; Ma, Y.; Li, W. Applying machine learning techniques to predict the risk of distant metastasis from gastric cancer: A real world retrospective study. Front. Oncol. 2024, 14, 1455914. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liu, Y.; Tao, L.; Zeng, P.; Ye, G.; Zheng, Y.; Zhang, N. Single-cell data revealed the regulatory mechanism of TNK cell heterogeneity in liver metastasis from gastric cancer. Discov. Oncol. 2024, 15, 664. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Yan, J.; Peng, L.; Chen, M.; Yang, J.; Zhang, G. The Characteristics, Prognosis, and Risk Factors of Lymph Node Metastasis in Early Gastric Cancer. Gastroenterol. Res. Pract. 2018, 2018, 6945743. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Han, W.; Niu, P.; Lu, Y.; Zhang, F.; Jiao, F.; Zhou, X.; Wang, W.; Luan, X.; He, M.; et al. Using nomogram, decision tree, and deep learning models to predict lymph node metastasis in patients with early gastric cancer: A multi-cohort study. Am. J. Cancer Res. 2023, 13, 204–215. [Google Scholar]
- Yue, C.; Xue, H. Construction and validation of a nomogram model for lymph node metastasis of stage II-III gastric cancer based on machine learning algorithms. Front. Oncol. 2024, 14, 1399970. [Google Scholar] [CrossRef]
- Sundar, R.; Nakayama, I.; Markar, S.R.; Shitara, K.; van Laarhoven, H.W.M.; Janjigian, Y.Y.; Smyth, E.C. Gastric cancer. Lancet 2025, 405, 2087–2102. [Google Scholar] [CrossRef]
- Workman, P.; Antolin, A.A.; Al-Lazikani, B. Transforming cancer drug discovery with Big Data and AI. Expert Opin. Drug Discov. 2019, 14, 1089–1095. [Google Scholar] [CrossRef]
- Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021, 25, 1315–1360. [Google Scholar] [CrossRef]
- Zhang, H.; Zhuo, H.; Hou, J.; Cai, J. Machine learning models predict the mTOR signal pathway-related signature in the gastric cancer involving 2063 samples of 7 centers. Aging 2023, 15, 6152–6162. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Feng, J.; Chen, X.; Weng, Y.; Wang, T.; Wei, J.; Zhan, Y.; Peng, M. Integrated multi-omics analysis and machine learning identify hub genes and potential mechanisms of resistance to immunotherapy in gastric cancer. Aging 2024, 16, 7331–7356. [Google Scholar] [CrossRef] [PubMed]
- van Schooten, T.S.; Derks, S.; Jimenez-Marti, E.; Carneiro, F.; Figueiredo, C.; Ruiz, E.; Alsina, M.; Molero, C.; Garrido, M.; Riquelme, A.; et al. The LEGACy study: A European and Latin American consortium to identify risk factors and molecular phenotypes in gastric cancer to improve prevention strategies and personalized clinical decision making globally. BMC Cancer 2022, 22, 646. [Google Scholar] [CrossRef]
- Masalkhi, M.; Sporn, K.; Kumar, R.; Ong, J.; Nguyen, T.; Waisberg, E.; Zaman, N.; Lee, A.G.; Tavakkoli, A. Ophthalmic Image Synthesis and Analysis with Generative Adversarial Network Artificial Intelligence. J. Imaging Inform. Med. 2025, 38, 1–23. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, Y.; Jia, G.; Zhao, L.; Ma, Y.; Ma, M.; Liu, G.; Zhang, K.; Ding, N.; Li, J.; et al. Efficient Diffusion Models: A Comprehensive Survey From Principles to Practices. IEEE Trans. Pattern Anal. Mach. Intell. 2025, 47, 7506–7525. [Google Scholar] [CrossRef]
- Golla, A.K.; Tonnes, C.; Russ, T.; Bauer, D.F.; Froelich, M.F.; Diehl, S.J.; Schoenberg, S.O.; Keese, M.; Schad, L.R.; Zollner, F.G.; et al. Automated Screening for Abdominal Aortic Aneurysm in CT Scans under Clinical Conditions Using Deep Learning. Diagnostics 2021, 11, 2131. [Google Scholar] [CrossRef] [PubMed]
- Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019, 18, 463–477. [Google Scholar] [CrossRef]
- Wang, F.; Kaushal, R.; Khullar, D. Should Health Care Demand Interpretable Artificial Intelligence or Accept “Black Box” Medicine? Ann. Intern. Med. 2020, 172, 59–60. [Google Scholar] [CrossRef]
- Novakovsky, G.; Dexter, N.; Libbrecht, M.W.; Wasserman, W.W.; Mostafavi, S. Obtaining genetics insights from deep learning via explainable artificial intelligence. Nat. Rev. Genet. 2023, 24, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Faes, L.; Calvert, M.J.; Denniston, A.K.; Group, C.S.-A.E. Extension of the CONSORT and SPIRIT statements. Lancet 2019, 394, 1225. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Bobadilla, A.V.; Schmitt, V.; Maier, C.S.; Mensing, S.; Stodtmann, S. Practical guide to SHAP analysis: Explaining supervised machine learning model predictions in drug development. Clin. Transl. Sci. 2024, 17, e70056. [Google Scholar] [CrossRef]
- Binzagr, F. Explainable AI-driven model for gastrointestinal cancer classification. Front. Med. 2024, 11, 1349373. [Google Scholar] [CrossRef]
- Du, H.; Yang, Q.; Ge, A.; Zhao, C.; Ma, Y.; Wang, S. Explainable machine learning models for early gastric cancer diagnosis. Sci. Rep. 2024, 14, 17457. [Google Scholar] [CrossRef]
- Ma, J.; Yang, F.; Yang, R.; Li, Y.; Chen, Y. Interpretable deep learning for gastric cancer detection: A fusion of AI architectures and explainability analysis. Front. Immunol. 2025, 16, 1596085. [Google Scholar] [CrossRef] [PubMed]
Omics Technology | Database | AI Algorithm (Including Alongside AI Methods) | No. of Cases | Identified Gene, Protein, Bacteria | Comments | Ref. |
---|---|---|---|---|---|---|
Genomics Microarray | TCGA GEO | N.A. | 30 | OLFM4, IGF2BP3, CLDN1, and MMP1 | These four genes were the most extensively upregulated. | [27] |
Genomics Microarray | TCGA GEO | N.A. | 39 | COL1A1, COL1A2, COL3A1, and FN1 | These four genes exhibited significant up-regulation in GC, and hypomethylation of promoter regions of these genes was detected. | [28] |
Genomics Microarray | TCGA GEO | N.A. | 161 | COL1A1, TIMP1, SPP1, BGN, MMP3, and APOE | These five mRNA expressions were constantly and remarkably upregulated in the gastric tumor tissues. | [29] |
Genomics | TCGA GEO | Copykat algorithm hdWGCNA CellChat LASSO regression model SVM-RFE | N.A. | HSP90AB1, FUS, CTSD, KRT8, TALDO1, BTG2, TXNRD1, GADD45B, PSMB3, RPL9, NQO1, MTHFD2, CFL1, PRDX1, and PFDN2 | GADD45B was identified as a prominent oncogene linked to chronic atrophic gastritis. | [30] |
Transcriptomics metabolomics scRNA-seq bulk RNA-seq | TCGA GEO STAD GDSC | TSNE analysis CellChat RFSRC CIBERSORT, GSEA | 46 | SLC7A7 and VIM | SLC7A7 and VIM were identified as key lysine metabolism-related genes involved in gastric carcinogenesis and closely associated with the level of immune cell infiltration. | [31] |
Epigenomics 450 K array | TCGA GEO STAD | SVM LR RF GaussianNB AdaBoost | 470 | cg17105014 (GYPC), cg23273897 (MME), cg22083047 (PRICKLE2), cg09396217 (ANGPT1), cg01049530 (BMP3), cg18237405 (CPNE5), cg12741420 (IRF4), and cg11754206 (KCNB2) | Eight potential diagnostic methylation probes had an AUC of the model on the training and validation set (0.99 and 0.97). | [39] |
Genomics MSigDB | TCGA GEO STAD GDC | GSVA GSEA LASSO analysis | N.A. | CRTAC1, BATF2, and CTHRC1 | HP infection contributed to predicting patient prognosis and response to immunotherapy. | [33] |
Genomics Transcriptomics Microarray RNA-seq MSigDB | TCGA GEO STAD DGIdb | GeneMANIA SwissADME | N.A. | TPX2, MKI67, EXO1, CTHRC1, CXCL1, CCL20, IL12B, and STAT4 | These four genes serve as potential biomarkers for early diagnosis, prognostic evaluation, and therapeutic targeting in HP-infected GC. | [34] |
Transcriptomics scRNA-seq qRT-PCR | TCGA GEO STAD | GSEA LASSO RF CoxBoost SVM GBM | 58 | YWHAE | Helicobacter-associated ferroptosis gene YWHAE exhibits high expression in both HP-associated gastritis and GC. | [35] |
Genomics Transcriptomics Microarray RNA-seq RT-PCR | TCGA GEO STAD | CIBERSORT GSEA | 22 | CD4, STAT1, FCGR3A, IL10, C1QA, CXCL9, CXCL10, CXCR6, PD-L1, and CCL18 | C1QA is a differentially expressed gene in EBV-positive GC patients compared with EBV-negative patients. | [37] |
Transcriptomics Microbiome | DESeq2 package LDA | 41 | LGALS17A, IRF1, TAP1, C1QA, C1QB, CMKLR1, ICAM1, APOE, CXCR2P1, GM2A, C1QC, TNFSF10, CXCL11, GBP5, CD300LF, IK32, FAM3B, and IDO1 Citrobacter, Acidithiobacillus, Biochmannia, Beijerinckia, and Acidaminococcus | These transcriptional landscapes and pathogens of EBV-associated GC are enriched, potentially contributing to a pro-inflammatory and tumor-promoting microenvironment. | [38] | |
Genomics (ctDNA) PCR WGBS | Zenodo database European Genome-phenome Archive | RF RF stack model | N.A. | N.A. | Circulating DNA methylation changes at retrotransposons are a universal tumor biomarker, including GC. | [41] |
Genomics (ctDNA) | N.A. | RF NB KNN Neural network LR | 303 | RNF180 and SFRP2 | These two methylated genes were detected in circulating DNA from blood samples and improved the accuracy of GC diagnosis. | [42]. |
Transcriptomics (Exosome, ncRNAs) qRT-PCR | Retrospective cohort | LASSO-LR, LR XGBoost KNN RF SVM | 1595 | DGCR9 | Serum exosome ncRNA feature offers an assuring liquid biopsy approach for promoting the early GC diagnosis. | [44] |
Genomics (cfDNA) Epigenomics Microarray | TCGA TSMA | GCNN | 88 | N.A. | A GCNN using deconvolution scores and genome-wide methylation density features achieved an accuracy of 69% in low-depth cfDNA samples. | [45] |
Omics Technology | Database | AI Algorithm (Including Alongside AI Methods) | No. of Cases | Identified Gene, Protein | Comments | Ref. |
---|---|---|---|---|---|---|
Transcriptomics Bulk RNA Microarray scRNA-seq | TCGA GEO STAD MSigDB | LASSO regression analysis GSEA PAM GSVA | 407 | AK5, CAST, CPE, MAP6, MRO, NR3C1, PHLDB2, TAGLN3, CPT1C, and SNAI | These ten genes had the best diagnostic ability to discriminate GC from normal tissues, with AUCs achieving 0.95. | [61] |
Genomics Microarray | TCGA GEO GPL570 | WGCNA | 192 | C1QB, FCER1G, FPR3, and TYROBP | The levels of C1QB, FCER1G, FPR3, and TYROBP proteins were significantly higher in the advanced stage group. | [62] |
Genomics Transcriptomics qRT-PCR RNA-seq | TCGA GEO STAD GEPIA | WGCNA | 407 | FN1, COL1A1, and SERPINE1 | Three hub genes (FN1, COL1A1, and SERPINE1) are associated with GC progression related to EMT. | [63] |
Genomics | GEO | N.A. | N.A. | CCKBR, COL1A1, COL1A2, COL2A1, COL6A3, COL11A1, MMP1, MMP3, MMP7, MMP10, TIMP1, and SPP1 | Bioinformatics analysis identified twelve key genes that affected the progression of gastric cancer. | [64] |
Transcriptomics RNA-seq bulk RNA-seq | TCGA GEO dbGaP | NEBULA algorithm KNN | 58 | TNF, IL17RA, IKBKG, TAB2, IL1B, and CASP8 | These six genes associated with interleukin-17 signaling were distinctly expressed. | [75] |
Transcriptomics scRNA-seq | TCGA CellMarker | UMAP method GRNBoost AUCell LASSO regression analysis CytoTRACE | 27 | CREB3 | The transcription factor CREB3, which is highly active in the UBE2C+ tumor cell subpopulation, is involved in the migration, invasion, and progression of GC. | [74] |
Transcriptomics ChIP-seq RT-PCR RNA-seq | TCGA GEO | GLM ChromHMM | N.A. | ING1, ARL4C, and HNF4α | Combining histone modification and functional assay data provides a more accurate metric to assess enhancer activity and identifies novel genes associated with GC. | [65] |
Genomics Transcriptomics Microarray RNA-seq | TCGA ACRG | N.A. | N.A. | TEAD1 NUAK | TEAD1 served as a key mediator, and NUAK1 was a candidate positive regulator of the mesenchymal-subtype GC enhancers. | [66] |
Transcriptomics ATAC-seq RNA-seq ChIP-seq | TCGA GEO STAD | gkm-SVM gkm-PWM GSEA | N.A. | RUNX2, ZEB1, SNAI2, the AP-1 dimer, GATA4, GATA6, KLF5, HNF4A, FOXA2, and GRHL2 | Activation of a small set of transcriptional factors driving the mesenchymal-subtype GC regulatory program contributes to cancer progression. | [67] |
Transcriptomics (lncRNA) RNA-seq qRT-PCR | TCGA STAD | N.A. | 379 | LOC441461 | Downregulation of LOC441461 enhanced the growth, motility, and invasion of GC cell lines. | [69] |
Transcriptomics (lncRNA) Microarray | TCGA | N.A. | 120 | LINC00659 | SP1, a widely reported TF, promoted the expression of LINC00659 to promote the growth and motility of GC via the miR-370-AQP3 axis. | [70] |
Transcriptomics (lncRNA) qRT-PCR | TCGA | GSEA | 470 | LINC01614 | LINC01614 affects cell cycle distribution and prompts the migration, invasion, and EMT of GC cell lines. | [71] |
Genomics | TCGA GEO | GSEA | 807 | CDH1, CDH2, VIM, and FN1. | EMT high GC revealed an inverse correlation with gene sets related to cell proliferation. | [72] |
Proteomics LC-MS/MS | Retrospective cohort | MBR GSEA CDF | 196 | SWI/SNF and NFKB. | Immune and ECM proteins are elevated in diffuse-GC, whereas DNA damage is upregulated in intestinal-GC. SWI/SNF and NFKB complexes regulate the progression of GC. | [73] |
Transcriptomics scRNA-seq | TCGA GEO STAD | Lasso Univariate RF Boruta | 437 | CD44 | Neutrophils highly expressing CD44 have a critical impact on growth, migration, oxidative stress, and T-cell infiltration. | [74] |
Omics Technology | Database | AI Algorithm (Including Alongside AI Methods) | No. of Cases | Identified Gene, Protein, Bacteria | Comments | Ref. |
---|---|---|---|---|---|---|
LMN | ||||||
Transcriptomics Whole-exome RNA-seq TCR-sequencing | TCGA GEO STAD MSigDB | LASSO regression analysis GSEA PAM GSVA | 407 | TP53 and CD274 | A phylogenetic tree showed that metastatic clones may perform further extension to establish lymph node lesions at stations. | [80] |
Proteomics LC-MS/MS | Retrospective case-matching study | PCA WGCNA] Elastic-net LR Boruta SVM | 132 | GABARAPL2 and NAV1 | These two proteins displayed superior predictive value, and these differences may be used to predict GC patients with LNM. | [81] |
N.A. | Retrospective cohort | LR RF SVM CART XGB | 1423 | N.A. | This ensemble learning model exhibited an enhanced level of accuracy, achieving an AUC value of 0.86 on the test set and an AUC value of 0.892 on the external validation set. | [82] |
N.A. | Retrospective cohort | LR GBM Lasso | 2556 | N.A. | The GBM model may serve as a substitute for the Japanese eCura system in clinical practice. | [83] |
Transcriptomics RNA-seq RT-qPCR | TCGA GEO | LR | 147 | SDS, TESMIN, NEB, and GRB14. | Transcriptomic liquid biopsies using serum samples can correctly predict the preoperative risk of LNM. | [84] |
PM | ||||||
Transcriptomics RNA-seq qRT-PCR | Retrospective cohort | WGCNA GSEA | 90 | lncRNAs (lnc-TRIM28-14, lnc-RFNG-1) Genes (CD93, COL3A1, and COL4A1) | lnc-TRIM28-14 expression improved the diagnostic sensitivity and specificity in GCPM. | [85] |
N.A. | Retrospective cohort | Multitask learning | 713 | N.A. | By using a multitask ML approach, the TACSPR model managed to accurately estimate GCPM. | [86] |
Transcriptomics RNA-seq RT-qPCR | TCGA GEO | LR | 108 | BUB1, CKS2, PCNA, CHEK1, NEK2, and NCAPG2 | Increased expression of the 6-mRNA in PM patients was identified through peripheral blood analysis of GC patients with PM. | [87] |
N.A. | Retrospective cohort | Hybrid PCA and K-means clustering algorithm SVM LDA LR | 491 | N.A. | Stimulated Raman Molecular Cytology demonstrated rapid and accurate detection of PM, achieving a sensitivity of 81.5%, specificity of 84.9%. | [88] |
Distant metastasis | ||||||
Epigenomics RNA-seq | TCGA STAD | DNN SVM RF NB DT LASSO | 398 | GTF2H1, RNF5, SNRNP25, LMO4, NapA, RPL18A, ZNF234, MSTO2P, ZNF761, and TREX1 | The performance of DNN outperformed all other ML methods, achieving AUR scores of 0.999. | [89] |
N.A. | SEER | LR XGB RF KNN MLP SVM LASSO | 1595 | N.A. | Six models were constructed to predict the distant metastasis of GC based on six MK algorithms. The RF algorithm had the highest average AUC value. | [90] |
Transcriptomics scRNA-seq qRT-PCR | GEO | UMAP SCENIC GENIE3 | 3627 (Cells) | N.A. | Single-cell clustering of GC samples and GC liver metastasis samples classified six major cell subpopulations. Among them, the TNK cell subpopulation showed the highest infiltration in the GC liver metastasis group. | [91] |
Clinical Prediction Model | AI Algorithm | Clinical Decisions | Typical Metrics (AUC, Sensitivity, Specificity, External Validation Yes/No) | Ref |
---|---|---|---|---|
Diagnostic model | SVM, LR, RF GaussianNB AdaBoost | Screening | AUC = 0.99, external validation/no | [39] |
DIAMOND | RF | Classification | AUC = 88–100%, Sensitivity = 49–99%, Specificity = 49–100%, external validation/no | [41] |
Deconvolution scores | GCNN | Diagnosis | Highest accuracy = 0.69, external validation/no | [45] |
ALPHAON® | CAD | Diagnosis | AUC = 0.962, Sensitivity = 0.93, Specificity = 0.87, external validation/yes | [47] |
XHGC20 | XCB | Diagnosis | AUC = 0.901, Sensitivity = 0.83, Specificity = 0.806 external validation/no | [48] |
GRAPE | DL framework | Diagnosis | AUC = 0.927, Sensitivity = 0.817, Specificity = 0.905 external validation/yes | [50] |
ConVit models YOLO model | CNNs | Diagnosis Classification | AUROC = 0.988, AUPRC = 0.9769, Accuracy = 0.9514 external validation/yes | [57] |
EBVnet | CNN | Diagnosis | AUROC = 0.895 external validation/yes | [60] |
Ensemble learning model | RF, LR, SVM, CART, XGB | Prediction (LNM) | AUC = 0.892, Sensitivity = 0.844, Specificity = 0.768 external validation/no | [82] |
eCura system | LR, GBM | Prediction (LNM) | AUC = 0.796, Sensitivity = 0.958, Specificity = 0.788 external validation/yes | [83] |
TACSPR model | Multitask ML | Prediction (PM) | AUC = 0.746 external validation/yes | [86] |
Prediction model | DNN SVM, RF, NB DT, LASSO | Prediction (Distant metastasis) | AUC = 0.999, AUPRC = 0.995 external validation/no | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuoka, T.; Yashiro, M. Artificial Intelligence and Bioinformatics in the Malignant Progression of Gastric Cancer. Appl. Sci. 2025, 15, 11092. https://doi.org/10.3390/app152011092
Matsuoka T, Yashiro M. Artificial Intelligence and Bioinformatics in the Malignant Progression of Gastric Cancer. Applied Sciences. 2025; 15(20):11092. https://doi.org/10.3390/app152011092
Chicago/Turabian StyleMatsuoka, Tasuku, and Masakazu Yashiro. 2025. "Artificial Intelligence and Bioinformatics in the Malignant Progression of Gastric Cancer" Applied Sciences 15, no. 20: 11092. https://doi.org/10.3390/app152011092
APA StyleMatsuoka, T., & Yashiro, M. (2025). Artificial Intelligence and Bioinformatics in the Malignant Progression of Gastric Cancer. Applied Sciences, 15(20), 11092. https://doi.org/10.3390/app152011092