NDEExplorer: Visual Analytics for Exploring Damage Modes via Multimodal Data in the Non-Destructive Examination of Composite Materials
Abstract
:1. Introduction
- A visual analytics system based on NDE methods, NDEExplorer, is designed to explore and evaluate the material damage evolution process;
- The novel glyph design displays image features of material damage, facilitating the extraction of damage image information and its integration with AE features;
- Our research is valuable in illuminating the analysis of composite material damage evolution and the exploration of multimodal data relationships.
2. Related Work
2.1. NDE Method
2.2. Visualization in NDE
3. Materials and Methods
3.1. Workflow
- The AE analysis area (Figure 1a–d) presents the correlation matrices and scatter plots of various AE features to illustrate their degree of correlation, while the clustering diagram is intended to help users explore different clustering patterns resulting from the AE analysis (T1, T2);
- The DIC analysis area (Figure 1e,f) allows users to explore the details of DIC images at different levels of damage (T3, T5);
- The fusion analysis area (Figure 1d,g) provides a table for users to compare different clustering results, with glyphs illustrating the trend of DIC image changes at different damage levels. At the same time, it can interactively verify the AE data breakpoint (T4, T6).
3.2. Data Description
3.2.1. AE Feature Extraction
3.2.2. DIC Feature Extraction
3.2.3. Force Loading
3.3. Visual Design Method
3.3.1. AE Analysis Views
3.3.2. DIC Analysis Views
3.3.3. Fusion Analysis Views
4. Evaluation and Discussion
4.1. Case Study
4.2. User Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hsissou, R.; Seghiri, R.; Benzekri, Z.; Hilali, M.; Rafik, M.; Elharfi, A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021, 262, 113640. [Google Scholar] [CrossRef]
- Lunetto, V.; Galati, M.; Settineri, L.; Iuliano, L. Sustainability in the manufacturing of composite materials: A literature review and directions for future research. J. Manuf. Process. 2023, 85, 858–874. [Google Scholar] [CrossRef]
- Ozturk, F.; Cobanoglu, M.; Ece, R.E. Recent advancements in thermoplastic composite materials in aerospace industry. J. Thermoplast. Compos. Mater. 2024, 37, 3084–3116. [Google Scholar] [CrossRef]
- Awaja, F.; Zhang, S.; Tripathi, M.; Nikiforov, A.; Pugno, N. Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair. Prog. Mater. Sci. 2016, 83, 536–573. [Google Scholar] [CrossRef]
- Wang, P.; Yang, J.; Liu, W.; Tang, X.Z.; Zhao, K.; Lu, X.; Xu, S. Tunable crack propagation behavior in carbon fiber reinforced plastic laminates with polydopamine and graphene oxide treated fibers. Mater. Des. 2017, 113, 68–75. [Google Scholar] [CrossRef]
- Chaki, S.; Bourse, G. Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands. Ultrasonics 2009, 49, 162–171. [Google Scholar] [CrossRef]
- Yin, X.; Hutchins, D.A.; Diamond, G.G.; Purnell, P. Non-destructive evaluation of concrete using a capacitive imaging technique: Preliminary modelling and experiments. Cem. Concr. Res. 2010, 40, 1734–1743. [Google Scholar] [CrossRef]
- Niezrecki, C.; Baqersad, J.; Sabato, A. Digital image correlation techniques for non-destructive evaluation and structural health monitoring. In Handbook of Advanced Non-Destructive Evaluation; Springer: Berlin/Heidelberg, Germany, 2018; p. 46. [Google Scholar]
- Nsengiyumva, W.; Zhong, S.; Lin, J.; Zhang, Q.; Zhong, J.; Huang, Y. Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: A state-of-the-art review. Compos. Struct. 2021, 256, 112951. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, B.; Yu, F.; Chen, C. Cluster analysis of acoustic emission signals and infrared thermography for defect evolution analysis of glass/epoxy composites. Infrared Phys. Technol. 2021, 112, 103581. [Google Scholar] [CrossRef]
- Wang, L.S.; Huang, Z.M. On strength prediction of laminated composites. Compos. Sci. Technol. 2022, 219, 109206. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, S.; Lee, T.L.; Fancey, K.S.; Mi, J. Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Adv. Mech. Eng. 2020, 12, 1687814020913761. [Google Scholar] [CrossRef]
- Andraju, L.B.; Raju, G. Damage characterization of CFRP laminates using acoustic emission and digital image correlation: Clustering, damage identification and classification. Eng. Fract. Mech. 2023, 277, 108993. [Google Scholar] [CrossRef]
- Miao, S.; Pan, P.Z.; Zhao, X.; Shao, C.; Yu, P. Experimental study on damage and fracture characteristics of Beishan granite subjected to high-temperature treatment with DIC and AE techniques. Rock Mech. Rock Eng. 2021, 54, 721–743. [Google Scholar] [CrossRef]
- Sachse, W.; Kim, K.Y. Quantitative acoustic emission and failure mechanics of composite materials. Ultrasonics 1987, 25, 195–203. [Google Scholar] [CrossRef]
- Rishikesan, V.; Chaturvedi, B.; Arunachalam, N. Characterisation of drilling-induced damage in GFRP Honeycomb Sandwich Composites using Acoustic Emission. Procedia Manuf. 2021, 53, 664–672. [Google Scholar]
- Pei, N.; Zhou, S.; Xu, C.; Shang, J.; Wu, Q. Cluster analysis of acoustic emission signals for tensile damage characterization of quasi-static indented carbon/glass fiber-reinforced hybrid laminate composites. Compos. Part A Appl. Sci. Manuf. 2021, 150, 106597. [Google Scholar] [CrossRef]
- Huguet, S.; Godin, N.; Gaertner, R.; Salmon, L.; Villard, Y.D. Use of acoustic emission to identify damage modes in glass fibre reinforced polyester. Compos. Sci. Technol. 2002, 62, 1433–1444. [Google Scholar] [CrossRef]
- Sause, M.G.; Gribov, A.; Unwin, A.R.; Horn, S. Pattern recognition approach to identify natural clusters of acoustic emission signals. Pattern Recognit. Lett. 2012, 33, 17–23. [Google Scholar] [CrossRef]
- Fotouhi, M.; Heidary, H.; Ahmadi, M.; Pashmforoush, F. Characterization of composite materials damage under quasi-static three-point bending test using wavelet and fuzzy C-means clustering. J. Compos. Mater. 2012, 46, 1795–1808. [Google Scholar] [CrossRef]
- Pashmforoush, F.; Fotouhi, M.; Ahmadi, M. Acoustic emission-based damage classification of glass/polyester composites using harmony search k-means algorithm. J. Reinf. Plast. Compos. 2012, 31, 671–680. [Google Scholar] [CrossRef]
- Maillet, E.; Baker, C.; Morscher, G.N.; Pujar, V.V.; Lemanski, J.R. Feasibility and limitations of damage identification in composite materials using acoustic emission. Compos. Part A Appl. Sci. Manuf. 2015, 75, 77–83. [Google Scholar] [CrossRef]
- Caminero, M.A.; Lopez-Pedrosa, M.; Pinna, C.; Soutis, C. Damage assessment of composite structures using digital image correlation. Appl. Compos. Mater. 2014, 21, 91–106. [Google Scholar] [CrossRef]
- Ubaid, J.; Kashfuddoja, M.; Ramji, M. Strength prediction and progressive failure analysis of carbon fiber reinforced polymer laminate with multiple interacting holes involving three dimensional finite element analysis and digital image correlation. Int. J. Damage Mech. 2014, 23, 609–635. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, G.; Zhan, N.; Ji, H. Gray change detection method for damage monitoring in materials. Appl. Opt. 2015, 54, 934–939. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, Q.; Xie, H.; Li, Q.; Sun, G. Digital image correlation (DIC) based damage detection for CFRP laminates by using machine learning based image semantic segmentation. Int. J. Mech. Sci. 2022, 230, 107529. [Google Scholar] [CrossRef]
- Lomov, S.V.; Ivanov, D.S.; Verpoest, I.; Zako, M.; Kurashiki, T.; Nakai, H.; Molimard, J.; Vautrin, A. Full-field strain measurements for validation of meso-FE analysis of textile composites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1218–1231. [Google Scholar] [CrossRef]
- Suarez, E.; Sause, M.G.R.; Gallego, A. Influence of an optical fiber embedded on unidirectional CFRP laminates evaluated with the Acoustic Emission and 3D Digital Image Correlation techniques. In Proceedings of the Progress in Acoustic Emission XVIII, Kyoto, Japan, 5–9 December 2016; pp. 5–8. [Google Scholar]
- Heinzl, C.; Amirkhanov, A.; Kastner, J. Processing, analysis and visualization of CT data. In Industrial X-Ray Computed Tomography; Springer: Berlin/Heidelberg, Germany, 2018; pp. 99–142. [Google Scholar]
- Chen, J.; Yu, Z.; Jin, H. Nondestructive testing and evaluation techniques of defects in fiber-reinforced polymer composites: A review. Front. Mater. 2022, 9, 986645. [Google Scholar] [CrossRef]
- Nsengiyumva, W.; Zhong, S.; Luo, M.; Zhang, Q.; Lin, J. Critical insights into the state-of-the-art NDE data fusion techniques for the inspection of structural systems. Struct. Control Health Monit. 2022, 29, e2857. [Google Scholar] [CrossRef]
- Heinzl, C.; Stappen, S. STAR: Visual Computing in Materials Science. Comput. Graph. Forum 2017, 36, 647–666. [Google Scholar] [CrossRef]
- Weissenböck, J.; Amirkhanov, A.; Li, W.; Reh, A.; Amirkhanov, A.; Gröller, E.; Kastner, J.; Heinzl, C. FiberScout: An interactive tool for exploring and analyzing fiber reinforced polymers. In Proceedings of the 2014 IEEE Pacific Visualization Symposium, Yokohama, Japan, 4–7 March 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 153–160. [Google Scholar]
- Zobel, V.; Stommel, M.; Scheuermann, G. Feature-based tensor field visualization for fiber reinforced polymers. In Proceedings of the 2015 IEEE Scientific Visualization Conference (SciVis), Chicago, IL, USA, 25–30 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 49–56. [Google Scholar]
- Andrew, J.J.; Arumugam, V.; Bull, D.J.; Dhakal, H.N. Residual strength and damage characterization of repaired glass/epoxy composite laminates using AE and DIC. Compos. Struct. 2016, 152, 124–139. [Google Scholar] [CrossRef]
- Whitlow, T.; Jones, E.; Przybyla, C. In-situ damage monitoring of a SiC/SiC ceramic matrix composite using acoustic emission and digital image correlation. Compos. Struct. 2016, 158, 245–251. [Google Scholar] [CrossRef]
- Li, D.; Mei, H.; Shen, Y.; Su, S.; Zhang, W.; Wang, J.; Zu, M.; Chen, W. ECharts: A declarative framework for rapid construction of web-based visualization. Vis. Informat. 2018, 2, 136–146. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- ASTM E1106-21; Standard Test Method for Primary Calibration of Acoustic Emission Sensors. ASTM International: West Conshohocken, PA, USA, 2021; pp. 1–7.
- Roundi, W.; El Mahi, A.; El Gharad, A.; Rebiere, J.L. Acoustic emission monitoring of damage progression in glass/epoxy composites during static and fatigue tensile tests. Appl. Acoust. 2018, 132, 124–134. [Google Scholar] [CrossRef]
- Özaslan, E.; Yetgin, A.; Acar, B.; Güler, M.A. Damage mode identification of open hole composite laminates based on acoustic emission and digital image correlation methods. Compos. Struct. 2021, 274, 114299. [Google Scholar] [CrossRef]
- Blaber, J.; Adair, B.; Antoniou, A. Ncorr: Open-source 2D digital image correlation matlab software. Exp. Mech. 2015, 55, 1105–1122. [Google Scholar] [CrossRef]
- Baltrušaitis, T.; Ahuja, C.; Morency, L.P. Multimodal machine learning: A survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 423–443. [Google Scholar] [CrossRef] [PubMed]
- Kehrer, J.; Hauser, H. Visualization and visual analysis of multifaceted scientific data: A survey. IEEE Trans. Vis. Comput. Graph. 2012, 19, 495–513. [Google Scholar] [CrossRef]
- Borgo, R.; Kehrer, J.; Chung, D.H.; Maguire, E.; Laramee, R.S.; Hauser, H.; Ward, M.; Chen, M. Glyph-Based Visualization: Foundations, Design Guidelines, Techniques and Applications. Eurographics (State of the Art Reports). 2013, pp. 39–63. Available online: http://cronfa.swan.ac.uk/Record/cronfa24643 (accessed on 15 December 2024).
Requirement Category | Visualization Task | Analytical Goals |
---|---|---|
Damage analysis | T1: Design a materials damage visulization workflow. | G1, G2 |
Feature processing | T2: Select an appropriate clustering method. T3: Optimize image processing methods. | G3 G2 |
Information fusion | T4: Combine AE and DIC data based on damage severity. | G4, G5 |
System optimization | T5: Visualization of damage retrogression. T6: Incorporate evaluation metrics for clustering methods. | G5 G3, G5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Zhou, L.; Luo, X. NDEExplorer: Visual Analytics for Exploring Damage Modes via Multimodal Data in the Non-Destructive Examination of Composite Materials. Appl. Sci. 2025, 15, 952. https://doi.org/10.3390/app15020952
Guo D, Zhou L, Luo X. NDEExplorer: Visual Analytics for Exploring Damage Modes via Multimodal Data in the Non-Destructive Examination of Composite Materials. Applied Sciences. 2025; 15(2):952. https://doi.org/10.3390/app15020952
Chicago/Turabian StyleGuo, Dongliang, Lisha Zhou, and Xingfa Luo. 2025. "NDEExplorer: Visual Analytics for Exploring Damage Modes via Multimodal Data in the Non-Destructive Examination of Composite Materials" Applied Sciences 15, no. 2: 952. https://doi.org/10.3390/app15020952
APA StyleGuo, D., Zhou, L., & Luo, X. (2025). NDEExplorer: Visual Analytics for Exploring Damage Modes via Multimodal Data in the Non-Destructive Examination of Composite Materials. Applied Sciences, 15(2), 952. https://doi.org/10.3390/app15020952