The Complementary Role of Motor Imagery on VO2max and Lactate in Professional Football Players with Grade II Ankle Sprains During the Return-to-Play Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Main Outcome Measures
2.3.1. Bruce Protocol
2.3.2. Vividness of Movement Imagery Questionnaire-2
- Walking,
- Running,
- Kicking a stone,
- Bending down to pick up a coin,
- Running upstairs,
- Jumping sideways,
- Throwing a stone into water,
- Kicking a ball in the air,
- Running downhill,
- Riding a bike,
- Swinging on a rope,
- Jumping off a high wall.
- High imagery ability: VMIQ-2 score < 26
- Low imagery ability: VMIQ-2 score > 36
2.3.3. Intervention Protocol
2.3.4. Statistical Analysis
3. Results
3.1. VO2max and Lactate
3.2. Vividness of Movement Imagery Questionnaire—2 (VMIQ-2-GR)
- EVI: The MI intervention group showed a decrease of 7.4 points, compared to a decrease of 5.8 points in the placebo group.
- IVI: The MI intervention group showed a decrease of 4.1 points, while the placebo group showed a larger decrease of 6 points.
- KVI: The MI intervention group demonstrated a decrease of 6.5 points, compared to a decrease of 2.3 points in the placebo group.
- EVI: η2 = 0.56, observed power = 1 (α = 0.05).
- IVI: η2 = 0.54, observed power = 1 (α = 0.05).
- KVI: η2 = 0.40, observed power = 0.99 (α = 0.05).
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Torremocha, G.; Martin-Sanchez, M.L.; Garcia-Unanue, J.; Felipe, J.L.; Moreno-Pérez, V.; Paredes-Hernández, V.; Gallardo, L.; Sanchez-Sanchez, J. Physical demands on professional Spanish football referees during matches. Sci. Med. Footb. 2023, 7, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Nouni-Garcia, R.; Asensio-Garcia, M.R.; Orozco-Beltran, D.; Lopez-Pineda, A.; Gil-Guillen, V.F.; Quesada, J.A.; Bernabeu Casas, R.C.; Carratala-Munuera, C. The FIFA 11 programme reduces the costs associated with ankle and hamstring injuries in amateur Spanish football players: A retrospective cohort study. Eur. J. Sport Sci. 2019, 19, 1150–1156. [Google Scholar] [CrossRef]
- Hwang, J.; Moon, N.R.; Heine, O.; Yang, W.H. The ability of energy recovery in professional soccer players is increased by individualized low-intensity exercise. PLoS ONE 2022, 17, e0270484. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Pellegrino, G.; Gallardo, L.; Garcia-Unanue, J.; Felipe, J.L.; Hernandez-Martin, A.; Paredes-Hernández, V.; Sánchez-Sánchez, J. Physical Demands during the Game and Compensatory Training Session in Elite Football Players Using Global Positioning System Device. Sensors 2022, 22, 3872. [Google Scholar] [CrossRef] [PubMed]
- Schwesig, R.; Schulze, S.; Reinhardt, L.; Laudner, K.G.; Delank, K.S.; Hermassi, S. Differences in player position running velocity at lactate thresholds among male professional German soccer players. Front. Physiol. 2019, 10, 886. [Google Scholar] [CrossRef]
- Reilly, T.; Drust, B.; Clarke, N. Muscle fatigue during football match-play. J. Sports Med. 2008, 38, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Hulton, A.T.; Malone, J.J.; Clarke, N.D.; Maclaren, D.P.M. Energy Requirements and Nutritional Strategies for Male Soccer Players: A Review and Suggestions for Practice. Nutrients 2022, 14, 657. [Google Scholar] [CrossRef]
- Olsson, D.; Sikka, R.; Labounty, A.; Christensen, T. Injuries in professional football: Current concepts. Curr. Sports Med. Rep. 2013, 12, 381–390. [Google Scholar] [CrossRef]
- Jungmann, P.M.; Lange, T.; Wenning, M.; Baumann, F.A.; Bamberg, F.; Jung, M. Ankle Sprains in Athletes: Current Epidemiological, Clinical and Imaging Trends. Open Access J. Sports Med. 2023, 14, 29–46. [Google Scholar] [CrossRef]
- Halabchi, F.; Hassabi, M. Acute ankle sprain in athletes: Clinical aspects and algorithmic approach. World J. Orthop. 2020, 11, 534–558. [Google Scholar] [CrossRef]
- D’Hooghe, P.; Cruz, F.; Alkhelaifi, K. Return to Play After a Lateral Ligament Ankle Sprain. Curr. Rev. Musculoskelet. Med. 2020, 13, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Chambers, S.; Jamal, B.; Senthil Kumar, C. The sporting ankle. J. Orthop. Trauma 2016, 30, 24–29. [Google Scholar] [CrossRef]
- Plakoutsis, G.; Tsepis, E.; Fousekis, K.; Paraskevopoulos, E.; Papandreou, M. The Effects of Motor Imagery on Static and Dynamic Balance and on the Fear of Re-Injury in Professional Football Players with Grade II Ankle Sprains. Healthcare 2024, 12, 1432. [Google Scholar] [CrossRef]
- Vuurberg, G.; Hoorntje, A.; Wink, L.M.; Van Der Doelen, B.F.W.; Van Den Bekerom, M.P.; Dekker, R.; Van Dijk, C.N.; Krips, R.; Loogman, M.C.M.; Ridderikhof, M.L.; et al. Diagnosis, treatment and prevention of ankle sprains: Update of an evidence-based clinical guideline. Br. J. Sports Med. 2018, 52, 956. [Google Scholar] [CrossRef] [PubMed]
- Wikstrom, E.A.; Mueller, C.; Cain, M.S. Lack of consensus on return-to-sport criteria following lateral ankle sprain: A systematic review of expert opinions. J. Sport Rehabil. 2020, 29, 231–237. [Google Scholar] [CrossRef]
- Siemes, L.J.F.; van der Worp, M.P.; Nieuwenhuijzen, P.H.J.A.; Stolwijk, N.M.; Pelgrim, T.; Staal, J.B. The effect of movement representation techniques on ankle function and performance in persons with or without a lateral ankle sprain: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2023, 24, 786. [Google Scholar] [CrossRef] [PubMed]
- Paravlic, A.H.; Maffulli, N.; Kovač, S.; Pisot, R. Home-based motor imagery intervention improves functional performance following total knee arthroplasty in the short term: A randomized controlled trial. J. Orthop. Res. 2020, 15, 451. [Google Scholar] [CrossRef] [PubMed]
- Gregg, M.; Hall, C.; Mcgowan, E.; Hall, N. The relationship between imagery ability and imagery use among Athletes. J. Appl. Sport Psychol. 2011, 23, 129–141. [Google Scholar] [CrossRef]
- Ferrer-Peña, R.; Cuenca-Martínez, F.; Romero-Palau, M.; Flores-Román, L.M.; Arce-Vázquez, P.; Varangot-Reille, C.; Suso-Martí, L. Effects of motor imagery on strength, range of motion, physical function, and pain intensity in patients with total knee arthroplasty: A systematic review and meta-analysis. Braz. J. Phys. Ther. 2021, 25, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Post, P.; Muncie, S.; Simpson, D. The Effects of Imagery Training on Swimming Performance: An Applied Investigation. J. Appl. Sport Psychol. 2012, 24, 323–337. [Google Scholar] [CrossRef]
- Evans, L.; Hare, R.; Mullen, R. Imagery Use During Rehabilitation from Injury. J. Imag. Res. Sport Phys. Act. 2006, 1, 1. [Google Scholar] [CrossRef]
- Plakoutsis, G.; Fousekis, K.; Tsepis, E.; Papandreou, M. Cross cultural adaptation, validity and reliability of the Greek version of the Vividness of Movement Imagery Questionnaire-2 (VMIQ-2). Discov. Psychol. 2023, 3, 30. [Google Scholar] [CrossRef]
- Callow, N.; Roberts, R. Imagery research: An investigation of three issues. Psychol. Sport Exerc. 2010, 11, 325–329. [Google Scholar] [CrossRef]
- Yu, Q.H.; Fu, A.S.N.; Kho, A.; Li, J.; Sun, X.H.; Chan, C.C.H. Imagery perspective among young athletes: Differentiation between external and internal visual imagery. J. Sport Health Sci. 2016, 5, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Olsson, C.J.; Jonsson, B.; Nyberg, L. Internal imagery training in active high jumpers: Cognition and Neurosciences. Scand. J. Psychol. 2008, 49, 133–140. [Google Scholar] [CrossRef]
- Mahoney, M.J.; Avener, M. Psychology of the elite athlete: An exploratory study. Cogn. Ther. Res. 1977, 1, 135–141. [Google Scholar] [CrossRef]
- Plakoutsis, G.; Paraskevopoulos, E.; Zavvos, A.; Papandreou, M. The Effects of Motor Imagery on Pain in Lower Limb Sports Injuries: A Systematic Review and Meta-Analysis. Healthcare 2022, 10, 2545. [Google Scholar] [CrossRef] [PubMed]
- Christakou, A.; Zervas, Y.; Lavallee, D. The adjunctive role of imagery on the functional rehabilitation of a grade II ankle sprain. Hum. Mov. Sci. 2007, 26, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Christakou, A.; Zervas, Y. The effectiveness of imagery on pain, edema, and range of motion in athletes with a grade II ankle sprain. Phys. Ther. Sport 2007, 8, 130–140. [Google Scholar] [CrossRef]
- Nunes, G.; Noronha, M. Imagética motora no tratamento da entorse lateral de tornozelo em atletas de futebol de campo: Um estudo piloto. Fisioter. Pesqui. 2015, 22, 282–290. [Google Scholar]
- Tsekoura, M.; Billis, E.; Samada, E.K.; Savvidou, I.; Fousekis, K.; Xergia, S.; Lampropoulou, S.; Tsepis, E. Cross cultural adaptation, reliability and validity of the Greek version of Identification of Functional Ankle Instability (IdFAI) questionnaire. J. Foot Ankle Surg. 2021, 27, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Bruce, R.; Kusumi, F.; Hosmer, D. Fundamentals of clinical cardiology and recognition. Fundam. Clin. Cardiol. 1974, 88, 372–379. [Google Scholar]
- Hurt, C.P.; Bamman, M.M.; Naidu, A.; Brown, D.A. Comparison of Resistance-Based Walking Cardiorespiratory Test to the Bruce Protocol. J. Strength Cond. Res. 2020, 34, 3569–3576. [Google Scholar] [CrossRef]
- Plakoutsis, G.; Zapantis, D.; Panagiotopoulou, E.M.; Paraskevopoulos, E.; Moutzouri, M.; Koumantakis, G.A.; Papandreou, M. Reliability and Validity of the Portable KForce Plates for Measuring Countermovement Jump (CMJ). Appl. Sci. 2023, 13, 11200. [Google Scholar] [CrossRef]
- Hall-López, J.A.; Ochoa-Martínez, P.Y.; Moncada-Jiménez, J.; Méndez, M.A.O.; García, I.M.; García, M.A.M. Confiabilidad del consumo máximo de oxigeno evaluado en pruebas de esfuerzo consecutivas mediante calorimetría indirecta. Nutr. Hospital. 2015, 31, 1726–1732. [Google Scholar]
- Verhagen, E.; Van Der Beek, A.; Twisk, J.; Bouter, L.; Bahr, R.; Van Mechelen, W. The effect of a proprioceptive balance board training program for the prevention of ankle sprains: A prospective controlled trial. Am. J. Sports Med. 2004, 32, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- McGuine, T.A.; Keene, J.S. The effect of a balance training program on the risk of ankle sprains in high school athletes. Am. J. Sports Med. 2006, 34, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Eils, E.; Schröter, R.; Schröderr, M.; Gerss, J.; Rosenbaum, D. Multistation proprioceptive exercise program prevents ankle injuries in basketball. Med. Sci. Sports Exerc. 2010, 42, 2098–2105. [Google Scholar] [CrossRef] [PubMed]
- Cleland, J.A.; Mintken, P.; McDevitt, A.; Bieniek, M.; Carpenter, K.; Kulp, K.; Whitman, J.M. Manual physical therapy and exercise versus supervised home exercise in the management of patients with inversion ankle sprain: A multicenter randomized clinical trial. J. Orthop. Sports Phys. Ther. 2013, 43, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Mchugh, M.L. The Chi-square test of independence Lessons in biostatistics. Biochem. Med. 2013, 23, 143–149. [Google Scholar] [CrossRef]
- Park, E.; Cho, M.; Ki, C.S. Correct use of repeated measures analysis of variance. Korean J. Lab. Med. 2009, 29, 1–9. [Google Scholar] [CrossRef]
- Taherzadeh Chenani, K.; Madadizadeh, F. Popular Statistical Tests for Investigating the Relationship between Two Variables in Medical Research. J. Community Health Res. 2020, 9, 1–3. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Cupal, D.; Brewer, B. Relaxation and Imagery on knee strength and Re-Injury. Rehabil. Psychol. 2001, 46, 28–43. [Google Scholar] [CrossRef]
- Hardy, L.; Callow, N. Efficacy of external and internal visual imagery perspectives for the enhancement of performance on tasks in which form is important. J. Sport Exerc. Psychol. 1999, 21, 95–112. [Google Scholar] [CrossRef]
- Bullock, G.S.; Arnold, T.W.; Plisky, P.J.; Butler, R.J. Basketball Players’ Dynamic Performance Across Competition Levels. J. Strength Cond. Res. 2018, 32, 3528–3533. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, M.R.; Bray, S.R.; Albinson, J.G. Pre-competition imagery, self-efficacy and performance in collegiate golfers. J. Sports Sci. 2002, 20, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Decety, J.; Jeannerod, M.; Germain, M.; Pastene, J. Vegetative response during imagined movement is proportional to mental effort. Behav. Brain Res. 1991, 42, 1–5. [Google Scholar] [CrossRef]
- Perciavalle, V.; Maci, T.; Perciavalle, V.; Massimino, S.; Coco, M. Working memory and blood lactate levels. Neurol. Sci. 2015, 36, 2129–2136. [Google Scholar] [CrossRef] [PubMed]
Part 1—8 min * | Part 2—15 min * | Part 3—7 min |
---|---|---|
Running—60 s | One legged stance—3 × 45 s hold | Static stretching exercises of the lower limbs |
Jumping Jacks—40 s | Jump from one leg to the other with control landing for 4 s—3 × 10 reps | |
Linear Knee Raise—10 reps | One legged stance on a balance board—2 × 45 s hold | |
Squat—10 reps | One legged stance on a balance board with the knee flexed—3 × 10 knee flexions | |
Leg Swing—10 reps | Squats on a balance board—3 × 45 s hold |
Demographic Characteristics | Total Participants n = 58 | First ΜΙ Group n = 29 | Second Placebo Group n = 29 | Statistical Analysis p Value |
---|---|---|---|---|
Age (Μ ± SD) | 20.5 ± 3.3 | 20.5 ± 3.3 | 21.2 ± 3.1 | ΝS, p = 0.37 α, p > 0.05 t-test for independent |
BMI (kg/m2) (Μ ± SD) | 22.3 ± 1.9 | 22.8 ± 1.7 | 21.8 ± 2.1 | NS, p = 0.05 α, p < 0.05 t-test for independent |
Yrs of training (Μ ± SD) | 11.1 ± 2.7 | 11.0 ± 2.8 | 11.2 ± 2.6 | ΝS, p = 0.81 α, p > 0.05 t-test for independent |
Hrs of training/wk (Μ ± SD) | 12.1 ± 1.5 | 11.9 ± 1.6 | 12.3 ± 1.4 | ΝS, p = 0.26 α, p > 0.05 t-test for independent |
Dominant Leg | Frequencies % | Frequencies % | Chi-square | |
Right (n, %) | 46 (79.3%) | 25 (86.2%) | 21 (72.4%) | ΝS, p = 0.19 β, p > 0.05 |
Left (n, %) | 12 (20.7%) | 4 (13.8%) | 8 (27.6%) | |
Grade II LAS—Leg | ||||
Right (n, %) | 39 (67.2%) | 21 (72.4%) | 18 (62.1%) | ΝS, p = 0.40 β, p > 0.05 |
Left (n, %) | 19 (32.8%) | 8 (27.6%) | 11 (37.9%) | |
Previous LAS—Leg | t-test for Independent | |||
Right (n, %) | 38 (65.5%) | 17 (58.6%) | 21 (72.4%) | ΝS, p = 0.30 α, p > 0.05 |
Left (n, %) | 12 (20.7%) | 6 (20.7%) | 6 (20.7%) | |
Both (n, %) | 8 (13.8%) | 6 (20.7%) | 2 (6.9%) | |
Total number of previous LAS | Chi-square for Trends | |||
1 (n, %) | 30 (51.7%) | 17 (58.6%) | 13 (44.8%) | ΝS, p = 0.35 γ, p > 0.05 |
2 (n, %) | 21 (36.2%) | 9 (31.0%) | 12 (41.4%) | |
≥3 (n, %) | 7 (12.1%) | 3 (10.3%) | 4 (13.8%) |
VO2max (mL/kg/min) | |||||
---|---|---|---|---|---|
Groups N = 58 | M ± SD (mL/kg/min) Pre | M ± SD (mL/kg/min) Post | Mean Difference (MD) (mL/kg/min) | Confidence Interval (CI) 95% | Significance |
First—ΜΙ Intervention Group (n = 29) | 42.53 ± 4.48 | 50.41 ± 3.17 | −2.24 | −4.15; −0.33 | F = 48.997, S * = 0.000, p < 0.05 |
Second—Placebo Group (n = 29) | 43.86 ± 5.24 | 44.59 ± 4.09 | |||
Lactate (mmol/L) | |||||
Groups N = 58 | M
±
SD (mmol/L) Pre | M
±
SD (mmol/L) Post | MD (mmol/L) | CI 95% | Sign |
First—ΜΙ Intervention Group (n = 29) | 6.83 ± 1.07 | 13.73 ± 1.27 | 0.80 | 0.28–1.32 | F = 3841.301, S * = 0.000, p < 0.05 |
Second—Placebo Group (n = 29) | 7.13 ± 0.96 | 15.04 ± 1.00 |
VO2max (mL/kg/min)—Post | ||||
---|---|---|---|---|
Groups N= 58 | M ± SD (mL/kg/min) Post | Mean Difference (MD) (mL/kg/min) | Confidence Interval (CI) 95% | Significance (Two-Tailed) |
First—ΜΙ Intervention Group (n = 29) | 50.41 ± 3.17 | −5.81 | −7.74; −3.89 | t = −6.04, S * = 0.000, p < 0.05 |
Second—Placebo Group (n = 29) | 44.59 ± 4.09 | |||
Lactate (mmol/L)— Post | ||||
Groups N= 58 | M
±
SD (mmol/L) Post | MD (mmol/L) | CI 95% | Sign (Two-Tailed) |
First—ΜΙ Intervention Group (n = 29) | 13.73 ± 1.27 | 1.30 | 0.70–1.91 | t = 4.33, S * = 0.000, p < 0.05 |
Second—Placebo Group (n = 29) | 15.04 ± 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plakoutsis, G.; Tsepis, E.; Fousekis, K.; Christakou, A.; Papandreou, M. The Complementary Role of Motor Imagery on VO2max and Lactate in Professional Football Players with Grade II Ankle Sprains During the Return-to-Play Period. Appl. Sci. 2025, 15, 820. https://doi.org/10.3390/app15020820
Plakoutsis G, Tsepis E, Fousekis K, Christakou A, Papandreou M. The Complementary Role of Motor Imagery on VO2max and Lactate in Professional Football Players with Grade II Ankle Sprains During the Return-to-Play Period. Applied Sciences. 2025; 15(2):820. https://doi.org/10.3390/app15020820
Chicago/Turabian StylePlakoutsis, George, Elias Tsepis, Konstantinos Fousekis, Anna Christakou, and Maria Papandreou. 2025. "The Complementary Role of Motor Imagery on VO2max and Lactate in Professional Football Players with Grade II Ankle Sprains During the Return-to-Play Period" Applied Sciences 15, no. 2: 820. https://doi.org/10.3390/app15020820
APA StylePlakoutsis, G., Tsepis, E., Fousekis, K., Christakou, A., & Papandreou, M. (2025). The Complementary Role of Motor Imagery on VO2max and Lactate in Professional Football Players with Grade II Ankle Sprains During the Return-to-Play Period. Applied Sciences, 15(2), 820. https://doi.org/10.3390/app15020820