CycleGAN with Atrous Spatial Pyramid Pooling and Attention-Enhanced MobileNetV4 for Tomato Disease Recognition Under Limited Training Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Image Data Augmentation Using Generative Adversarial Networks
2.2.1. CycleGAN Network Architecture and Principles
2.2.2. Generator Structure and ASPP Enhancement
2.3. MobileNetV4 Network Architecture and Enhancement
2.4. Integration of CBAM Attention Mechanism
3. Experimental Setup and Results Analysis
3.1. Experimental Environment and Parameter Settings
3.2. Evaluation of Image Generation Quality
3.3. Disease Recognition Accuracy Experiment
3.4. Performance Comparison of Different Deep Learning Models
4. Discussion
5. Conclusions
- (1)
- Real-world validation: Test the approach on tomato images collected from farms under natural growing conditions, where small-sample problems are more severe. A stepwise training strategy—first pretraining on public datasets, then fine-tuning on farm-specific images—will be explored.
- (2)
- Cross-crop generalization: Apply the framework to other crops (e.g., cucumbers, peppers, rice) to verify its universality.
- (3)
- Extreme small-sample scenarios: Investigate optimization strategies under one-shot or few-shot conditions to further reduce data dependency and enhance robustness.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Zhai, Y.; Xia, Y. Tomato leaf disease identification method based on improved YOLOX. Agronomy 2023, 13, 1455. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.; Jiang, P.; Peng, J.; Chen, H. IBSA-Net: A network for tomato leaf disease identification based on transfer learning with small samples. Appl. Sci. 2023, 13, 4348. [Google Scholar] [CrossRef]
- Xie, S.; Wang, C.; Wang, C.; Lin, Y.; Dong, X. Online identification method of tea diseases in complex natural environments. IEEEO Pen J. Comput. Soc. 2023, 4, 62–71. [Google Scholar] [CrossRef]
- Chakraborty, K.K.; Mukherjee, R.; Chakroborty, C.; Bora, K. Automated recognition of optical image based potato leaf blight diseases using deep learning. Physiol. Mol. Plant Pathol. 2022, 117, 101781. [Google Scholar] [CrossRef]
- Lu, Z.; Reitschuster, S.; Tobie, T.; Stahl, K.; Liu, H.; Hu, X. Contact fatigue life prediction of PEEK gears based on CTAB-GAN data augmentation. Eng. Fract. Mech. 2024, 312, 110639. [Google Scholar] [CrossRef]
- Kugelman, J.; Alonso-Caneiro, D.; Read, S.A.; Vincent, S.J.; Collins, M.J. Enhancing OCT patch-based segmentation with improved GAN data augmentation and semi-supervised learning. Neural Comput. Appl. 2024, 36, 18087–18105. [Google Scholar] [CrossRef]
- Astolfi, P.; Casanova, A.; Verbeek, J.; Vincent, P.; Romero-Soriano, A.; Drozdzal, M. Instance-conditioned gan data augmentation for representation learning. arXiv 2023, arXiv:2303.09677. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Luo, X.; Li, P.; Min, G.; Li, H. SlaugFL: Efficient edge federated learning with selective GAN-based data augmentation. IEEE Trans. Mob. Comput. 2024, 23, 11191–11208. [Google Scholar] [CrossRef]
- Cap, Q.H.; Uga, H.; Kagiwada, S.; Iyatomi, H. LeafGAN: An effective data augmentation method for practical plant disease diagnosis. IEEE Trans. Autom. Sci. Eng. 2022, 19, 1258–1267. [Google Scholar] [CrossRef]
- Hu, G.; Wu, H.; Zhang, Y.; Wan, M. A low shot learning method for tea leaf's disease identification. Comput. Electron. Agric. 2019, 163, 104852. [Google Scholar] [CrossRef]
- Van Der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2023, 9, 2579–2605. [Google Scholar]
- Tian, Y.; Yang, G.; Wang, Z.; Li, E.; Liang, Z. Detection of apple lesions in orchards based on deep learning methods of cycle-GAN and yolov3 -dense. J. Sens. 2019, 2019, 7630926. [Google Scholar] [CrossRef]
- Liu, B.; Tan, C.; Li, S.; He, J.; Wang, H. A data augmentation method based on generative adversarial networks for grape leaf disease identification. IEEE Access 2020, 8, 102188–102198. [Google Scholar] [CrossRef]
- Sharma, P.; Berwal, Y.P.S.; Ghai, W. Performance analysis of deep learning CNN models for disease detection in plants us- ing image segmentation. Inf. Process. Agric. 2020, 7, 566–574. [Google Scholar]
- Ma, J.; Du, K.; Zheng, F.; Zhang, L.; Gong, Z.; Sun, Z. A recognition method for cucumber diseases using leaf symptom images based on deep con- culture. Comput. Electron. Agric. 2018, 154, 18–24. [Google Scholar] [CrossRef]
- Hughes, D.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv 2015, arXiv:1511.08060. [Google Scholar]
- Chu, C.; Zhmoginov, A.; Sandler, M. Cyclegan, a master of steganography. arXiv 2017, arXiv:1712.02950. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Nawaz, M.; Nazir, T.; Javed, A.; Masood, M.; Rashid, J.; Kim, J.; Hussain, A. A robust deep learning approach for tomato plant leaf disease localization and classification. Sci. Rep. 2022, 12, 18568. [Google Scholar] [CrossRef]
- Tian, K.; Zeng, J.; Song, T.; Li, Z.; Evans, A.; Li, J. Tomato leaf diseases recognition based on deep convolutional neural networks. J. Agric. Eng. 2023, 54. [Google Scholar] [CrossRef]
- Qin, D.; Leichner, C.; Delakis, M.; Fornoni, M.; Luo, S.; Yang, F.; Wang, W.; Banbury, C.; Ye, C.; Akin, B.; et al. MobileNetV4, universal models for the mobile ecosystem. In European Conference on Computer Vision; Springer Nature: Cham, Switzerland, 2024; pp. 78–96. [Google Scholar]
- Wang, X.; Liu, J.; Zhu, X. Early real-time detection algorithm of tomato diseases and pests in the natural environment. Plant Methods 2021, 17, 43. [Google Scholar] [CrossRef]
- Djimeli-Tsajio, A.B.; Thierry, N.; Jean-Pierre, L.T.; Kapche, T.F.; Nagabhushan, P. Improved detection and identification approach in tomato leaf disease using transformation and combination of transfer learning features. J. Plant Dis. Prot. 2022, 129, 665–674. [Google Scholar] [CrossRef]
- Thangaraj, R.; Anandamurugan, S.; Pandiyan, P.; Kaliappan, V.K. Artificial intelligence in tomato leaf disease detection: A comprehensive review and discussion. J. Plant Dis. Prot. 2022, 129, 469–488. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Hoque, M.D.J.; Islam, M.S.; Khaliluzzaman, M. AI-Powered Precision in Diagnosing Tomato Leaf Diseases. Complexity 2025, 2025, 7838841. [Google Scholar] [CrossRef]
- Cheng, H.H.; Dai, Y.L.; Lin, Y.; Hsu, H.C.; Lin, C.P.; Huang, J.H.; Chen, S.F.; Kuo, Y.F. Identifying tomato leaf diseases under real field conditions using convolutional neural networks and a chatbot. Comput. Electron. Agric. 2022, 202, 107365. [Google Scholar] [CrossRef]
- Kaur, P.; Harnal, S.; Gautam, V.; Singh, M.P.; Singh, S.P. An approach for characterization of infected area in tomato leaf disease based on deep learning and object detection technique. Eng. Appl. Artif. Intell. 2022, 115, 105210. [Google Scholar] [CrossRef]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. arXiv 2017, arXiv:1706.08500. [Google Scholar]
- Bińkowski, M.; Sutherland, D.J.; Arbel, M.; Gretton, A. Demystifying mmd gans. arXiv 2018, arXiv:1801.01401. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
Diseases | FID | KID | ||||
---|---|---|---|---|---|---|
GAN | CycleGAN | ASPP-CycleGAN | GAN | CycleGAN | ASPP-CycleGAN | |
Bacterial spot disease | 446.86 | 356.68 | 345.15 | 0.4907 | 0.3349 | 0.3204 |
Early blight | 448.89 | 334.90 | 316.83 | 0.4929 | 0.2871 | 0.2533 |
Late blight | 448.77 | 416.62 | 411.28 | 0.4896 | 0.3831 | 0.358 |
Mosaic virus disease | 444.99 | 448.38 | 424.07 | 0.4998 | 0.4630 | 0.414 |
Model | Average Precision | Average Recall | Average F1 |
---|---|---|---|
Original dataset | 92.15% | 92.00% | 91.59% |
GAN augmented dataset | 91.90% | 92.00% | 91.80% |
CycleGAN augmented dataset | 94.54% | 93.33% | 93.00% |
ASPP-CycleGAN augmented dataset | 97.10% | 97.00% | 97.02% |
Model | Average Precision | Precision | ||||
---|---|---|---|---|---|---|
Bacterial Spot | Early Blight | Healthy Leaves | Late Blight | Mosaic Virus | ||
VGG16 [31] | 81.83% | 94.12% | 84.62% | 95.24% | 56.00% | 79.17% |
ResNet50 [32] | 92.92% | 90.48% | 90.00% | 100.00% | 88.89% | 95.24% |
MobilenetV3 [33] | 96.14% | 95.00% | 100.00% | 100.00% | 90.48% | 95.24% |
MobilenetV4 [21] | 95.24% | 90.48% | 90.48% | 95.24% | 100.00% | 100.00% |
CBAM-MobilenetV4 | 97.10% | 100.00% | 90.48% | 100.00% | 95.00% | 100.00% |
Model | Average Recall | Recall | ||||
---|---|---|---|---|---|---|
Bacterial Spot | Early Blight | Healthy Leaves | Late Blight | Mosaic Virus | ||
VGG16 [31] | 80.00% | 80.00% | 55.00% | 100.00% | 70.00% | 95.00% |
ResNet50 [32] | 93.00% | 95.00% | 90.00% | 100.00% | 80.00% | 100.00% |
MobilenetV3 [33] | 96.00% | 95.00% | 90.00% | 100.00% | 95.00% | 100.00% |
MobilenetV4 [21] | 95.00% | 95.00% | 95.00% | 100.00% | 85.00% | 100.00% |
CBAM-MobilenetV4 | 97.00% | 95.00% | 95.00% | 100.00% | 95.00% | 100.00% |
Model | Average Recall | Recall | ||||
---|---|---|---|---|---|---|
Bacterial Spot | Early Blight | Healthy Leaves | Late Blight | Mosaic Virus | ||
VGG16 [31] | 79.86% | 86.36% | 62.22% | 97.56% | 66.67% | 86.49% |
ResNet50 [32] | 92.89% | 92.68% | 90.00% | 100.00% | 84.21% | 97.56% |
MobilenetV3 [33] | 96.00% | 97.56% | 92.68% | 100.00% | 94.74% | 95.00% |
MobilenetV4 [21] | 94.96% | 100.00% | 91.89% | 97.56% | 92.68% | 92.68% |
CBAM-MobilenetV4 | 97.02% | 100.00% | 95.00% | 100.00% | 92.68% | 97.44% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Jiang, T.; Song, C.; Wang, J. CycleGAN with Atrous Spatial Pyramid Pooling and Attention-Enhanced MobileNetV4 for Tomato Disease Recognition Under Limited Training Data. Appl. Sci. 2025, 15, 10790. https://doi.org/10.3390/app151910790
Jiang Y, Jiang T, Song C, Wang J. CycleGAN with Atrous Spatial Pyramid Pooling and Attention-Enhanced MobileNetV4 for Tomato Disease Recognition Under Limited Training Data. Applied Sciences. 2025; 15(19):10790. https://doi.org/10.3390/app151910790
Chicago/Turabian StyleJiang, Yueming, Taizeng Jiang, Chunyan Song, and Jian Wang. 2025. "CycleGAN with Atrous Spatial Pyramid Pooling and Attention-Enhanced MobileNetV4 for Tomato Disease Recognition Under Limited Training Data" Applied Sciences 15, no. 19: 10790. https://doi.org/10.3390/app151910790
APA StyleJiang, Y., Jiang, T., Song, C., & Wang, J. (2025). CycleGAN with Atrous Spatial Pyramid Pooling and Attention-Enhanced MobileNetV4 for Tomato Disease Recognition Under Limited Training Data. Applied Sciences, 15(19), 10790. https://doi.org/10.3390/app151910790