Modeling and Systematic Analysis of Grinding Behavior for Overburden, Saprolite, and Their Mixtures
Abstract
1. Introduction
- BWI is the Bond Work Index, kWh/t;
- P is the size of the opening of the control sieve, μm;
- Gbp is the mass of the newly created screen of the control sieve per revolution of the mill, g/rev;
- F80 is the size of the opening of the sieve through which 80% of the feed passes before grinding, μm;
- P80 is the size of the sieve opening through which 80% of the comparative sieve from the last grinding cycle passes, μm.
2. Materials and Methods
2.1. Materials
2.2. Equipment and Methodology
2.3. Chemical Analysis and Mineralogical Characteristics of the Samples
3. Results and Discussions
3.1. Mineralogical Characterization of the Samples Fed to the Mill
3.2. Determination of F80, P80 and Gbp
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Size Interval, μm | Weight, % | |||
---|---|---|---|---|
1 | 2 | 3 | Average | |
3150/2380 | 13.49 | 13.20 | 13.30 | 13.33 |
2380/1600 | 12.03 | 11.75 | 11.25 | 11.68 |
1600/1000 | 20.24 | 20.87 | 20.48 | 20.53 |
1000/710 | 10.38 | 11.63 | 10.99 | 11.00 |
710/500 | 8.94 | 8.79 | 8.71 | 8.81 |
500/250 | 14.04 | 15.22 | 14.59 | 14.62 |
250/150 | 7.67 | 7.61 | 7.61 | 7.63 |
150/75 | 5.57 | 5.54 | 5.53 | 5.55 |
75/45 | 0.95 | 0.86 | 0.93 | 0.91 |
<45 | 6.69 | 4.53 | 6.61 | 5.94 |
Size Interval, μm | Weight, % | |||
---|---|---|---|---|
1 | 2 | 3 | Average | |
3150/2380 | 14.53 | 14.67 | 13.58 | 14.26 |
2380/1600 | 11.49 | 11.47 | 11.33 | 11.43 |
1600/1000 | 17.81 | 17.52 | 17.53 | 17.62 |
1000/710 | 9.67 | 10.71 | 10.34 | 10.24 |
710/500 | 8.49 | 8.78 | 8.59 | 8.62 |
500/250 | 15.54 | 15.78 | 15.80 | 15.71 |
250/150 | 9.35 | 8.53 | 8.79 | 8.89 |
150/75 | 8.18 | 8.86 | 8.41 | 8.48 |
75/45 | 1.44 | 1.35 | 1.15 | 1.31 |
<45 | 3.50 | 2.33 | 4.48 | 3.44 |
Size Interval, μm | Weight, % | |||
---|---|---|---|---|
1 | 2 | 3 | Average | |
3150/2380 | 10.32 | 10.49 | 9.98 | 10.26 |
2380/1600 | 12.07 | 12.55 | 12.19 | 12.27 |
1600/1000 | 20.38 | 19.41 | 20.01 | 19.93 |
1000/710 | 10.89 | 12.10 | 11.60 | 11.53 |
710/500 | 8.84 | 8.16 | 8.41 | 8.47 |
500/250 | 15.12 | 16.44 | 15.94 | 15.83 |
250/150 | 8.65 | 7.80 | 7.91 | 8.12 |
150/75 | 7.23 | 7.43 | 7.25 | 7.30 |
75/45 | 1.31 | 1.30 | 1.30 | 1.30 |
<45 | 5.19 | 4.32 | 5.41 | 4.97 |
Size Interval, μm | Weight, % | |||
---|---|---|---|---|
1 | 2 | 3 | Average | |
3150/2380 | 13.96 | 13.85 | 13.88 | 13.90 |
2380/1600 | 10.46 | 9.84 | 10.12 | 10.14 |
1600/1000 | 15.10 | 15.08 | 15.06 | 15.08 |
1000/710 | 10.08 | 10.40 | 10.31 | 10.26 |
710/500 | 8.20 | 8.10 | 8.16 | 8.15 |
500/250 | 16.57 | 15.98 | 16.42 | 16.32 |
250/150 | 9.83 | 9.22 | 9.50 | 9.52 |
150/75 | 9.70 | 8.87 | 9.27 | 9.28 |
75/45 | 1.29 | 1.67 | 1.49 | 1.48 |
<45 | 4.81 | 6.99 | 5.79 | 5.86 |
Size Interval, μm | Weight, % | |||
---|---|---|---|---|
1 | 2 | 3 | Average | |
3150/2380 | 17.62 | 17.51 | 17.49 | 17.54 |
2380/1600 | 9.01 | 9.71 | 9.74 | 9.49 |
1600/1000 | 13.77 | 13.57 | 13.66 | 13.67 |
1000/710 | 7.39 | 7.69 | 7.72 | 7.60 |
710/500 | 7.74 | 7.53 | 7.63 | 7.63 |
500/250 | 17.03 | 17.02 | 17.04 | 17.03 |
250/150 | 12.92 | 12.98 | 13.03 | 12.98 |
150/75 | 9.80 | 9.92 | 9.71 | 9.81 |
75/45 | 1.71 | 1.82 | 1.74 | 1.76 |
<45 | 3.01 | 2.25 | 2.24 | 2.50 |
Size Interval, μm | Weight, % | |||
---|---|---|---|---|
1 | 2 | 3 | Average | |
3150/2380 | 1.21 | 1.44 | 1.20 | 1.28 |
2380/1600 | 1.28 | 1.34 | 1.53 | 1.38 |
1600/1000 | 2.21 | 1.99 | 1.84 | 2.01 |
1000/710 | 2.20 | 2.27 | 2.19 | 2.22 |
710/500 | 4.14 | 3.93 | 3.71 | 3.93 |
500/250 | 19.17 | 19.83 | 19.66 | 19.55 |
250/150 | 20.07 | 19.70 | 19.56 | 19.78 |
150/75 | 22.02 | 21.97 | 22.30 | 22.10 |
75/45 | 27.70 | 27.53 | 28.01 | 27.75 |
Size Interval, μm | Weight, % | |||
---|---|---|---|---|
1 | 2 | 3 | Average | |
3150/2380 | 1.27 | 1.80 | 1.39 | 1.49 |
2380/1600 | 1.02 | 1.48 | 1.13 | 1.21 |
1600/1000 | 1.91 | 1.89 | 1.70 | 1.83 |
1000/710 | 1.99 | 1.86 | 1.64 | 1.83 |
710/500 | 1.93 | 2.53 | 2.33 | 2.26 |
500/250 | 16.57 | 17.45 | 16.85 | 16.96 |
250/150 | 18.23 | 18.36 | 19.05 | 18.55 |
150/75 | 25.85 | 25.10 | 25.69 | 25.55 |
75/45 | 31.23 | 29.53 | 30.22 | 30.32 |
Size Interval, μm | Weight, % | |||
---|---|---|---|---|
1 | 2 | 3 | Average | |
3150/2380 | 0.96 | 1.11 | 1.06 | 1.04 |
2380/1600 | 0.88 | 1.04 | 1.10 | 1.01 |
1600/1000 | 1.17 | 1.52 | 1.29 | 1.33 |
1000/710 | 1.00 | 1.46 | 1.38 | 1.28 |
710/500 | 1.45 | 2.03 | 2.00 | 1.83 |
500/250 | 13.88 | 16.74 | 15.60 | 15.41 |
250/150 | 22.93 | 22.53 | 23.03 | 22.83 |
150/75 | 27.19 | 25.59 | 26.19 | 26.32 |
75/45 | 30.54 | 27.98 | 28.35 | 28.95 |
Size Interval, μm | Weight, % | |||
---|---|---|---|---|
1 | 2 | 3 | Average | |
3150/2380 | 0.87 | 0.78 | 0.80 | 0.82 |
2380/1600 | 0.68 | 0.83 | 0.77 | 0.76 |
1600/1000 | 0.83 | 0.85 | 0.96 | 0.88 |
1000/710 | 0.72 | 0.67 | 0.83 | 0.74 |
710/500 | 1.07 | 1.14 | 1.15 | 1.12 |
500/250 | 14.10 | 13.25 | 10.81 | 12.72 |
250/150 | 23.02 | 21.48 | 22.97 | 22.49 |
150/75 | 28.07 | 28.75 | 29.88 | 28.90 |
75/45 | 30.64 | 32.25 | 31.83 | 31.57 |
Size Interval, μm | Weight, % | |||
---|---|---|---|---|
1 | 2 | 3 | Average | |
3150/2380 | 0.91 | 0.89 | 0.96 | 0.92 |
2380/1600 | 0.85 | 0.77 | 0.67 | 0.76 |
1600/1000 | 0.79 | 0.89 | 0.80 | 0.83 |
1000/710 | 0.66 | 0.55 | 0.58 | 0.60 |
710/500 | 1.46 | 1.36 | 1.35 | 1.39 |
500/250 | 11.75 | 12.06 | 12.07 | 11.96 |
250/150 | 12.21 | 12.70 | 12.62 | 12.51 |
150/75 | 11.82 | 11.98 | 12.06 | 11.95 |
75/45 | 59.55 | 58.80 | 58.89 | 59.08 |
References
- Angulo-Palma, H.J.; Legrá, A.L.; Urgellés, A.L.; Gálvez, E.; Castillo, J. Post-Combustion Effect on Nickel and Cobalt Extractions from the Caron Process. In Proceedings of the Fourth International Conference on Inventive Material Science Applications; Advances in Sustainability Science and Technology. Bindhu, V.R.S., Tavares, J.M., Ţălu, Ş., Eds.; Springer: Singapore, 2022; pp. 515–527. [Google Scholar] [CrossRef]
- Angulo-Palma, H.; Legrá, Á.; Urgellés, A.; Pedrera, C.; Gallegos, S.; Galleguillos, M.; Toro, N. Use of a Mixture of Coal and Oil as an Additive for Selective Reduction of Lateritic Ore by the Caron Process. Hem. Ind. 2024, 78, 17–27. [Google Scholar] [CrossRef]
- Chen, J.; Jak, E.; Hayes, P.C. Investigation of the Reduction Roasting of Saprolite Ores in the Caron Process: Microstructure Evolution and Phase Transformations. Miner. Process. Extr. Metall. 2021, 130, 148–159. [Google Scholar] [CrossRef]
- Coello-Velázquez, A.L.; Arteaga, V.Q.; Menéndez-Aguado, J.M.; Pole, F.M.; Llorente, L. Use of the Swebrec Function to Model Particle Size Distribution in an Industrial-Scale Ni-Co Ore Grinding Circuit. Metals 2019, 9, 882. [Google Scholar] [CrossRef]
- Coello-Velázquez, A.L.; Menéndez-Aguado, J.M.; Brown, R.L. Grindability of Lateritic Nickel Ores in Cuba. Powder Technol. 2008, 182, 113–115. [Google Scholar] [CrossRef]
- Véliz Jardines, A.; Miranda López, J. Desarrollo de investigaciones sobre la tecnología Caron durante el procesamiento de las lateritas de baja ley de níquel y de los escombros lateríticos, clasificados como: Menas o minerales no industriales. Tecnol. Química 2022, 42, 361–383. [Google Scholar]
- Caron, M.H. Fundamental and Practical Factors in Ammonia Leaching of Nickel and Cobalt Ores. JOM 1950, 2, 67–90. [Google Scholar] [CrossRef]
- Caron, M.H. Separation of Nickel and Cobalt. JOM 1950, 2, 91–103. [Google Scholar] [CrossRef]
- Eso, R.; Safiuddin, L.; Agusu, L.; Hamimu, L.; Safani, J.; Arman, A.; Tahir, T.; Tufaila, T.; Syah, H.; Leomo, S.; et al. Using Soil Magnetic Susceptibility Proxies to Estimate Overburden Thickness Overlying Ore of Lateritic Soils in Sulawesi Island Indonesia. Iraqi Geol. J. 2024, 57, 17–32. [Google Scholar] [CrossRef]
- Souisa, M.; Madonna-Sapulete, S.; Soplanit, M. Interpretation of the potential of laterite nickel deposits using resistivity data in Amahusu Village, Ambon City, Maluku. In AIP Conference Proceedings. AIP Publ. 2021, 2360, 030008. [Google Scholar] [CrossRef]
- Umucu, Y.; Deniz, V.; Gürsoy, Y.H. Investigation of Energy—Technology Development in Ultra Fine Grinding. J. Eng. Archit. Fac. Eskiseh. Osman. Univ. 2023, 31, 1060–1076. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, Q.; Pan, J.; Zhu, D.; Yang, C. Grinding of Australian and Brazilian Iron Ore Fines for Low-Carbon Production of High-Quality Oxidised Pellets. Minerals 2024, 14, 236. [Google Scholar] [CrossRef]
- Laborde-Brown, R. Diagnóstico energético en el proceso de molienda de la laterita [Energetic diagnostic in the milling process of the latheritic ore]. Minería Y Geol. 2004, 20, 107–113. [Google Scholar]
- Angulo-Palma, H.J.; Legrá Legrá, A.; Coello Velázquez, A.L. Efecto de La Sustitución Del Petróleo Aditivo Por El Carbón Bituminoso En El Proceso de Molienda de Los Minerales Lateríticos. Sinerg. Acad. 2020, 3, 22–31. [Google Scholar] [CrossRef]
- Bond, F.C. Crushing and Grinding Calculations, Part I. Br. Chem. Eng. 1961, 6, 378–385. [Google Scholar]
- Menéndez-Aguado, J.M.; Dzioba, B.R.; Coello-Valazquez, A.L. Determination of Work Index in a Common Laboratory Mill. Miner. Metall. Process. 2005, 22, 173–176. [Google Scholar] [CrossRef]
- Nzeh, N.S.; Adeleke, A.A.; Popoola, P.A. Grindability Characterization and Work Index Determination of Alluvial Ferro-Columbite Deposits for Efficient Mineral Processing. Physicochem. Probl. Miner. Process. 2023, 59, 170297. [Google Scholar] [CrossRef]
- Kohitlhetse, I.; Rutto, H.; Motsetse, K.; Manono, M. Grindability, Energy Requirements and Gravity Separation of Quartz from Blast Furnace Ironmaking Slag by Shaking Table and Falcon Concentrator. Eng. Proc. 2023, 37, 123. [Google Scholar] [CrossRef]
- Menéndez-Aguado, J.M.; Coello-Velázquez, A.L.; Dzioba, B.R.; Rodriguez Diaz, M.A. Process Models for Simulation of Bond Tests. Miner. Process. Extr. Metall. 2006, 115, 85–90. [Google Scholar] [CrossRef]
- Bojanić, N.; Fišteš, A.; Došenović, T.; Takači, A.; Brdar, M.; Yoneda, K.; Rakić, D. Control of the Size and Compositional Distributions in a Milling Process by Using a Reverse Breakage Matrix Approach. Hem. Ind. 2021, 75, 1–14. [Google Scholar] [CrossRef]
- Chapuis, R.P. Fitting Models for a Grain Size Distribution: A Review. Bull. Eng. Geol. Environ. 2023, 82, 427. [Google Scholar] [CrossRef]
- Álvarez Rodríguez, B. Análisis de la Influencia de los Modelos de Distribución de Tamaños de Partículas en la Determinación de Consumos Energéticos en Molienda Mediante el Método Bond. Ph.D. Thesis, Universidad de Oviedo, Oviedo, Spain, 2010. [Google Scholar]
- Angulo-Palma, H.; Guilarte Rodríguez, N.; Legrá, A.; Navarro Consuegra, M.; Hernández-Pedrera, C. Modelación de la distribución de tamaño de menas saprolíticas alimentadas al proceso Caron [Modeling the size distribution of saprolitic ores fed to Caron process]. Tecnol. Química 2024, 44, 91–106. [Google Scholar]
- Zhou, W.; Han, Y.; Li, Y.; Yang, J.; Ma, S.; Sun, Y. Research on Prediction Model of Ore Grinding Particle Size Distribution. J. Dispers. Sci. Technol. 2020, 41, 537–546. [Google Scholar] [CrossRef]
- Otsuki, A.; Jang, H. Prediction of Particle Size Distribution of Mill Products Using Artificial Neural Networks. ChemEngineering 2022, 6, 92. [Google Scholar] [CrossRef]
- Mariano, R.A. Measurement and Modelling of the Liberation and Distribution of Minerals in Comminuted Ores. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2016. [Google Scholar]
- Muanpaopong, N.; Davé, R.; Bilgili, E. Impact of Ball Size Distribution, Compartment Configuration, and Classifying Liner on Cement Particle Size in a Continuous Ball Mill. Miner. Eng. 2022, 189, 107912. [Google Scholar] [CrossRef]
- Hilden, M. Simulating the Effect of Mineral Association Using a Multi-Mineral Rock Texture and Liberation Model. In Proceedings of the IMPC 2014—27th International Mineral Processing Congress, Santiago, Chile, 20–24 October 2014; Volume 2, pp. 210–218. [Google Scholar]
- Oxley, A.; Barcza, N. Hydro–Pyro Integration in the Processing of Nickel Laterites. Miner. Eng. 2013, 54, 2–13. [Google Scholar] [CrossRef]
- García, G.G.; Oliva, J.; Guasch, E.; Anticoi, H.; Coello-Velázquez, A.L.; Menéndez-Aguado, J.M. Variability Study of Bond Work Index and Grindability Index on Various Critical Metal Ores. Metals 2021, 11, 970. [Google Scholar] [CrossRef]
- Rosin, P.; Rammler, E. The Law Governing the Fineness of Powdered Coal. J. Inst. Fuel 1933, 7, 29–36. [Google Scholar]
- Schuhmann, J.R. Principles of comminution, I-size distribution and surface calculations. Mining Technol. 1940, 4, l–11. [Google Scholar]
- Ouchterlony, F. The Swebrec© Function: Linking Fragmentation by Blasting and Crushing. Inst. Min. Metallurgy. Trans. Sect. A Min. Technol. 2005, 114, 29–44. [Google Scholar] [CrossRef]
- Domènech, C.; Galí, S.; Villanova-de-Benavent, C.; Soler, J.M.; Proenza, J.A. Reactive Transport Model of the Formation of Oxide-Type Ni-Laterite Profiles (Punta Gorda, Moa Bay, Cuba). Miner. Depos. 2017, 52, 993–1010. [Google Scholar] [CrossRef]
- Tauler, E.; Galí, S.; Villanova-de-Benavent, C.; Chang-Rodríguez, A.; Núñez-Cambra, K.; Khazaradze, G.; Proenza, J.A. Geochemistry and Mineralogy of the Clay-Type Ni-Laterite Deposit of San Felipe (Camagüey, Cuba). Minerals 2023, 13, 1281. [Google Scholar] [CrossRef]
- Mweene, L.; Gomez-Flores, A.; Jeong, H.E.; Ilyas, S.; Kim, H. Challenges and future in Ni laterite ore enrichment: A critical review. Min. Proc. Ext. Met. Rev. 2024, 45, 539–563. [Google Scholar] [CrossRef]
- Farrokhpay, S.; Filippov, L.; Fornasiero, D. Pre-concentration of nickel in laterite ores using physical separation methods. Miner. Eng. 2019, 141, 105892. [Google Scholar] [CrossRef]
- Álvarez Rodríguez, B.; García, G.G.; Coello-Velázquez, A.L.; Menéndez-Aguado, J.M. Product Size Distribution Function Influence on Interpolation Calculations in the Bond Ball Mill Grindability Test. Int. J. Miner. Process 2016, 157, 16–20. [Google Scholar] [CrossRef]
Samples | Content, wt.% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ni | Co | Fe | MgO | SiO2 | Al2O3 | Mn | Cr | ||
Overburden (O) | avg | 0.85 | 0.11 | 40.50 | 2.31 | 6.79 | 12.29 | 0.23 | 1.3 |
σ | 0.01 | 0.00 | 0.44 | 0.25 | 0.28 | 0.32 | 0.24 | 0.02 | |
Mixture O75%-S25% | avg | 1.14 | 0.09 | 32.33 | 7.22 | 12.60 | 9.11 | 0.75 | 1.01 |
σ | 0.02 | 0.00 | 0.51 | 0.41 | 0.26 | 0.45 | 0.30 | 0.02 | |
Mixture O50%-S50% | avg | 1.46 | 0.07 | 22.26 | 11.96 | 20.61 | 7.45 | 0.61 | 0.95 |
σ | 0.01 | 0.00 | 0.62 | 0.29 | 0.30 | 0.37 | 0.24 | 0.02 | |
Mixture O25%-S75% | avg | 1.77 | 0.05 | 19.16 | 16.28 | 27.91 | 5.08 | 0.46 | 0.65 |
σ | 0.02 | 0.01 | 0.63 | 0.00 | 0.35 | 0.40 | 0.21 | 0.02 | |
Saprolite (S) | avg | 1.98 | 0.03 | 11.76 | 18.49 | 36.67 | 2.74 | 0.23 | 0.45 |
σ | 0.02 | 0.00 | 0.63 | 0.43 | 0.36 | 0.40 | 0.25 | 0.02 |
Authors (Year) | Equation | Equation Nº | Parameters |
---|---|---|---|
Rosin and Rammler (1933) [31] | (2) | n: Rosin–Rammler distribution modulus a: characteristic particle size denoting 36.80% cumulative oversize, μm | |
Schuhmann (1940) [32] | (3) | m: Schuhmann distribution modulus k: maximum size of ore particles, μm | |
Ouchterlony (2005) [33] | (4) | : maximum size of ore particles, μm : maximum size of ore particles, μm b: curve waving parameter |
Conf. | Model | Model Parameter(s) | MAPE (%) | R2 (%) | |
---|---|---|---|---|---|
Feeding | O[100] | RR | n = 0.9119; a = 1226.38 μm | 3.43 | 99.24 |
GGS | m = 0.7089; k = 3150.00 μm | 6.65 | 99.07 | ||
SWEF | xmax = 3150.00 μm; x50 = 866.96 μm; b = 1.9075 | 3.56 | 99.35 | ||
O[75]; S[25] | RR | n = 1.0284; a = 1139.65 μm | 2.59 | 99.24 | |
GGS | m = 0.8062; k = 3150.00 μm | 10.94 | 96.58 | ||
SWEF | xmax = 3150.00 μm; x50 = 803.53 μm; b = 1.9780 | 4.98 | 98.67 | ||
O[50]; S[50] | RR | n = 0.9713; a = 1094.12 μm | 2.31 | 99.66 | |
GGS | m = 0.7398; k = 3150.00 μm | 9.64 | 98.32 | ||
SWEF | xmax = 3150.00 μm; x50 = 776.25 μm; b = 2.1102 | 3.60 | 99.44 | ||
O[25]; S[75] | RR | n = 0.9028; a = 1052.68 μm | 2.52 | 99.50 | |
GGS | m = 0.6860; k = 3150.00 μm | 9.63 | 97.19 | ||
SWEF | xmax = 3150.00 μm; x50 = 699.84 μm; b = 1.9977 | 5.04 | 98.56 | ||
S[100] | RR | n = 1.0730; a = 891.99 μm | 6.27 | 97.76 | |
GGS | m = 0.8457; k = 3150.00 μm | 14.48 | 92.73 | ||
SWEF | xmax = 3150.00 μm; x50 = 666.81 μm; b = 2.0335 | 7.75 | 97.07 | ||
Product | O[100] | RR | n = 0.7450; a = 240.22 μm | 3.90 | 95.54 |
GGS | m = 0.3043; k = 3150.00 μm | 19.69 | 78.76 | ||
SWEF | xmax = 3150.00 μm; x50 = 151.37 μm; b = 3.3100 | 3.24 | 98.31 | ||
O[75]; S[25] | RR | n = 0.6905; a = 206.83 μm | 4.53 | 93.62 | |
GGS | m = 0.2724; k = 3150.00 μm | 18.81 | 75.63 | ||
SWEF | xmax = 3150.00 μm; x50 = 131.83 μm; b = 3.8059 | 2.84 | 98.64 | ||
O[50]; S[50] | RR | n = 0.7275; a = 198.48 μm | 5.24 | 92.01 | |
GGS | m = 0.2790; k = 3150.00 μm | 20.74 | 72.48 | ||
SWEF | xmax = 3150.00 μm; x50 = 128.83 μm; b = 3.9980 | 3.45 | 98.16 | ||
O[25]; S[75] | RR | n = 0.7055; a = 165.90 μm | 5.65 | 89.91 | |
GGS | m = 0.2519; k = 3150.00 μm | 20.46 | 68.94 | ||
SWEF | xmax = 3150.00 μm; x50 = 116.15 μm; b = 4.3854 | 3.15 | 98.09 | ||
S[100] | RR | n = 0.5001; a = 79.73 μm | 2.12 | 95.41 | |
GGS | m = 0.1320; k = 3150.00 μm | 9.78 | 81.66 | ||
SWEF | xmax = 3150.00 μm; x50 = 60.11 μm; b = 3.4989 | 1.69 | 99.33 |
Samples | F80 (μm) RR Function | P80 (μm) SWEF Function | F80/P80 |
---|---|---|---|
Overburden (O) | 2066.65 | 427.66 | 4.83 |
Mixture (O75%-S25%) | 1810.25 | 347.36 | 5.21 |
Mixture (O50%-S50%) | 1785.85 | 328.70 | 5.43 |
Mixture (O25%-S75%) | 1783.29 | 284.09 | 6.28 |
Saprolite (S) | 1389.87 | 219.49 | 6.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa-Cala, Y.; Toro, N.; Silvente, Y.O.; Angulo-Palma, H.J.; Reyes, R.S.A.; Ramirez, A.D.; Pedrera, C.H.; Salazar, I.; Gallegos, S.; Galleguillos-Madrid, F.M.; et al. Modeling and Systematic Analysis of Grinding Behavior for Overburden, Saprolite, and Their Mixtures. Appl. Sci. 2025, 15, 10740. https://doi.org/10.3390/app151910740
Correa-Cala Y, Toro N, Silvente YO, Angulo-Palma HJ, Reyes RSA, Ramirez AD, Pedrera CH, Salazar I, Gallegos S, Galleguillos-Madrid FM, et al. Modeling and Systematic Analysis of Grinding Behavior for Overburden, Saprolite, and Their Mixtures. Applied Sciences. 2025; 15(19):10740. https://doi.org/10.3390/app151910740
Chicago/Turabian StyleCorrea-Cala, Yunior, Norman Toro, Yabriel Oliveros Silvente, Hugo Javier Angulo-Palma, Roger Samuel Almenares Reyes, Ayelen Dominguez Ramirez, Carlos Hernández Pedrera, Iván Salazar, Sandra Gallegos, Felipe M. Galleguillos-Madrid, and et al. 2025. "Modeling and Systematic Analysis of Grinding Behavior for Overburden, Saprolite, and Their Mixtures" Applied Sciences 15, no. 19: 10740. https://doi.org/10.3390/app151910740
APA StyleCorrea-Cala, Y., Toro, N., Silvente, Y. O., Angulo-Palma, H. J., Reyes, R. S. A., Ramirez, A. D., Pedrera, C. H., Salazar, I., Gallegos, S., Galleguillos-Madrid, F. M., Saldana, M., & Soliz, A. (2025). Modeling and Systematic Analysis of Grinding Behavior for Overburden, Saprolite, and Their Mixtures. Applied Sciences, 15(19), 10740. https://doi.org/10.3390/app151910740