Study on Optimization of Structure of Porous Lateral Flow Storage Tank
Abstract
1. Introduction
2. Numerical Simulation Methods
2.1. Governing Equations in Fluid Dynamics
2.2. Turbulence Models
2.3. Free Surface Treatment
2.4. Model Establishment and Calculation Setting
2.5. Grid Division
2.6. Verification
2.7. Response Surface Methodology
3. Results
3.1. Analysis of Numerical Simulation Results Without Optimization Scheme
3.2. Optimization Scheme Design of the Heightened Baffle of the Overflow Weir
3.3. Single-Factor Experiment and PB Experiment
3.4. Response Surface Experiment Results and Analysis
3.5. Optimization Scheme Design of Heightened Baffle of Overflow Weir
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, L.; Xie, M.; Xue, J. Discussion on Application and Development Direction of Storage Tank in Drainage System. China Water Wastewater 2023, 39, 37–43. [Google Scholar]
- Tian, L.; Yanjun, Z.; Qiuxia, G. Design Proposal Discussion for Stormwater Storage Tanks along Suzhou Creek Drainage System. Water Wastewater Eng. 2008, 34, 42–46. (In Chinese) [Google Scholar]
- Wang, J.; Huang, T.; Zhang, P.; Gong, Y.; Che, W. Research progress on combined sewer overflow stormwater storage tank for pollution control. Environ. Pollut. Control 2015, 37, 85. [Google Scholar]
- Zhao, L.; Jianglin, C.; Yutia, Z. Self-Regulating Stormwater Detention System and Its Implementation Strategies. Chin. J. Constr. Mach. 2018, 16, 535–539. (In Chinese) [Google Scholar]
- Juan, D.; Shuang, Z. Application of Hydraulic Flushing Facilities in Utility Tunnels. China Water Wastewater 2021, 37, 101–106. (In Chinese) [Google Scholar]
- Champagne, T.M.; Barkdoll, B.D.; González-Castro, J.A. Experimental Study of Scour Induced by Temporally Oscillating Hydraulic Jump in a Stilling Basin. J. Irrig. Drain. Eng. 2017, 143, 04017051. [Google Scholar] [CrossRef]
- Campisano, A.; Creaco, E.; Modica, C. Experimental analysis of the hydrass flushing gate and laboratory validation of flush propagation modelling. Water Sci. Technol. 2006, 54, 101–108. [Google Scholar] [CrossRef]
- Mingming, W.; Zhili, S.; Dong, W. Design of Sediment-Flushing-Friendly Detention Tank under Sponge City Concept. China Resour. Compr. Util. 2019, 37, 164–166. (In Chinese) [Google Scholar]
- Zhicheng, T.; Jian, Y. Optimization Study of Novel Combined Sewer Overflow Detention Tank Based on Numerical Simulation. China Water Wastewater 2021, 37, 114–121. (In Chinese) [Google Scholar]
- Ruiloba, L.C.; Gómez, M.; Russo, B.; Choi, G.; Jang, D. Toward Sustainable Management: 2D Modelling of a Self-Cleaning System to Improve Geometry in Front of the Flushing Gate. Sustainability 2018, 10, 745. [Google Scholar] [CrossRef]
- Tan, J.; He, S.; Du, Z. Numerical Simulation Study of Built-In Porous Obstacles to Improve the Thermal Stratification Performance of Storage Tanks. Appl. Sci. 2024, 14, 6529. [Google Scholar] [CrossRef]
- Juan, C.; Weidong, G.; Da, S.; Riquan, Z.; Bing, Y. Study on Flow Characteristics in Branch Channel During Bend Confluence; Yangtze River: Wuhan, China, 2008; pp. 33–35+40. (In Chinese) [Google Scholar]
- Weidong, G.; Jian, L.; Dong, H. Impact of Flow Division on Hydraulic Characteristics in Bend Flow; People’s Yellow River: Zhengzhou, China, 2009; Volume 31, pp. 93–944. (In Chinese) [Google Scholar]
- Liu, H.F. Study on Free Surface Profile in Bend Flow. J. Hydraul. Eng. 1990, 46–50. (In Chinese) [Google Scholar] [CrossRef]
- Gao, C.; Liu, X.; Shi, L.; Liu, W. Numerical simulation of flow pattern modification schemes for the forebay and suction sump of pumping station. J. Hydroelectr. Eng. 2011, 30, 54–59. [Google Scholar]
- Mi, Z.H.; Zhou, D.Q.; Mao, Y.T. Three-dimensional CFD simulation of solid-liquid two-phase flow in the pumping station forebay with sills. In Proceedings of the 26th IAHR Symposium on Hydraulic Machinery and Systems, Beijing, China, 19–23 August 2012. [Google Scholar]
- Xia, C.; Cheng, L.; Jiao, W.; Zhang, D. Numerical simulation on rectification measure of inverted T-shaped sill at forebay of pump station. South--North Water Transf. Water Sci. Technol. 2018, 16, 146. [Google Scholar]
- Ying, J.; Yu, X.; He, W.; Zhang, J. Volume of fluid model-based flow pattern in forebay of pump station and combined rectification scheme. J. Drain. Irrig. Mach. Eng. 2020, 38, 476. [Google Scholar]
- Xinjian, F.; Chunhai, D.; Zhijun, W.; Yanan, L.; Wei, Y. Effect of Diffusion Angle on Flow Field Structure in Pump Station Frontal Intake Forebay. Trans. Chin. Soc. Agric. Eng. 2023, 39, 92–99. (In Chinese) [Google Scholar]
- Li, J.H.; Zhou, J.; Xu, H.; Feng, J.A.; Tong, H.W.; Chen, Y.H.; Qian, S.T. Undesired flows in lateral-intake multiple forebays and their hydraulic implications: Case study for Asia’s largest urban water supply pumping station. Eng. Appl. Comput. Fluid Mech. 2024, 18, 2380304. [Google Scholar] [CrossRef]
- Can, L.; Li, C.; Chao, L. Numerical Simulation of Flow Rectification Mechanism by Bottom Sill in Pump Station Frontal Intake Forebay. J. Drain. Irrig. Mach. Eng. 2014, 32, 393–398. (In Chinese) [Google Scholar]
- Brunelli, C.; Castellani, F.; Garinei, A.; Biondi, L.; Marconi, M. A Procedure to Perform Multi-Objective Optimization for Sustainable Design of Buildings. Energies 2016, 9, 915. [Google Scholar] [CrossRef]
- Sangsefidi, Y.; MacVicar, B.; Ghodsian, M.; Mehraein, M.; Torabi, M.; Savage, B.M. Evaluation of flow characteristics in labyrinth weirs using response surface methodology. Flow Meas. Instrum. 2019, 69, 101617. [Google Scholar] [CrossRef]
- Zi, D.; Wang, F.; Yao, Z.; Ye, C.; Xu, J.; Li, D. Research on optimization method of pump sump parameters based on response surface model. J. Hydraul. Eng. 2017, 48, 594–607. [Google Scholar]
- Gao, X.; Qin, Z.; Zhu, H.; Sun, B. Multi-objective optimization of side inlet/outlet shape based on response surface model. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 2019, 47, 127–132. [Google Scholar]
- Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1986, 1, 3–51. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Loureiro, J.B.R.; Alho, A.T.P.; Freire, A.P.S. The numerical computation of near-wall turbulent flow over a steep hill. J. Wind. Eng. Ind. Aerodyn. 2008, 96, 540–561. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Leardi, R. Design-Expert 6.0. J. Chemom. 2003, 17, 569–570. [Google Scholar] [CrossRef]
Factor | Coding | Level | |
---|---|---|---|
A | 1.25 | 1.29 | |
B | 1.22 | 1.26 | |
C | 1.22 | 1.26 | |
D | 1.23 | 1.27 | |
E | 1.23 | 1.27 | |
F | 1.23 | 1.27 |
1 | 1 | −1 | −1 | −1 | 1 | 0.212812 |
1 | 1 | −1 | 1 | 1 | 1 | 0.206227 |
−1 | −1 | −1 | 1 | −1 | 1 | 0.254147 |
1 | 1 | 1 | −1 | −1 | −1 | 0.152924 |
−1 | 1 | 1 | 1 | −1 | −1 | 0.258392 |
1 | −1 | 1 | 1 | 1 | −1 | 0.185054 |
−1 | −1 | 1 | −1 | 1 | 1 | 0.220781 |
1 | −1 | 1 | 1 | −1 | 1 | 0.178206 |
−1 | 1 | 1 | −1 | 1 | 1 | 0.274455 |
1 | −1 | −1 | −1 | 1 | −1 | 0.280466 |
−1 | 1 | −1 | 1 | 1 | −1 | 0.203499 |
−1 | −1 | −1 | −1 | −1 | −1 | 0.217502 |
Source of Variation | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p | Significance |
---|---|---|---|---|---|---|
Regression model | 0.017 | 6 | 2.783 × 10−3 | 25.28 | 0.0014 | ** |
A | 8.853 × 10−4 | 1 | 8.853 × 10−4 | 8.04 | 0.0364 | * |
B | 9.888 × 10−3 | 1 | 9.888 × 10−3 | 89.81 | 0.0002 | ** |
C | 5.199 × 10−3 | 1 | 5.199 × 10−3 | 47.23 | 0.0010 | ** |
D | 3.974 × 10−4 | 1 | 3.974 × 10−4 | 3.61 | 0.1159 | |
E | 1.073 × 10−5 | 1 | 1.073 × 10−5 | 0.097 | 0.7675 | |
F | 3.158 × 10−4 | 1 | 3.158 × 10−4 | 2.87 | 0.1511 | |
Residual | 5.505 × 10−4 | 5 | 1.101 × 10−4 | |||
Total | 0.017 | 11 |
Coding | |||
---|---|---|---|
−1 | 1.25 | 1.23 | 1.23 |
0 | 1.27 | 1.24 | 1.24 |
1 | 1.29 | 1.25 | 1.25 |
No. | ||||
---|---|---|---|---|
1 | 1 | −1 | 0 | 0.087434 |
2 | 0 | −1 | −1 | 0.051611 |
3 | 0 | 0 | 0 | 0.045672 |
4 | 1 | 0 | 1 | 0.11396 |
5 | 0 | 0 | 0 | 0.038243 |
6 | 0 | 0 | 0 | 0.038877 |
7 | −1 | 0 | 1 | 0.091211 |
8 | 0 | 0 | 0 | 0.046085 |
9 | −1 | 0 | −1 | 0.094924 |
10 | −1 | 1 | 0 | 0.103004 |
11 | 0 | 1 | −1 | 0.071095 |
12 | −1 | −1 | 0 | 0.065062 |
13 | 1 | 1 | 0 | 0.11362 |
14 | 0 | −1 | 1 | 0.06728 |
15 | 0 | 1 | 1 | 0.092449 |
16 | 1 | 0 | −1 | 0.091038 |
17 | 0 | 0 | 0 | 0.03881 |
Source of Variation | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p | Significance |
---|---|---|---|---|---|---|
Regression model | 0.011 | 9 | 1.260 × 10−3 | 50.36 | <0.0001 | ** |
A | 3.361 × 10−4 | 1 | 3.361 × 10−4 | 13.43 | 0.0080 | ** |
B | 1.479 × 10−3 | 1 | 1.479 × 10−3 | 59.11 | 0.0001 | ** |
C | 3.953 × 10−4 | 1 | 3.953 × 10−4 | 15.80 | 0.0054 | ** |
AB | 3.455 × 10−5 | 1 | 3.455 × 10−5 | 1.38 | 0.2784 | |
AC | 1.774 × 10−4 | 1 | 1.774 × 10−4 | 7.09 | 0.0324 | * |
BC | 8.078 × 10−6 | 1 | 8.078 × 10−6 | 0.32 | 0.5877 | |
A2 | 6.391 × 10−3 | 1 | 6.391 × 10−3 | 255.40 | <0.0001 | ** |
B2 | 5.847 × 10−4 | 1 | 5.847 × 10−4 | 23.37 | 0.0019 | ** |
C2 | 1.258 × 10−3 | 1 | 1.258 × 10−3 | 50.29 | 0.0002 | ** |
Residual | 1.752 × 10−4 | 7 | 2.502 × 10−5 | |||
Lack-of-fit | 1.120 × 10−4 | 3 | 3.734 × 10−5 | 2.37 | 0.2120 | |
Pure error | 6.314 × 10−5 | 4 | 1.578 × 10−5 | |||
Total | 0.012 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Q.; Feng, J.; Xu, H.; Zhang, R. Study on Optimization of Structure of Porous Lateral Flow Storage Tank. Appl. Sci. 2025, 15, 10536. https://doi.org/10.3390/app151910536
Gao Q, Feng J, Xu H, Zhang R. Study on Optimization of Structure of Porous Lateral Flow Storage Tank. Applied Sciences. 2025; 15(19):10536. https://doi.org/10.3390/app151910536
Chicago/Turabian StyleGao, Qiwen, Jiangang Feng, Hui Xu, and Rui Zhang. 2025. "Study on Optimization of Structure of Porous Lateral Flow Storage Tank" Applied Sciences 15, no. 19: 10536. https://doi.org/10.3390/app151910536
APA StyleGao, Q., Feng, J., Xu, H., & Zhang, R. (2025). Study on Optimization of Structure of Porous Lateral Flow Storage Tank. Applied Sciences, 15(19), 10536. https://doi.org/10.3390/app151910536