Traffic Safety Measures and Assessment
Abstract
1. Introduction
2. Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- 1.
- Li, Y.; Ge, C.; Chen, G.; Yuan, C.; Xing, L. Temporal Instability Analysis of Injury Severities for Angle and Non-Angle Crashes at Roundabouts. Appl. Sci. 2023, 13, 11147.
- 2.
- Wang, Y.; Zhai, H.; Cao, X.; Geng, X. Cause Analysis and Accident Classification of Road Traffic Accidents Based on Complex Networks. Appl. Sci. 2023, 13, 12963.
- 3.
- Zhao, Y.; Qiu, R.; Chen, M.; Xiao, S. Research on Operational Safety Risk Assessment Method for Long and Large Highway Tunnels Based on FAHP and SPA. Appl. Sci. 2023, 13, 9151.
- 4.
- Wang, J.; Ma, S.; Jiao, P.; Ji, L.; Sun, X.; Lu, H. Analyzing the Risk Factors of Traffic Accident Severity Using a Combination of Random Forest and Association Rules. Appl. Sci. 2023, 13, 8569.
- 5.
- Dhakal, B.; Al-Kaisy, A. A New Approach for Identifying Safety Improvement Sites on Rural Highways: A Validation Study. Appl. Sci. 2024, 14, 1413.
- 6.
- Xing, L.; Zou, D.; Fei, Y.; Long, K.; Wang, J. Safety Evaluation of Toll Plaza Diverging Area Considering Different Vehicles’ Toll Collection Types. Appl. Sci. 2023, 13, 9005.
- 7.
- Ozturk, O.; Mazlum, Y.; Aydin, M.; Coruh, E.; Bayata, H. Performance Comparison of Various Tunnel Lighting Scenarios on Driver Lane-Changing Behaviours in a Driving Simulator. Appl. Sci. 2024, 14, 11319.
- 8.
- Tian, Z.; Chen, F.; Ma, S.; Guo, M. Analysis of the Severity of Heavy Truck Traffic Accidents Under Different Road Conditions. Appl. Sci. 2024, 14, 120751.
- 9.
- Tian, J.; Li, Z.; Zhuang, S.; Xi, J.; Li, M. Grading of Traffic Interruptions in Highways to Tibet Based on the Entropy Weight-TOPSIS Method and Fuzzy C-Means Clustering Algorithm. Appl. Sci. 2024, 14, 11342.
- 10.
- Ma, S.; Hu, J.; Wang, R. Impact of Transition Areas on Driving Workload and Driving Behavior in Work Zones: A Naturalistic Driving Study. Appl. Sci. 2023, 13, 11669.
- 11.
- Cho, M.; Park, J.; Kim, S.; Lee, Y. Estimation of Driving Direction of Traffic Accident Vehicles for Improving Traffic Safety. Appl. Sci. 2023, 13, 7710.
- 12.
- Champahom, T.; Chamroen, S.; Fareeda, A.; Banyong, C.; Jomnonkwao, S.; Ratanavaraha, V. Crash Severity Analysis of Young Adult Motorcyclists: A Comparison of Urban and Rural Local Roadways. Appl. Sci. 2023, 13, 11723.
References
- Thapa, D.; Mishra, S.; Velaga, N.R.; Patil, G.R. Patil. Advancing proactive crash prediction: A discretized duration approach for predicting crashes and severity. Accid. Anal. Prev. 2024, 195, 107407. [Google Scholar] [CrossRef]
- Mritunjay, S.P.; Naren, M.G.; Vinay, C.; Sherali, Z. A review on emergency vehicle management for intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 2024, 25, 15229–15246. [Google Scholar] [CrossRef]
- Santos, K.; Dias, J.P.; Amado, C. A literature review of machine learning algorithms for crash injury severity prediction. J. Saf. Res. 2022, 80, 254–269. [Google Scholar] [CrossRef]
- Lyu, N.; Wen, J.; Duan, Z. Vehicle trajectory prediction and cut-in collision warning model in a connected vehicle environment. IEEE Trans. Intell. Transp. Syst. 2022, 23, 966e981. [Google Scholar] [CrossRef]
- Alanazi, F. A Systematic Literature Review of Autonomous and Connected Vehicles in Traffic Management. Appl. Sci. 2023, 13, 1789. [Google Scholar] [CrossRef]
- Cai, Q.; Abdel-Aty, M.; Yuan, J.; Lee, J.; Wu, Y. Real-time crash prediction on expressways using deep generative models. Transp. Res. Part C Emerg. Technol. 2020, 117, 102697. [Google Scholar] [CrossRef]
- Xu, G.; Chen, J.; Wang, Z.; Zhou, A.; Schrader, M.; Bittle, J.; Shao, Y. Enhancing Traffic Safety Analysis with Digital Twin Technology: Integrating Vehicle Dynamics and Environmental Factors into Microscopic Traffic Simulation. arXiv 2025, arXiv:2502.09561. [Google Scholar]
- Wu, W.; Hsu, T.P. Mid-term prediction of at-fault crash driver frequency using fusion deep learning with city-level traffic violation data. Accid. Anal. Prev. 2021, 150, 105910. [Google Scholar] [CrossRef]
- Dong, C.; Shao, C.F.; Li, J.; Xiong, Z. An improved deep learning model for traffic crash prediction. J. Adv. Transp. 2018, 2018, 869106. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Pal, A.; Das, D. Adaptive context based road accident risk prediction using spatio-temporal deep learning. IEEE Trans. Artif. Intell. 2023, 5, 2872–2883. [Google Scholar] [CrossRef]
- Li, H.; Gao, Q.; Zhang, Z.; Zhang, Y.; Ren, G. Spatial and temporal prediction of secondary crashes combining stacked sparse auto-encoder and long short-term memory. Accid. Anal. Prev. 2023, 191, 107205. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Das, S.; Zhou, H.T.; Zhang, Y. Patterns of near-crash events in a naturalistic driving dataset: Applying rules mining. Accid. Anal. Prev. 2021, 161, 1063468. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, H.; Zhang, Y.; Zhang, X. Modeling drivers’ stopping behaviors during yellow intervals at intersections considering group heterogeneity. J. Adv. Transp. 2020, 2020, 8818496. [Google Scholar] [CrossRef]
- Milardo, S.; Rathore, P.; Amorim, M. Understanding drivers’ stress and interactions with vehicle systems through naturalistic data analysis. IEEE Trans. Intell. Transp. Syst. 2021, 23, 14570–14581. [Google Scholar] [CrossRef]
- Behboudi, N.; Moosavi, S.; Ramnath, R. Recent Advances in Traffic Accident Analysis and Prediction: A Comprehensive Review of Machine Learning Techniques. arXiv 2024, arXiv:2406.13968. [Google Scholar] [CrossRef]
- Wang, C.; Xie, Y.; Huang, H.; Liu, P. A review of surrogate safety measures and their applications in connected and automated vehicles safety modeling. Accid. Anal. Prev. 2021, 157, 106157. [Google Scholar] [CrossRef]
- Sarkar, D.R.; Rao, K.R.; Chatterjee, N. A review of surrogate safety measures on road safety at unsignalized intersections in developing countries. Accid. Anal. Prev. 2024, 195, 107380. [Google Scholar] [CrossRef]
- Wang, J.; Pant, Y.V.; Zhao, L.; Antklewicz, M.; Czamecki, K. Enhancing Safety in Mixed Traffic: Learning-Based Modeling and Efficient Control of Autonomous and Human-Driven Vehicles. IEEE Trans. Intell. Transp. Syst. 2024, 25, 12784–12799. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, J.; Song, W. Contrastive study on the single-file pedestrian movement of the elderly and other age groups. arXiv 2019, arXiv:1912.07944. [Google Scholar] [CrossRef]
- Kim, S.; Choi, S.; Kim, B.H.S. Analysis of factors affecting pedestrian safety for the elderly and identification of vulnerable areas in Seoul. Accid. Anal. Prev. 2025, 211, 107878. [Google Scholar] [CrossRef]
- Kim, M.; Kim, D.; Shim, J. The Association Between Aggressive Driving Behaviors and Elderly Pedestrian Traffic Accidents: The Application of Explainable Artificial Intelli-gence (XAI). Appl. Sci. 2025, 15, 1741. [Google Scholar] [CrossRef]
- Diwakar, P.; Landge, V.S.; Jain, U. Evaluating the Relationship between Surrogate Safety Measures and Traffic Event Severity in Terms of Human Perception of Danger: A Perspective under Indian Traffic Conditions. Appl. Sci. 2023, 13, 12100. [Google Scholar] [CrossRef]
- Qawasmeh, B.; Oh, J.S.; Kwigizile, V. Comparative Analysis of AlexNet, ResNet-50, and VGG-19 Performance for Automated Feature Recognition in Pedestrian Crash Diagrams. Appl. Sci. 2025, 15, 2928. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, B. Traffic Safety Measures and Assessment. Appl. Sci. 2025, 15, 10532. https://doi.org/10.3390/app151910532
Li J, Wang B. Traffic Safety Measures and Assessment. Applied Sciences. 2025; 15(19):10532. https://doi.org/10.3390/app151910532
Chicago/Turabian StyleLi, Juan, and Bobin Wang. 2025. "Traffic Safety Measures and Assessment" Applied Sciences 15, no. 19: 10532. https://doi.org/10.3390/app151910532
APA StyleLi, J., & Wang, B. (2025). Traffic Safety Measures and Assessment. Applied Sciences, 15(19), 10532. https://doi.org/10.3390/app151910532

