Design and In Vivo Measurement of Miniaturized High-Efficient Implantable Antennas for Leadless Cardiac Pacemaker
Abstract
1. Introduction
2. Antenna Design and Equivalent Circuit
2.1. Design Principle
2.2. Discussion and Simulation
3. Radiation Performance of the Proposed Antenna
3.1. Radiation Pattern
3.2. Radiation Efficiency
3.3. Specific Absorption Rate
4. Transmission Performance of the Proposed Antenna
5. In Vitro and In Vivo Measurement
6. Analysis and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Chami, M.F.; Roberts, P.R.; Kypta, A.; Omdahl, P.; Bonner, M.D.; Kowal, R.C.; Duray, G.Z. How to implant a leadless pacemaker with a tine-based fixation. J. Cardiovasc. Electrophysiol. 2016, 27, 1495–1501. [Google Scholar] [CrossRef]
- Udo, E.O.; Zuithoff, N.P.A.; Van Hemel, N.M.; de Cock, C.C.; Hendriks, T.; Doevendans, P.A.; Moons, K.G.M. Incidence and predictors of short- and long-term complications in pacemaker therapy: The followpace study. Heart Rhythm. 2012, 9, 728–735. [Google Scholar] [CrossRef]
- Bhatia, N.; El-Chami, M. Leadless pacemakers: A contemporary review. J. Geriatr. Cardiol. JGC 2018, 15, 249–253. [Google Scholar]
- Paper Marking. Circulatory System Worksheet. Available online: https://studylib.net/doc/26015391/8.-circulatory-system-ws (accessed on 18 September 2025).
- Moore, R. Effects of a surrounding conducting medium on antenna analysis. IEEE Trans. Antennas Propag. 1963, 11, 216–225. [Google Scholar] [CrossRef]
- Wheeler, H. Fundamental limitations of a small VLF antenna for submarines. IEEE Trans. Antennas Propag. 1958, 6, 123–125. [Google Scholar] [CrossRef]
- Kiourti, A.; Nikita, K.S. A review of implantable patch antennas for biomedical telemetry: Challenges and solutions [wireless corner]. IEEE Antennas Propag. Mag. 2012, 54, 210–228. [Google Scholar] [CrossRef]
- Hansen, R. Radiation and reception with buried and submerged antennas. IEEE Trans. Antennas Propag. 1963, 11, 207–216. [Google Scholar] [CrossRef]
- Skrivervik, A.K.; Bosiljevac, M.; Sipus, Z. Fundamental limits for implanted antennas: Maximum power density reaching free space. IEEE Trans. Antennas Propag. 2019, 67, 4978–4988. [Google Scholar] [CrossRef]
- Hall, P.S.; Hao, Y. Antennas and Propagation for Body-Centric Wireless Communications; Artech House: Norwood, MA, USA, 2006. [Google Scholar]
- King, R.W.P.; Smith, G.S. Antennas in Matter: Fundamentals, Theory, and Applications, 1st ed.; The MIT Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Merli, F.; Fuchs, B.; Mosig, J.R.; Skrivervik, A.K. The effect of insulating layers on the performance of implanted antennas. IEEE Trans. Antennas Propag. 2011, 59, 21–31. [Google Scholar]
- Merli, F.; Fuchs, B.; Skrivervik, A.K. Influence of insulation for implanted antennas. In Proceedings of the 2009 3rd European Conference on Antennas and Propagation, Berlin, Germany, 23–27 March 2009; pp. 196–199. [Google Scholar]
- Tai, C.T.; Collin, R.E. Radiation of a Hertzian dipole immersed in a dissipative medium. IEEE Trans. Antennas Propag. 2000, 48, 1501–1506. [Google Scholar] [CrossRef]
- Karlsson, A. Physical limitations of antennas in a lossy medium. IEEE Trans. Antennas Propag. 2004, 52, 2027–2033. [Google Scholar] [CrossRef]
- Wait, J.R. The magnetic dipole antenna immersed in a conducting medium. Proc. IRE 1952, 40, 1244–1245. [Google Scholar] [CrossRef]
- Manteghi, M.; Ibraheem, A.A.Y. On the study of the near-fields of electric and magnetic small antennas in lossy media. IEEE Trans. Antennas Propag. 2014, 62, 6491–6495. [Google Scholar] [CrossRef]
- Nikolayev, D.; Skrivervik, A.K.; Ho, J.S.; Zhadobov, M.; Sauleau, R. Reconfigurable dual-band capsule-conformal antenna array for in-body bioelectronics. IEEE Trans. Antennas Propag. 2022, 70, 3749–3761. [Google Scholar] [CrossRef]
- Sharma, D.; Kanaujia, B.K.; Kaim, V.; Mittra, R.; Arya, R.K.; Matekovits, L. Design and implementation of compact dual-band conformal antenna for leadless cardiac pacemaker system. Sci. Rep. 2022, 12, 3165. [Google Scholar] [CrossRef]
- Matekovits, L.; Mir, F.; Dassano, G.; Peter, I. Deeply implanted conformal antenna for real-time bio-telemetry applications. Sensors 2024, 24, 1170. [Google Scholar] [CrossRef]
- Ketavath, K.N.; Gopi, D.; Rani, S.S. In-vitro test of miniaturized CPW-fed implantable conformal patch antenna at ISM band for biomedical applications. IEEE Access 2019, 7, 43547–43554. [Google Scholar] [CrossRef]
- Nikolayev, D.; Zhadobov, M.; Karban, P.; Sauleau, R. Conformal antennas for miniature in-body devices: The quest to improve radiation performance. URSI Radio Sci. Bull. 2017, 2017, 52–64. [Google Scholar] [CrossRef]
- Das, R.; Yoo, H. A wideband circularly polarized conformal endo-scopic antenna system for high-speed data transfer. IEEE Trans. Antennas Propag. 2017, 65, 2816–2826. [Google Scholar] [CrossRef]
- Rajagopalan, H.; Rahmat-Samii, Y. Wireless medical telemetry characterization for ingestible capsule antenna designs. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1679–1682. [Google Scholar] [CrossRef]
- Faisal, F.; Zada, M.; Ejaz, A.; Amin, Y.; Ullah, S.; Yoo, H. A miniaturized dual-band implantable antenna system for medical applications. IEEE Trans. Antennas Propag. 2020, 68, 1161–1165. [Google Scholar] [CrossRef]
- Shah, I.A.; Zada, M.; Yoo, H. Design and analysis of a compact-sized multiband spiral-shaped implantable antenna for scalp implantable and leadless pacemaker systems. IEEE Trans. Antennas Propag. 2019, 67, 4230–4234. [Google Scholar] [CrossRef]
- Faisal, F.; Zada, M.; Yoo, H.; Mabrouk, I.B.; Chaker, M.; Djerafi, T. An ultra-miniaturized antenna with ultra-wide bandwidth for future cardiac leadless pacemaker. IEEE Trans. Antennas Propag. 2022, 70, 5923–5928. [Google Scholar] [CrossRef]
- Ibraheem, A.A.Y.; Manteghi, M. Performance of an implanted electrically coupled loop antenna inside human body. Prog. Electromagn. Res. 2014, 145, 195–202. [Google Scholar] [CrossRef]
- Jing, D.; Li, H.; Ding, X.; Shao, W.; Xiao, S. Compact and Broadband Circularly Polarized Implantable Antenna for Wireless Implantable Medical Devices. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1236–1240. [Google Scholar] [CrossRef]
- Ramzan, M.; Khaleghi, A.; Fang, X.; Wang, Q.; Neumann, N.; Plettemeier, D. An Ultra-Miniaturized High Efficiency Implanted Spiral Antenna for Leadless Cardiac Pacemakers. IEEE Trans. Biomed. Circuits Syst. 2023, 17, 621–632. [Google Scholar] [CrossRef]
- Fang, X. Investigation of Biomedical Antennas and Path Loss Models for Leadless Cardiac Pacemaker and Wireless Capsule Endoscopy. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2024. [Google Scholar]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.J. Physical limitations of omni-directional antennas. J. Appl. Phys. 1948, 19, 1163–1175. [Google Scholar] [CrossRef]
- Kurup, D.; Vermeeren, G.; Tanghe, E.; Joseph, W.; Martens, L. In-to-out body antenna-independent path loss model for multilayered tissues and heterogeneous medium. Sensors 2014, 15, 408–421. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 3rd ed.; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Castelló-Palacios, S.; Garcia-Pardo, C.; Fornes-Leal, A.; Cardona, N.; Vallés-Lluch, A. Tailor-made tissue phantoms based on acetonitrile solutions for microwave applications up to 18 GHz. IEEE Trans. Microw. Theory Tech. 2016, 64, 3987–3994. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Yoo, H. Scalp-Implantable Antenna Systems for Intracranial Pressure Monitoring. IEEE Trans. Antennas Propag. 2018, 66, 2170–2173. [Google Scholar] [CrossRef]
- Kaim, V.; Kanaujia, B.K.; Kumar, S.; Choi, H.C.; Kim, K.W.; Rambabu, K. Ultra-miniature circularly polarized cpw-fed implantable antenna design and its validation for biotelemetry applications. Sci. Rep. 2020, 10, 6795. [Google Scholar] [CrossRef] [PubMed]
- Usluer, M.; Cetindere, B.; Basaran, S.C. Compact implantable antenna design for mics and ism band biotelemetry applications. Microw. Opt. Technol. Lett. 2020, 62, 1581–1587. [Google Scholar] [CrossRef]
- Zada, M.; Shah, I.A.; Basir, A.; Yoo, H. Ultra-compact implantable antenna with enhanced performance for leadless cardiac pacemaker system. IEEE Trans. Antennas Propag. 2021, 69, 1152–1157. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Chen, K.-W.; Yang, C.-L. Implantable wideband low specific-absorption-rate antenna on a thin flexible substrate. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 1048–1052. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Shah, I.A.; Hayat, S.; Yoo, H. Ultra-Miniaturized Implantable Antenna Enabling Multiband Operation for Diverse Industrial IoMT Devices. IEEE Trans. Antennas Propag. 2024, 72, 1352–1362. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Jung, C.W. Radiation-Pattern Reconfigurable Antenna for Medical Implants in MedRadio Band. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 106–109. [Google Scholar] [CrossRef]
- Shi, J.; Liu, H.; Wang, X.; Zhang, J.; Han, F.; Tang, X.; Wang, J. Miniaturized dual-resonant helix/spiral antenna system at MHz-band for FSK impulse radio intrabody communications. IEEE Trans. Antennas Propag. 2020, 68, 6566–6579. [Google Scholar] [CrossRef]
- Li, R.; Li, B.; Du, G.; Sun, X.; Sun, H. A compact broadband antenna with dual-resonance for implantable devices. Micromachines 2019, 10, 59. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Lin, H.; Juwono, F.H. A novel differentially fed compact dual-band implantable antenna for biotelemetry applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1791–1794. [Google Scholar] [CrossRef]
- Manoufali, M.; Mobashsher, A.T.; Mohammed, B.; Bialkowski, K.; Mills, P.C.; Abbosh, A. Implantable sensor for detecting changes in the loss tangent of cerebrospinal fluid. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lim, E.G.; Leach, M.P.; Wang, Z.; Pei, R.; Jiang, Z.; Huang, Y. A 403 MHz wireless power transfer system with tuned split-ring loops for implantable medical devices. IEEE Trans. Antennas Propag. 2022, 70, 1355–1366. [Google Scholar]
- Manoufali, M.; Bialkowski, K.; Mohammed, B.; Mills, P.C.; Ab Bosh, A.M. Compact implantable antennas for cerebrospinal fluid monitoring. IEEE Trans. Antennas Propag. 2019, 67, 4955–4967. [Google Scholar] [CrossRef]
- Le Trong, T.-A.; Shah, S.I.H.; Shin, G.; Radha, S.M.; Yoon, I.-J. A compact triple-band antenna with a broadside radiation characteristic for head-implantable wireless communications. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 958–962. [Google Scholar] [CrossRef]
- Ganeshwaran, N.; Jeyaprakash, J.K.; Alsath, M.G.N.; Sathyanarayanan, V. Design of a dual-band circular implantable antenna for biomedical applications. IEEE Antennas Wirel. Propag. Lett. 2019, 19, 119–123. [Google Scholar] [CrossRef]
- Shah, I.A.; Zada, M.; Basir, A.; Shah, S.A.A.; Iman, U.R.; Lim, Y.-H.; Yoo, H. Efficient Wirelessly-Powered Biotelemetric System for IoMT-Enabled Leadless Pacemakers in Dynamic Cardiac Environments. IEEE Internet Things J. 2024, 12, 6917–6929. [Google Scholar] [CrossRef]
ISM band | Ref | Vol. (mm3) | Eff. % | Depth (mm) | Measured Atten. in-Body to in-Body (IB2IB) (dB) | Tissue | Band Width (MHz) |
[37] | 24 | N/A | N/A | N/A | Skin | 100 | |
[38] | 43.15 | N/A | N/A | N/A | Skin | 200 | |
[39] | 248.92 | N/A | N/A | N/A | Skin | 240 | |
[40] | 6 | 0.1 | N/A | N/A | Heart | N/A | |
[41] | 80 | 1 | 35 | N/A | 2/3 Muscle | 40 | |
[42] | 48.6 | N/A | 4 | N/A | Heart | 134 | |
T.W | 6.08 | 56 | 100 | 60@ 50 mm | Heart | 100 | |
[43] | 193.2 | 0.44 | 3 | N/A | Skin | 20 | |
MICS band | [44] | 2356.5 | N/A | 50 | N/A | Muscle | 50 |
[45] | 479 | N/A | 3 | N/A | Muscle | 35 | |
[46] | 642.62 | N/A | 4 | N/A | Skin | 50 | |
[47] | 365 | N/A | N/A | N/A | Head | 30 | |
[48] | 967.74 | N/A | 1 | N/A | Muscle | 20 | |
[49] | 204.8 | N/A | 14 | N/A | Brain | 40 | |
[50] | 197.04 | N/A | 4 | N/A | Head | 70 | |
[51] | 797.96 | N/A | 15 | N/A | Muscle | 96 | |
[52] | 47.7 | 0.19 | 55 | N/A | Heart | 84 | |
P.W [30] | 22.20 | 3.3 | 100 | 50@50 mm | Heart | 30 | |
T.W | 45.24 | 28 | 100 | 32@50 mm | Heart | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Li, Z.; Ramzan, M.; Neumann, N.; Plettemeier, D. Design and In Vivo Measurement of Miniaturized High-Efficient Implantable Antennas for Leadless Cardiac Pacemaker. Appl. Sci. 2025, 15, 10495. https://doi.org/10.3390/app151910495
Fang X, Li Z, Ramzan M, Neumann N, Plettemeier D. Design and In Vivo Measurement of Miniaturized High-Efficient Implantable Antennas for Leadless Cardiac Pacemaker. Applied Sciences. 2025; 15(19):10495. https://doi.org/10.3390/app151910495
Chicago/Turabian StyleFang, Xiao, Zhengji Li, Mehrab Ramzan, Niels Neumann, and Dirk Plettemeier. 2025. "Design and In Vivo Measurement of Miniaturized High-Efficient Implantable Antennas for Leadless Cardiac Pacemaker" Applied Sciences 15, no. 19: 10495. https://doi.org/10.3390/app151910495
APA StyleFang, X., Li, Z., Ramzan, M., Neumann, N., & Plettemeier, D. (2025). Design and In Vivo Measurement of Miniaturized High-Efficient Implantable Antennas for Leadless Cardiac Pacemaker. Applied Sciences, 15(19), 10495. https://doi.org/10.3390/app151910495