Thermal Imaging-Based Defect Detection Method for Aluminum Foil Sealing Using EAC-Net
Abstract
1. Introduction
- An enhanced EfficientNet-B0 model is proposed to improve task adaptability by addressing the uneven heat distribution and blurry boundaries in thermal images of aluminum foil sealing. Specifically, the model incorporates Multi-scale Atrous Convolution and Channel–Spatial Attention Mixing with Channel Shuffle modules. The multi-scale atrous convolution improves sensitivity to defect regions across spatial sizes—from small, localized anomalies, for example, minor cold spots and asymmetric thermal footprints, to extended thermal deviations, for example, underheating or overheating over a large area of aluminum foil—and across contrast levels, from weak temperature differences near the background to strong, well-defined thermal responses. The channel and spatial attention mixing with channel shuffle further emphasizes seal-relevant areas while suppressing backgrounds. These effects are verified by ablation against a single-scale baseline, in which removing either component reduces accuracy and precision, and by Grad-CAM, which shows more concentrated, higher-intensity activations within the annotated sealing region and fewer background activations.
- An attention module named CSAMix is designed, which integrates both channel attention and spatial attention mechanisms by introducing a channel shuffling strategy. This module improves the efficiency of information exchange across feature dimensions, enhances the representation of regional thermal features, strengthens the focus on key thermal areas, and increases the robustness of the model.
- The proposed EAC-Net model was verified on thermal images in the context of aluminum foil sealing. The experimental results verify that the proposed method achieves higher detection accuracy and greater stability while maintaining higher efficiency when compared to existing methods.
2. Related Work
2.1. EfficientNet
2.2. ASPP Module
2.3. CBAM Module
3. Proposed Method
3.1. EAC-Net Structure
3.2. CSAMix Module
4. Analysis and Discussion of Experimental Results
4.1. Experimental Platform and Dataset
4.2. Experimental Setup
4.3. Experimental Results and Analysis
4.3.1. Evaluation Metrics
4.3.2. Comparative Experiment
4.3.3. Ablation Study
4.4. Discussion
4.4.1. Robustness Evaluation Under Gaussian Noise Perturbation
4.4.2. Analysis of Discriminative Feature Localization Through Grad-CAM
4.4.3. Analysis of Applicability to Different Defect Types
4.4.4. Feasibility Analysis of Real-Time Industrial Deployment
4.4.5. Safety and Reliability Considerations in Industrial Deployment
4.4.6. Conceptual Comparative Analysis of Physics-Based, Hybrid, and Data-Driven TNDT Approaches
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ELM | Extreme Learning Machine |
SVM | Support Vector Machine |
CSAMix | Channel–Spatial Attention Mixing with Channel Shuffle |
MBConv | Mobile Inverted Bottleneck Convolutions |
DS Conv | Depthwise Separable Convolution |
SE | Squeeze-and-Excitation |
DW Conv | Depthwise Convolution |
PW Conv | Pointwise Convolution |
BN | Batch Normalization |
FC | Fully Connected |
ASPP | Atrous Spatial Pyramid Pooling |
ConvSPP | Convolutional Spatial Pyramid Pooling |
CBAM | Convolutional Block Attention Module |
CAM | Channel Attention Module |
SAM | Spatial Attention Module |
MLP | Multi-Layer Perceptron |
EAC-Net | EfficientNet with Atrous Spatial Pyramid Pooling and Channel–Spatial Attention Mixing with Channel Shuffle |
TPR | True-Positive Rate |
TNDT | Thermographic Non-Destructive Testing |
Grad-CAM | Gradient-Weighted Class Activation Mapping |
References
- Alamri, M.S.; Qasem, A.A.A.; Mohamed, A.A.; Hussain, S.; Ibraheem, M.A.; Shamlan, G.; Alqah, H.A.; Qasha, A.S. Food packaging’s materials: A food safety perspective. Saudi J. Biol. Sci. 2021, 28, 4490–4499. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G. Pharmaceutical drug packaging and traceability: A comprehensive review. Univers. J. Pharm. Pharmacol. 2023, 2, 19–25. [Google Scholar] [CrossRef]
- Ren, Z.; Fang, F.; Yan, N.; Wu, Y. State of the Art in Defect Detection Based on Machine Vision. Int. J. Precis. Eng. Manuf.-Green. Technol. 2022, 9, 661–691. [Google Scholar] [CrossRef]
- Sundaram, S.; Zeid, A. Artificial Intelligence-Based Smart Quality Inspection for Manufacturing. Micromachines 2023, 14, 570. [Google Scholar] [CrossRef]
- Saberironaghi, A.; Ren, J.; El-Gindy, M. Defect Detection Methods for Industrial Products Using Deep Learning Techniques: A Review. Algorithms 2023, 16, 95. [Google Scholar] [CrossRef]
- Guillot, V. Infrared Thermography For Seal Defects Detection On Packaged Products: Unbalanced Machine Learning Classification With Iterative Digital Image Restoration. ELCVIA Electron. Lett. Comput. Vis. Image Anal. 2023, 22, 35–51. [Google Scholar] [CrossRef]
- Hou, F.; Zhang, Y.; Zhou, Y.; Zhang, M.; Lv, B.; Wu, J. Review on infrared imaging technology. Sustainability 2022, 14, 11161. [Google Scholar] [CrossRef]
- Pakarinen, T.; Joutsen, A.; Oksala, N.; Vehkaoja, A. Assessment of chronic limb threatening ischemia using thermal imaging. J. Therm. Biol. 2023, 112, 103467. [Google Scholar] [CrossRef]
- Gupta, T.; Sreedevi, I.; Jindal, R. Segmenting hotspots from medical thermal images using Density-based modified FC-PcFS with spatial information. Quant. InfraRed Thermogr. J. 2024, 22, 368–404. [Google Scholar] [CrossRef]
- Jeffali, F.; Ouariach, A.; El Kihel, B.; Nougaoui, A. Diagnosis of three-phase induction motor and the impact on the kinematic chain using non-destructive technique of infrared thermography. Infrared Phys. Technol. 2019, 102, 102970. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, Y.; Hu, S.; Wang, H.; Zhang, Y.; Ming, W. Progress in active infrared imaging for defect detection in the renewable and electronic industries. Sensors 2023, 23, 8780. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W.; Zhang, Y. Aluminum foil seal sealing property detection method based on thermal image feature extraction. Chin. J. Electron. Devices 2019, 42, 551–556. [Google Scholar] [CrossRef]
- Zhao, S.; Li, W.; Shi, C. The research of tightness detection method of aluminum foil seal based on optimized BP neural network algorithm. J. Liaoning Univ. Pet. Chem. Technol. 2019, 39, 97–100. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, K.; Xu, J. An Improved MB-LBP Defect Recognition Approach for the Surface of Steel Plates. Appl. Sci. 2019, 9, 4222. [Google Scholar] [CrossRef]
- Fejér, A.; Nagy, Z.; Benois-Pineau, J.; Szolgay, P.; de Rugy, A.; Domenger, J.-P. Implementation of Scale Invariant Feature Transform detector on FPGA for low-power wearable devices for prostheses control. Int. J. Circuit Theory Appl. 2021, 49, 2255–2273. [Google Scholar] [CrossRef]
- Chan, S.; Li, S.; Zhang, H.; Zhou, X.; Mao, J.; Hong, F. Feature optimization-guided high-precision and real-time metal surface defect detection network. Sci. Rep. 2024, 14, 31941. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Mi, C.; Wu, Z.; Lu, K.; Long, H.; Pan, B.; Li, D.; Zhang, J.; Chen, P.; Wang, B. A Real-Time Steel Surface Defect Detection Approach With High Accuracy. IEEE Trans. Instrum. Meas. 2022, 71, 5005610. [Google Scholar] [CrossRef]
- Liu, H.; Bao, C.; Xie, T.; Gao, S.; Song, X.; Wang, W. Research on the intelligent diagnosis method of the server based on thermal image technology. Infrared Phys. Technol. 2019, 96, 390–396. [Google Scholar] [CrossRef]
- Chen, C.; Chandra, S.; Han, Y.; Seo, H. Deep learning-based thermal image analysis for pavement defect detection and classification considering complex pavement conditions. Remote Sens. 2021, 14, 106. [Google Scholar] [CrossRef]
- Low, E.S.; Ong, P.; Sim, J.Q.; Sia, C.K.; Ismon, M. Integrating deep learning with non-destructive thermal imaging for precision guava ripeness determination. J. Sci. Food Agric. 2024, 104, 7843–7853. [Google Scholar] [CrossRef]
- Pak, P.; Ogoke, F.; Polonsky, A.; Garland, A.; Bolintineanu, D.S.; Moser, D.R.; Arnhart, M.; Madison, J.; Ivanoff, T.; Mitchell, J.; et al. ThermoPore: Predicting part porosity based on thermal images using deep learning. Addit. Manuf. 2024, 95, 104503. [Google Scholar] [CrossRef]
- Cui, C.; Zan, T.; Ma, S.; Sun, T.; Lu, W.; Gao, X. Thermal image-driven thermal error modeling and compensation in CNC machine tools based on deep attentional residual network. Int. J. Adv. Manuf. Technol. 2024, 134, 3153–3169. [Google Scholar] [CrossRef]
- Liu, X.; Tian, M.; Wang, Y. Mechanical strength recognition and classification of thermal protective fabric images after thermal aging based on deep learning. Int. J. Occup. Saf. Ergon. 2024, 30, 765–773. [Google Scholar] [CrossRef]
- Reza, M.N.; Ali, M.R.; Samsuzzaman; Kabir, M.S.N.; Karim, M.R.; Ahmed, S.; Kyoung, H.; Kim, G.; Chung, S.-O. Thermal imaging and computer vision technologies for the enhancement of pig husbandry: A review. J. Anim. Sci. Technol. 2024, 66, 31–56. [Google Scholar] [CrossRef]
- Wanqing, L.; Qinghua, Z.; Xiaowei, Z. Deep learning based heat sealing quality inspection. In Proceedings of the 2021 9th International Symposium on Next Generation Electronics (ISNE), Changsha, China, 9–11 July 2021; pp. 1–4. [Google Scholar]
- Dell’Avvocato, G.; Rashkovets, M.; Mancini, E.; Contuzzi, N.; Casalino, G.; Palumbo, D.; Galietti, U. Innovative non-destructive thermographic evaluation of mechanical properties in dissimilar aluminium probeless friction stir spot welded (P-FSSW) joints. Eng. Fail. Anal. 2025, 177, 109675. [Google Scholar] [CrossRef]
- Wang, D.; Yi, Q.; Liu, Y.; Lu, R.; Tian, G. Advanced detection and reconstruction of welding defects in irregular geometries using eddy current pulsed thermography. NDT E Int. 2025, 154, 103398. [Google Scholar] [CrossRef]
- Simmen, K.; Buch, B.; Breitbarth, A.; Notni, G. Non-destructive inspection system for MAG welding processes by combining multimodal data. Quant. InfraRed Thermogr. J. 2021, 18, 1–17. [Google Scholar] [CrossRef]
- Bereciartua-Perez, A.; Duro, G.; Echazarra, J.; González, F.J.; Serrano, A.; Irizar, L. Deep Learning-Based Method for Accurate Real-Time Seed Detection in Glass Bottle Manufacturing. Appl. Sci. 2022, 12, 11192. [Google Scholar] [CrossRef]
- Lema, D.G.; Usamentiaga, R.; García, D.F. Quantitative comparison and performance evaluation of deep learning-based object detection models on edge computing devices. Integration 2024, 95, 102127. [Google Scholar] [CrossRef]
- Shin, D.-J.; Kim, J.-J. A Deep Learning Framework Performance Evaluation to Use YOLO in Nvidia Jetson Platform. Appl. Sci. 2022, 12, 3734. [Google Scholar] [CrossRef]
- Choe, C.; Choe, M.; Jung, S. Run Your 3D Object Detector on NVIDIA Jetson Platforms:A Benchmark Analysis. Sensors 2023, 23, 4005. [Google Scholar] [CrossRef]
- Ul Amin, S.; Sibtain Abbas, M.; Kim, B.; Jung, Y.; Seo, S. Enhanced anomaly detection in pandemic surveillance videos: An attention approach with EfficientNet-B0 and CBAM integration. IEEE Access 2024, 12, 162697–162712. [Google Scholar] [CrossRef]
- Abd El-Ghany, S.; Mahmood, M.A.; Abd El-Aziz, A.A. Adaptive dynamic learning rate optimization technique for colorectal cancer diagnosis based on histopathological image using EfficientNet-B0 deep learning model. Electronics 2024, 13, 3126. [Google Scholar] [CrossRef]
- Sun, X.; Huo, H. Corn leaf disease recognition based on improved EfficientNet. IET Image Process 2025, 19, e13288. [Google Scholar] [CrossRef]
- Zhang, Y.-D.; Pei, Y.; Górriz, J.M. SCNN: A explainable swish-based CNN and mobile app for COVID-19 diagnosis. Mob. Netw. Appl. 2023, 28, 1936–1949. [Google Scholar] [CrossRef]
- Dubey, S.R.; Singh, S.K.; Chaudhuri, B.B. Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing 2022, 503, 92–108. [Google Scholar] [CrossRef]
- Tan, H.; Ou, D.; Zhang, L.; Shen, G.; Li, X.; Ji, Y. Infrared Sensation-Based Salient Targets Enhancement Methods in Low-Visibility Scenes. Sensors 2022, 22, 5835. [Google Scholar] [CrossRef]
- Zou, Y.; Fan, Y. An Infrared Image Defect Detection Method for Steel Based on Regularized YOLO. Sensors 2024, 24, 1674. [Google Scholar] [CrossRef]
- Sugai, T.; Takano, K.; Ouchi, S.; Ito, S. Introducing Swish and Parallelized Blind Removal Improves the Performance of a Convolutional Neural Network in Denoising MR Images. Magn. Reson. Med. Sci. 2021, 20, 410–424. [Google Scholar] [CrossRef]
- Cai, B.; Xu, Q.; Yang, C.; Lu, Y.; Ge, C.; Wang, Z.; Liu, K.; Qiu, X.; Chang, S. Spine MRI image segmentation method based on ASPP and U-Net network. Math. Biosci. Eng. 2023, 20, 15999–16014. [Google Scholar] [CrossRef]
- Ma, R.; Wang, J.; Zhao, W.; Guo, H.; Dai, D.; Yun, Y.; Li, L.; Hao, F.; Bai, J.; Ma, D. Identification of maize seed varieties using MobileNetV2 with improved attention mechanism CBAM. Agriculture 2023, 13, 11. [Google Scholar] [CrossRef]
- Jian, M.; Huang, H.; Zhang, H.; Wang, R.; Li, X.; Yu, H. CSSANet: A channel shuffle slice-aware network for pulmonary nodule detection. Neurocomputing 2025, 615, 128827. [Google Scholar] [CrossRef]
- Li, J.; Yang, R.; Cao, X.; Zeng, B.; Shi, Z.; Ren, W.; Cao, X. Inception MLP: A vision MLP backbone for multi-scale feature extraction. Inf. Sci. 2025, 701, 121865. [Google Scholar] [CrossRef]
- Mariani, A.; Malucelli, G. Insights into induction heating processes for polymeric materials: An overview of the mechanisms and current applications. Energies 2023, 16, 4535. [Google Scholar] [CrossRef]
- Zhong, M.; Li, Y.; Gao, Y. Research on small-target detection of flax pests and diseases in natural environment by integrating similarity-aware activation module and bidirectional feature pyramid network module features. Agronomy 2025, 15, 187. [Google Scholar] [CrossRef]
- Suhng, B.; Lee, W. Fast Zernike moment computation using PyTorch in a multiple-GPU environment. J. Electr. Eng. Technol. 2025, 20, 845–854. [Google Scholar] [CrossRef]
- Robles-Guerrero, A.; Gómez-Jiménez, S.; Saucedo-Anaya, T.; López-Betancur, D.; Navarro-Solís, D.; Guerrero-Méndez, C. Convolutional neural networks for real time classification of beehive acoustic patterns on constrained devices. Sensors 2024, 24, 6384. [Google Scholar] [CrossRef]
- Hicks, S.A.; Strümke, I.; Thambawita, V.; Hammou, M.; Riegler, M.A.; Halvorsen, P.; Parasa, S. On evaluation metrics for medical applications of artificial intelligence. Sci. Rep. 2022, 12, 5979. [Google Scholar] [CrossRef]
- Pozzer, S.; Rezazadeh Azar, E.; Dalla Rosa, F.; Chamberlain Pravia Zacarias, M. Semantic Segmentation of Defects in Infrared Thermographic Images of Highly Damaged Concrete Structures. J. Perform. Constr. Facil. 2021, 35, 04020131. [Google Scholar] [CrossRef]
- Tingting, Z.; Xunru, L.; Bohuan, X.; Xiaoyu, T. An in-vehicle real-time infrared object detection system based on deep learning with resource-constrained hardware. Intell. Robot. 2024, 4, 276–292. [Google Scholar] [CrossRef]
- Guo, C.; Ren, K.; Chen, Q. YOLO-SGF: Lightweight network for object detection in complex infrared images based on improved YOLOv8. Infrared Phys. Technol. 2024, 142, 105539. [Google Scholar] [CrossRef]
- Glowacz, A. Thermographic Fault Diagnosis of Shaft of BLDC Motor. Sensors 2022, 22, 8537. [Google Scholar] [CrossRef]
- Pan, P.; Zhang, R.; Zhang, Y.; Li, H. Detecting Internal Defects in FRP-Reinforced Concrete Structures through the Integration of Infrared Thermography and Deep Learning. Materials 2024, 17, 3350. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.F.D.d.; Canuto, J.L.d.S.; Souza, R.C.T.d.; Aylon, L.B.R. Thermographic image-based diagnosis of failures in electrical motors using deep transfer learning. Eng. Appl. Artif. Intell. 2023, 126, 107106. [Google Scholar] [CrossRef]
- Li, J.; Zheng, W.X.; Yang, L. Fast converging algorithm for blind equalization with gaussian and impulsive noises. IEEE Trans. Signal Process 2025, 73, 372–385. [Google Scholar] [CrossRef]
- Wu, L.; Chen, H.; Li, P.; Yang, K. A novel ensemble approach for rib fracture detection and visualization using CNNs and Grad-CAM. Ann. Ital. Chir. 2025, 96, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Gopalan, K.; Srinivasan, S.; Pragya; Singh, M.; Mathivanan, S.K.; Moorthy, U. Corn leaf disease diagnosis: Enhancing accuracy with resnet152 and grad-cam for explainable AI. BMC Plant Biol. 2025, 25, 440. [Google Scholar] [CrossRef]
Models | FLOPs (G) | Params (×106) | Size (MB) | Time (ms) | Acc (%) | P (%) |
---|---|---|---|---|---|---|
EfficientNet-B0 | 0.21 | 4.02 | 15.33 | 16.90 | 97.19 | 97.21 |
MobileNetV2 | 0.17 | 2.23 | 8.52 | 12.81 | 95.31 | 95.46 |
MobileNetV3 | 0.12 | 4.21 | 16.07 | 12.64 | 96.88 | 97.11 |
ShuffleNetV2 | 0.16 | 2.49 | 9.49 | 13.28 | 96.54 | 96.76 |
GoogleNet | 0.77 | 5.61 | 21.39 | 17.33 | 96.67 | 96.86 |
ResNet101 | 4.01 | 42.52 | 162.19 | 25.09 | 97.81 | 97.93 |
RegNetX | 0.42 | 6.59 | 25.15 | 19.98 | 98.12 | 98.25 |
EAC-Net | 0.25 | 4.40 | 16.77 | 20.62 | 99.06 | 99.07 |
Label | Models | FLOPs (G) | Params (×106) | Size (MB) |
---|---|---|---|---|
M1 | EfficientNet-B0 | 0.21 | 4.02 | 15.33 |
M2 | EfficientNet-B0 + ConvSPP | 0.23 | 4.24 | 16.16 |
M3 | EfficinetNet-B0 + ASPP | 0.23 | 4.24 | 16.16 |
M4 | EfficinetNet-B0 + CBAM | 0.21 | 4.02 | 15.33 |
M5 | EfficinetNet-B0 + CSAMix | 0.23 | 4.18 | 15.94 |
M6 | EfficientNet-B0 + ConvSPP + CBAM | 0.24 | 4.34 | 16.34 |
M7 | EfficientNet-B0 + ASPP + CBAM | 0.24 | 4.34 | 16.34 |
Proposed | EAC-Net | 0.25 | 4.40 | 16.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Z.; Chen, Y.; Yu, Z.; Qian, Y.; Zhao, L. Thermal Imaging-Based Defect Detection Method for Aluminum Foil Sealing Using EAC-Net. Appl. Sci. 2025, 15, 9964. https://doi.org/10.3390/app15189964
Hao Z, Chen Y, Yu Z, Qian Y, Zhao L. Thermal Imaging-Based Defect Detection Method for Aluminum Foil Sealing Using EAC-Net. Applied Sciences. 2025; 15(18):9964. https://doi.org/10.3390/app15189964
Chicago/Turabian StyleHao, Zhibo, Yitao Chen, Zhongqi Yu, Yongjin Qian, and Leping Zhao. 2025. "Thermal Imaging-Based Defect Detection Method for Aluminum Foil Sealing Using EAC-Net" Applied Sciences 15, no. 18: 9964. https://doi.org/10.3390/app15189964
APA StyleHao, Z., Chen, Y., Yu, Z., Qian, Y., & Zhao, L. (2025). Thermal Imaging-Based Defect Detection Method for Aluminum Foil Sealing Using EAC-Net. Applied Sciences, 15(18), 9964. https://doi.org/10.3390/app15189964