Development of Low-Carbon Autoclaved Aerated Concrete Using an Alkali-Activated Ground Granulated Blast Furnace Slag and Calcium Carbide Slag
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
2.3.1. Initial Mixture Product
2.3.2. Intermediate Green Product
2.3.3. Autoclaved Product
3. Results and Discussion
3.1. Initial Mixture Product
3.2. Intermediate Green Product
3.3. Autoclaved Product
3.3.1. Compressive Strength, X-Ray Diffraction, and Density
3.3.2. Thermal Conductivity
3.3.3. Life Cycle Assessment
4. Conclusions
- The substitution of OPC with BFS, when activated with lime, yields AAC with comparable workability and foaming, as evidenced by consistent flow values, foaming expansion, and internal temperature profiles across all formulations.
- BFS-based mixtures incorporating BFS demonstrated enhanced green compressive strength, reaching levels similar to or higher than the reference AAC mix.
- After hydrothermal curing, AAC samples made with BFS and CCS achieved compressive strength values above the minimum threshold for load-bearing masonry units (≥1.5 MPa), confirming the feasibility of producing structural-grade AAC without OPC. Notably, these mixtures also developed tobermorite contents comparable to that of the reference mix, highlighting the effectiveness of lime activation and CCS addition in promoting the formation of strength-giving phases.
- The thermal conductivity of the AAC samples ranged between 0.111 and 0.119 W/(m·K), with no significant differences observed among the different formulations. These values follow the same trend as density, which remained between 420 and 441 kg/m3.
- The use of BFS and CCS did not lead to any detrimental effects in terms of pore structure or final mechanical and thermal performance. On the contrary, it presents a viable pathway for reducing the carbon footprint associated with AAC production, achieving reductions of up to 48%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAC | Autoclaved aerated concrete |
OPC | Ordinary Portland cement |
BFS | Ground granulated blast furnace slag |
CCS | Calcium carbide slag |
LCA | Life cycle assessment |
GAAC-CW | Green autoclaved aerated concrete cutting waste |
XRF | X-ray fluorescence |
ACC | Aerated cellular concrete |
ALC | Autoclaved lightweight concrete |
References
- Ahmed, A. Sustainable Construction Using Autoclaved Aerated Concrete (Aircrete) Blocks. Res. Dev. Mater. Sci. 2017, 1, 63–66. [Google Scholar] [CrossRef]
- Kamal, M.A. Analysis of autoclaved aerated concrete (AAC) blocks with reference to its potential and sustainability. J. Build. Mater. Struct. 2020, 7, 76–86. [Google Scholar] [CrossRef]
- Schreiner, J.; Jansen, D.; Ectors, D.; Goetz-Neunhoeffer, F.; Neubauer, J.; Volkmann, S. Volkmann, New analytical possibilities for monitoring the phase development during the production of autoclaved aerated concrete. Cem. Concr. Res. 2018, 107, 247–252. [Google Scholar] [CrossRef]
- NBSIR 87-3670; A Review of Autoclaved Aerated Concrete Products. NBS Publisher: Chicago, IL, USA, 1988.
- Bernard, V.A.R.; Renuka, S.M.; Avudaiappan, S.; Umarani, C.; Amran, M.; Guindos, P.; Fediuk, R.; Vatin, N.I. Performance Investigation of the Incorporation of Ground Granulated Blast Furnace Slag with Fly Ash in Autoclaved Aerated Concrete. Crystals 2022, 12, 1024. [Google Scholar] [CrossRef]
- Mostafa, N.Y. Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete. Cem. Concr. Res. 2005, 35, 1349–1357. [Google Scholar] [CrossRef]
- Güçlüer, K.; Demir, İ. Utilization Of Zeolite And Blast Furnace Slag For The Production Of Autoclaved Aerated Concrete. Kadir Güçlüer J. Eng. Res. Appl. 2018, 8, 43–46. [Google Scholar] [CrossRef]
- Huang, X.Y.; Ni, W.; Cui, W.H.; Wang, Z.J.; Zhu, L.P. Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag. Constr. Build. Mater. 2012, 27, 1–5. [Google Scholar] [CrossRef]
- Kurama, H.; Topçu, I.; Karakurt, C. Properties of the autoclaved aerated concrete produced from coal bottom ash. J. Mech. Work. Technol. 2009, 209, 767–773. [Google Scholar] [CrossRef]
- El-Didamony, H.; Amer, A.A.; Mohammed, M.S.; El-Hakim, M.A. Fabrication and properties of autoclaved aerated concrete containing agriculture and industrial solid wastes. J. Build. Eng. 2019, 22, 528–538. [Google Scholar] [CrossRef]
- Güçlüer, K.; Demir, İ. Utilization of metakaolin and blast furnace slag in autoclaved aerated concrete production. Rev. Rom. Mater. Rom. J. Mater. 2019, 49, 388–393. [Google Scholar]
- Yuan, B.; Straub, C.; Segers, S.; Yu, Q.; Brouwers, H. Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete. Ceram. Int. 2017, 43, 6039–6047. [Google Scholar] [CrossRef]
- Kim, M.S.; Jun, Y.; Lee, C.; Oh, J.E. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cem. Concr. Res. 2013, 54, 208–214. [Google Scholar] [CrossRef]
- Cai, L.; Tang, T.; Liu, M.; Xie, D. Comparative study of carbide slag autoclaved aerated concrete (AAC) manufactured under thermal oven and microwave pre-curing process: Foaming course, rough body strength and physic-mechanical properties. Constr. Build. Mater. 2020, 236, 117550. [Google Scholar] [CrossRef]
- Sun, D.; Yin, F.; Deng, Y.; Liu, K.; Tang, J.; Shen, C.; Sun, Y.; Wang, A.; Huang, N.; Hu, C. Utilization of carbide slag in autoclaved aerated concrete (CS-AAC) and optimization: Foaming, hydration process, and physic-mechanical properties. Case Stud. Constr. Mater. 2023, 19, e02354. [Google Scholar] [CrossRef]
- AENOR. 772-1, UNE EN 772-1; Methods of Test for Masonry Units. Part 1: Determination of Compressive Strength. AENOR: Madrid, Spain, 2011.
- AENOR. 771-4, UNE EN 771-4; Specification for Masonry Units Part 4: Autoclaved Aerated Concrete Masonry Units, 17. AENOR: Madrid, Spain, 2011.
- AENOR, UNE EN 12664; Thermal Performance of Building Materials and Products. Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods. Dry and Moist Products of Medium and Low Thermal Resistance. AENOR: Madrid, Spain, 2002.
- ISO-14040; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneve, Switzerland, 1997.
- Chen, Y.L.; Chang, J.E.; Lai, Y.C.; Chou, M.I.M. A comprehensive study on the production of autoclaved aerated concrete: Effects of silica-lime-cement composition and autoclaving conditions. Constr. Build. Mater. 2017, 153, 622–629. [Google Scholar] [CrossRef]
- Kunchariyakun, K.; Asavapisit, S.; Sombatsompop, K. Properties of autoclaved aerated concrete incorporating rice husk ash as partial replacement for fine aggregate. Cem. Concr. Compos. 2015, 55, 11–16. [Google Scholar] [CrossRef]
- Jeong, Y.; Oh, J.E.; Jun, Y.; Park, J.; Ha, J.H.; Sohn, S.G. Influence of four additional activators on hydrated-lime [Ca(OH)2] activated ground granulated blast-furnace slag. Cem. Concr. Compos. 2016, 65, 1–10. [Google Scholar] [CrossRef]
- Kang, S.H.; Kwon, Y.H.; Hong, S.G.; Chun, S.; Moon, J. Hydrated lime activation on byproducts for eco-friendly production of structural mortars. J. Clean. Prod. 2019, 231, 1389–1398. [Google Scholar] [CrossRef]
- Li, L.; Xie, J.; Zhang, B.; Feng, Y.; Yang, J. A state-of-the-art review on the setting behaviours of ground granulated blast furnace slag- and metakaolin-based alkali-activated materials. Constr. Build. Mater. 2023, 368, 130389. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, M.; Yang, K.; Yu, L.; Yang, C. Setting behaviours and early-age microstructures of alkali-activated ground granulated blast furnace slag (GGBS) from different regions in China. Cem. Concr. Compos. 2020, 114, 103782. [Google Scholar] [CrossRef]
- Tänzer, R.; Buchwald, A.; Stephan, D. Effect of slag chemistry on the hydration of alkali-activated blast-furnace slag. Mater. Struct. Constr. 2014, 48, 629–641. [Google Scholar] [CrossRef]
- AENOR, UNE-EN 771-1:2011+A1:2016; Specification for Masonry Units—Part 1: Clay Masonry Units. 27. AENOR: Madrid, Spain, 2016.
- Reyes-Quijije, M.; Rocha-Tamayo, A.; García-Troncoso, N.; Baykara, H.; Cornejo, M.H. Preparation, Characterization, and Life Cycle Assessment of Aerated Concrete Blocks: A Case Study in Guayaquil City, Ecuador. Appl. Sci. 2022, 12, 43–46. [Google Scholar] [CrossRef]
Oxide (wt. %) | OPC | CCS | BFS J | BFS C + I | GAAC-CW |
---|---|---|---|---|---|
SiO2 | 17.36 | 1.71 | 30.83 | 35.40 | 30.09 |
Al2O3 | 4.63 | 0.86 | 13.58 | 9.84 | 4.03 |
Fe2O3 | 4.03 | 0.10 | 0.87 | 1.04 | 2.25 |
CaO | 60.61 | 67.67 | 46.58 | 40.94 | 36.2 |
MgO | 1.29 | 0.14 | 4.26 | 5.85 | 0.649 |
Na2O | 0.32 | - | 0.17 | 0.24 | 0.703 |
K2O | 1.06 | - | 0.35 | 0.99 | 1.39 |
SO3 | 3.54 | 3.97 | 1.63 | 1.17 | 4.59 |
TiO2 | 0.31 | 0.02 | 0.65 | 1.63 | - |
P2O5 | 0.10 | - | 0.03 | 0.02 | 0.07 |
MnO2 | 0.13 | - | 0.16 | 1.68 | - |
ZnO | 0.04 | - | 0.01 | - | 0.02 |
Cr2O3 | 0.02 | 0.01 | 0.02 | 0.02 | - |
NiO | 0.01 | - | 0.01 | - | 0.01 |
CuO | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
SrO | 0.05 | 0.10 | 0.07 | 0.09 | 0.03 |
ZrO2 | 0.04 | - | 0.04 | 0.05 | 0.01 |
BaO | 0.03 | 0.03 | 0.06 | 0.12 | 0.04 |
Cl- | 0.04 | 0.06 | - | - | 0.04 |
H2O | 1.22 | 22.4 | - | - | 14.09 |
L.O.I. | 5.16 | 2.87 | 0.62 | 0.45 | 5.51 |
Mix | OPC (wt.%) | Lime (wt.%) | CCS (wt.%) | BFS J (wt.%) | BFS C + I (wt.%) | Sand (wt.%) | Gypsum (wt.%) | GAAC-CW (wt.%) |
---|---|---|---|---|---|---|---|---|
Control AAC | 28 | 9 | 0 | 0 | 0 | 44 | 4 | 15 |
BFS J | - | 9 | - | 28 | - | 44 | 4 | 15 |
BFS C + I | - | 9 | - | - | 28 | 44 | 4 | 15 |
BFS C + I—CCS | 0 | 9 | 9 | 0 | 23 | 41 | 4 | 14 |
BFS J—CCS | 0 | 9 | 9 | 10 | 0 | 50 | 5 | 17 |
Mix | Flow, Time Zero (mm) | Flow After Ten Minutes (mm) |
---|---|---|
Control AAC | 341 | 340 |
BFS J | 330 | 332 |
BFS C + I | 338 | 341 |
BFS C + I—CCS | 339 | 340 |
BFS J—CCS | 340 | 342 |
Mix | Pre-Curing | After the Hydrothermal Treatment | ||||
---|---|---|---|---|---|---|
Portlandite (%) | Quartz (%) | Tobermorite (%) | Portlandite (%) | Quartz (%) | Tobermorite (%) | |
Control AAC | 9.0 | 29.2 | 0.0 | 0.2 | 16.7 | 40.6 |
BFS C + I | 1.4 | 29.5 | 0.0 | 0.2 | 21.9 | 28.5 |
BFS J | 3.6 | 29.2 | 0.0 | 1.3 | 17.3 | 27.8 |
BFS C + I—CCS | 8.3 | 30.6 | 0.0 | 0.7 | 14.5 | 39.1 |
BFS J—CCS | 7.9 | 28.5 | 0.0 | 0.8 | 18.2 | 36.8 |
Mix | Compressive Strength (MPa) | Apparent Density [kg/m3] | Thermal Conductivity [W/(m K)] |
---|---|---|---|
Control AAC | 2.51 | 425 | 0.111 |
BFS C + I | 1.52 | 428 | 0.119 |
BFS J | 1.33 | 433 | 0.112 |
BFS C + I—CCS | 2.27 | 420 | 0.113 |
BFS J—CCS | 2.49 | 441 | 0.119 |
Impact Category [EF 3.1] | Unit | AAC Control | AAC BFS J—CCS | AAC BFS C + I—CCS |
---|---|---|---|---|
Acidification | mol H+ eq | 0.43 | 0.22 | 0.22 |
Water resource depletion | m3 world eq. deprived | 48.33 | 39.99 | 38.38 |
Ozone depletion | kg CFC-11 eq | 2.67 × 10−6 | 2.28 × 10−6 | 2.27 × 10−6 |
Fossil resource depletion | MJ | 1628.24 | 1208.32 | 1198.79 |
Mineral and metal resource depletion | kg Sb eq | 2.00 × 10−4 | 1.00 × 10−4 | 1.00 × 10−4 |
Climate change (total) | kg CO2 eq | 206.13 | 107.62 | 107.39 |
Freshwater ecotoxicity (total) | CTUe | 163.59 | 104.28 | 107.95 |
Eutrophication, freshwater | kg P eq | 2.83 × 10−2 | 1.82 × 10−2 | 1.80 × 10−2 |
Eutrophication, marine | kg N eq | 1.14 × 10−1 | 5.09 × 10−2 | 4.89 × 10−2 |
Eutrophication, terrestrial | mol N eq | 1.19 | 0.51 | 0.49 |
Photochemical ozone formation, human health | kg NMVOC eq | 0.41 | 0.22 | 0.21 |
Particulate matter | Disease incidence | 3.42 × 10−6 | 2.28 × 10−6 | 2.10 × 10−6 |
Ionizing radiation, human health | kBq U235 eq | 10.97 | 7.92 | 7.92 |
Human toxicity, cancer effects (total) | CTUh | 1.22 × 10−7 | 5.42 × 10−8 | 5.43 × 10−8 |
Human toxicity, non-cancer effects (total) | CTUh | 9.88 × 10−7 | 3.67 × 10−7 | 3.60 × 10−7 |
Land use | pt (points) | 377.65 | 303.01 | 267.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, C.; Gómez, P.; Martí, F.; Srivastava, S.; Sanchez, M.; Fernandez, F.; Beleña, I.; Hernández, M. Development of Low-Carbon Autoclaved Aerated Concrete Using an Alkali-Activated Ground Granulated Blast Furnace Slag and Calcium Carbide Slag. Appl. Sci. 2025, 15, 9946. https://doi.org/10.3390/app15189946
Rodriguez C, Gómez P, Martí F, Srivastava S, Sanchez M, Fernandez F, Beleña I, Hernández M. Development of Low-Carbon Autoclaved Aerated Concrete Using an Alkali-Activated Ground Granulated Blast Furnace Slag and Calcium Carbide Slag. Applied Sciences. 2025; 15(18):9946. https://doi.org/10.3390/app15189946
Chicago/Turabian StyleRodriguez, Carlos, Pablo Gómez, Felipe Martí, Sumit Srivastava, Marina Sanchez, Fernando Fernandez, Irene Beleña, and Miriam Hernández. 2025. "Development of Low-Carbon Autoclaved Aerated Concrete Using an Alkali-Activated Ground Granulated Blast Furnace Slag and Calcium Carbide Slag" Applied Sciences 15, no. 18: 9946. https://doi.org/10.3390/app15189946
APA StyleRodriguez, C., Gómez, P., Martí, F., Srivastava, S., Sanchez, M., Fernandez, F., Beleña, I., & Hernández, M. (2025). Development of Low-Carbon Autoclaved Aerated Concrete Using an Alkali-Activated Ground Granulated Blast Furnace Slag and Calcium Carbide Slag. Applied Sciences, 15(18), 9946. https://doi.org/10.3390/app15189946