Research on Trust-Enhanced Recommender Algorithm Based on Weighting Approach
Abstract
1. Introduction
2. Related Work
3. Weighted Trust-Enhanced Recommendation Algorithm
3.1. Similarity Metrics
3.2. Trust-Based Recommendation Method
4. Experiments and Analysis
4.1. Datasets
4.2. Evaluation Metrics
4.3. The Impact of Adjustable Parameter Scaling
4.4. Recommended Performance
4.5. The Impact of the Recommended List Length L on Algorithm Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, P. Recommendation Algorithm in TikTok: Strengths, Dilemmas, and Possible Directions. Int. J. Soc. Sci. Stud. 2022, 10, 6066. [Google Scholar] [CrossRef]
- Shokeen, J.; Rana, C. A study on features of social recommender systems. Artif. Intell. Rev. 2020, 53, 965–988. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, R.; Liang, Y.; Liang, A.; Liu, W. Metric learning for tag recommendation: Tackling data sparsity and cold start issues. In Proceedings of the 2024 5th International Symposium on Computer Engineering and Intelligent Communications (ISCEIC), Wuhan, China, 8–10 November 2024; IEEE: New York, NY, USA, 2024; pp. 99–103. [Google Scholar]
- Sánchez, P.; Bellogín, A. Point-of-interest recommender systems based on location-based social networks: A survey from an experimental perspective. ACM Comput. Surv. 2022, 54, 1–37. [Google Scholar] [CrossRef]
- Chen, L.J.; Gao, J. A trust-based recommendation method using network diffusion processes. Phys. A Stat. Mech. Its Appl. 2018, 506, 679–691. [Google Scholar] [CrossRef]
- Chen, L.J.; Zhang, Z.K.; Liu, J.H.; Gao, J.; Zhou, T. A vertex similarity index for better personalized recommendation. Phys. A Stat. Mech. Its Appl. 2017, 466, 607–615. [Google Scholar] [CrossRef]
- Lee, H. Interest-based e-commerce and users’ purchase intention on social network platforms. IEEE Access 2024, 12, 87451–87466. [Google Scholar] [CrossRef]
- Ekstrand, M.D.; Riedl, J.T.; Konstan, J.A. Collaborative filtering recommender systems. Found. Trends® Hum.–Comput. Interact. 2011, 5, 81–175. [Google Scholar] [CrossRef]
- Goldberg, D.; Nichols, D.; Oki, B.M.; Terry, D. Using collaborative filtering to weave an information tapestry. Commun. ACM 1992, 55, 61–70. [Google Scholar] [CrossRef]
- Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th International Conference on World Wide Web, Hong Kong, China, 1–5 May 2001; pp. 285–295. [Google Scholar]
- Zhou, T.; Ren, J.; Medo, M.; Zhang, Y.-C. Bipartite network projection and personal recommendation. Phys. Rev. E 2007, 76, 056115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.C.; Blattner, M.; Yu, Y.K. Heat conduction process on community networks as a recommendation model. Phys. Rev. Lett. 2007, 99, 155501. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Lü, L.; Zhang, Y.C. Predicting missing links via local information. Eur. Phys. J. B 2009, 71, 625–650. [Google Scholar] [CrossRef]
- Lü, L.; Liu, W. Information filtering via preferential diffusion. Phys. Rev. E 2011, 85, 066119. [Google Scholar] [CrossRef]
- Wu, W.; Ghazali, M.; Huspi, S.H. A review of user profiling based on social networks. IEEE Access 2024, 12, 122642–122670. [Google Scholar] [CrossRef]
- Schroeder, D.T.; Langguth, J.; Burchard, L.; Pogorelov, K.; Lind, P.G. The connectivity network underlying the German’s Twittersphere: A testbed for investigating information spreading phenomena. Sci. Rep. 2022, 12, 4085. [Google Scholar] [CrossRef]
- Ghavipour, M.; Meybodi, M.R.A. dynamic sampling algorithm based on learning automata for stochastic trust networks. Knowl.-Based Syst. 2021, 212, 106620. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, F.; Gao, L. Echo chamber effects on short video platforms. Sci. Rep. 2023, 13, 6282. [Google Scholar] [CrossRef]
- Choudhury, S.S.; Mohanty, S.N.; Jagadev, A.K. Multimodal trust based recommender system with machine learning approaches for movie recommendation. Int. J. Inf. Technol. 2021, 13, 475–482. [Google Scholar] [CrossRef]
- Liu, Z.H.; Xiong, H.L.; Liu, J. Recommendation algorithm fusing implicit similarity of users and trust. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, 10–12 August 2019; IEEE: New York, NY, USA, 2019; pp. 2084–2092. [Google Scholar]
- Zarzour, H.; Jararweh, Y.; Al-Sharif, Z.A. An effective model-based trust collaborative filtering for explainable recommendations. In Proceedings of the 2020 11th International Conference on Information and Communication Systems (ICICS), Online, 7–9 April 2020; IEEE: New York, NY, USA, 2020; pp. 238–242. [Google Scholar]
- Wang, F.; Zhu, H.; Srivastava, G.; Li, S.; Khosravi, M.R.; Qi, L. Robust collaborative filtering recommendation with user-item-trust records. IEEE Trans. Comput. Soc. Syst. 2021, 9, 986–996. [Google Scholar] [CrossRef]
- Wahab, O.A.; Rjoub, G.; Bentahar, J.; Cohen, R. Federated against the cold: A trust-based federated learning approach to counter the cold start problem in recommendation systems. Inf. Sci. 2022, 601, 189–206. [Google Scholar] [CrossRef]
- Weng, L.; Zhang, Q.; Lin, Z.; Wu, L. Harnessing heterogeneous social networks for better recommendations: A grey relational analysis approach. Expert Syst. Appl. 2021, 174, 114771. [Google Scholar] [CrossRef]
- Lee, Y.L.; Zhou, T.; Yang, K.; Du, Y.; Pan, L. Personalized recommender systems based on social relationships and historical behaviors. Appl. Math. Comput. 2023, 437, 127549. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, C.A. Model averaging prediction by K-fold cross-validation. J. Econom. 2023, 235, 280–301. [Google Scholar] [CrossRef]
- Yang, T.; Ying, Y. AUC maximization in the era of big data and AI: A survey. ACM Comput. Surv. 2022, 55, 1–37. [Google Scholar] [CrossRef]
- Fayyaz, Z.; Ebrahimian, M.; Nawara, D.; Ibrahim, A.; Kashef, R. Recommendation systems: Algorithms, challenges, metrics, and business opportunities. Appl. Sci. 2020, 10, 7758. [Google Scholar] [CrossRef]
- Lü, L.; Medo, M.; Yeung, C.H.; Zhang, Y.C.; Zhang, Z.K.; Zhou, T. Recommender systems. Phys. Rep. A Rev. Sect. Phys. Lett. (Sect. C) 2012, 519, 1–49. [Google Scholar] [CrossRef]
- Shirzadian, P.; Antony, B.; Gattani, A.G.; Tasnina, N.; Heath, L.S. A time evolving online social network generation algorithm. Sci. Rep. 2023, 13, 2395. [Google Scholar] [CrossRef] [PubMed]
- Yuliansyah, H.; Othman, Z.A.; Bakar, A.A. A new link prediction method to alleviate the cold-start problem based on extending common neighbor and degree centrality. Phys. A Stat. Mech. Its Appl. 2023, 616, 128546. [Google Scholar] [CrossRef]
Dataset | Users (m) | Items (n) | Rating Links (l) | Sparsity (Sl) | Trust Links (t) | Sparsity (St) |
---|---|---|---|---|---|---|
FriendFeed | 4148 | 5700 | 96,942 | 4.10 × 10−3 | 386,804 | 2.25 × 10−2 |
Epinions | 4066 | 7649 | 154,122 | 4.96 × 10−3 | 217,071 | 1.31 × 10−2 |
FilmTrust | 1482 | 1718 | 35,497 | 1.39 × 10−2 | 1854 | 8.44 × 10−4 |
FriendFeed | AUC | RS | P | R | F1 | H | I | N |
---|---|---|---|---|---|---|---|---|
MD | 0.8905 | 0.1097 | 0.0163 | 0.0682 | 0.0263 | 0.9454 | 0.1179 | 70 |
HC | 0.8795 | 0.1207 | 0.0088 | 0.0369 | 0.0142 | 0.9908 | 0.0524 | 11 |
UCF | 0.8919 | 0.1090 | 0.0155 | 0.0662 | 0.0252 | 0.8877 | 0.1638 | 89 |
CosRA | 0.8949 | 0.1069 | 0.0167 | 0.0633 | 0.0264 | 0.9902 | 0.0843 | 34 |
CosRA+T | 0.9005 | 0.0999 | 0.0176 | 0.0692 | 0.0280 | 0.9905 | 0.0983 | 33 |
TECosRA | 0.9151 | 0.0851 | 0.0183 | 0.0774 | 0.0296 | 0.9308 | 0.1411 | 72 |
Epinions | AUC | RS | P | R | F1 | H | I | N |
MD | 0.8255 | 0.1750 | 0.0189 | 0.0590 | 0.0286 | 0.6833 | 0.1124 | 226 |
HC | 0.7795 | 0.2211 | 0.0051 | 0.0153 | 0.0077 | 0.9758 | 0.0240 | 5 |
UCF | 0.8190 | 0.1921 | 0.0170 | 0.05371 | 0.02586 | 0.5737 | 0.1319 | 255 |
CosRA | 0.8301 | 0.1703 | 0.0221 | 0.0629 | 0.0327 | 0.9524 | 0.0865 | 100 |
CosRA+T | 0.8321 | 0.1682 | 0.0226 | 0.0651 | 0.0336 | 0.9587 | 0.0888 | 94 |
TECosRA | 0.8449 | 0.1553 | 0.0234 | 0.0718 | 0.0357 | 0.8324 | 0.1112 | 170 |
FilmTrust | AUC | RS | P | R | F1 | H | I | N |
MD | 0.9478 | 0.0517 | 0.0882 | 0.4301 | 0.1460 | 0.5973 | 0.4797 | 474 |
HC | 0.9147 | 0.0852 | 0.0011 | 0.0044 | 0.0018 | 0.8628 | 0.0404 | 4 |
UCF | 0.9418 | 0.0483 | 0.0852 | 0.3965 | 0.1399 | 0.5564 | 0.4841 | 489 |
CosRA | 0.9456 | 0.0444 | 0.0921 | 0.4642 | 0.1532 | 0.6306 | 0.4716 | 488 |
CosRA+T | 0.9583 | 0.0418 | 0.0922 | 0.4644 | 0.1534 | 0.6275 | 0.4724 | 455 |
TECosRA | 0.9584 | 0.0421 | 0.0921 | 0.4643 | 0.1533 | 0.6171 | 0.4735 | 458 |
Friendfeed | CosRA | CosRA+T | TECosRA |
---|---|---|---|
AUC | 0.8949 | 0.9005 | 0.9151 |
F1 (L = 10) | 0.0264 | 0.0280 | 0.0296 |
F1 (L = 20) | 0.0233 | 0.0245 | 0.0252 |
F1 (L = 50) | 0.0176 | 0.0183 | 0.0186 |
H (L = 10) | 0.9902 | 0.9905 | 0.9308 |
H (L = 20) | 0.9856 | 0.9860 | 0.9218 |
H (L = 50) | 0.9753 | 0.9767 | 0.9090 |
N (L = 10) | 34 | 33 | 72 |
N (L = 20) | 31 | 31 | 59 |
N (L = 50) | 28 | 28 | 46 |
Epinions | CosRA | CosRA+T | TECosRA |
AUC | 0.8301 | 0.8301 | 0.8301 |
F1 (L = 10) | 0.0327 | 0.0336 | 0.0357 |
F1 (L = 20) | 0.0294 | 0.0300 | 0.0309 |
F1 (L = 50) | 0.0219 | 0.0223 | 0.0228 |
H (L = 10) | 0.9520 | 0.9582 | 0.8364 |
H (L = 20) | 0.9399 | 0.9466 | 0.8264 |
H (L = 50) | 0.9244 | 0.9312 | 0.8214 |
N (L = 10) | 100 | 94 | 170 |
N (L = 20) | 88 | 83 | 139 |
N (L = 50) | 71 | 68 | 104 |
FilmTrust | CosRA | CosRA+T | TECosRA |
AUC | 0.9456 | 0.9583 | 0.9584 |
F1 (L = 10) | 0.1532 | 0.1534 | 0.1533 |
F1 (L = 20) | 0.1086 | 0.1085 | 0.1086 |
F1 (L = 50) | 0.0518 | 0.0519 | 0.0519 |
H (L = 10) | 0.6306 | 0.6275 | 0.6171 |
H (L = 20) | 0.5528 | 0.5453 | 0.5320 |
H (L = 50) | 0.4332 | 0.4375 | 0.4205 |
N (L = 10) | 488 | 455 | 458 |
N (L = 20) | 406 | 377 | 387 |
N (L = 50) | 252 | 226 | 242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Cheng, J.; Wu, Y.; Chen, X.; Wang, Z. Research on Trust-Enhanced Recommender Algorithm Based on Weighting Approach. Appl. Sci. 2025, 15, 9935. https://doi.org/10.3390/app15189935
Chen L, Cheng J, Wu Y, Chen X, Wang Z. Research on Trust-Enhanced Recommender Algorithm Based on Weighting Approach. Applied Sciences. 2025; 15(18):9935. https://doi.org/10.3390/app15189935
Chicago/Turabian StyleChen, Lingjiao, Jiayi Cheng, Yuezhong Wu, Xi Chen, and Zhongmei Wang. 2025. "Research on Trust-Enhanced Recommender Algorithm Based on Weighting Approach" Applied Sciences 15, no. 18: 9935. https://doi.org/10.3390/app15189935
APA StyleChen, L., Cheng, J., Wu, Y., Chen, X., & Wang, Z. (2025). Research on Trust-Enhanced Recommender Algorithm Based on Weighting Approach. Applied Sciences, 15(18), 9935. https://doi.org/10.3390/app15189935