Influence of the Type of Sauerkraut Fermentation with Probiotics Strains on Folate Content, Antioxidant Activity and Sensory Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Starter Culture Preparation
2.3. Fermentation
2.4. Microbiological Analysis and pH Determination
2.5. Determination of Folates
2.6. HPLC-MS/MS Analysis
2.7. Antioxidant Activity
2.8. Sensory Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Changes in pH Value During Fermentation
3.2. Microbiological Changes During Fermentation
3.3. Antioxidant Activity Results
3.4. Determination of Folate Results
3.4.1. Determination of Total Folate Content
3.4.2. Determination of Folate Isoforms
3.5. Sensory Evaluation Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SK | Sauerkraut |
LAB | Lactic acid bacteria |
USA | United States of America |
DNA | Deoxyribonucleic acid |
TSB | Trypticase soybean broth |
PCA | Plate count agar |
MRS | De Man–Rogosa–Sharpe agar |
VRBG | Violet red bile glucose agar |
HPLC | High-performance liquid chromatography |
DPPH | 1,1-diphenyl 2-picrylhydrazyl |
TFC | Total folate content |
FA | Folic acid |
DHF | Dihydrofolate |
THF | Tetrahydrofolate |
5MTHF | 5-methyl tetrahydrofolate |
References
- Holzapfel, W. Advances in Fermented Foods and Beverages: Improving Quality, Technologies and Health Benefits; Elsevier: Amsterdam, The Netherlands, 2014; p. 559. [Google Scholar]
- Fijan, S.; Fijan, P.; Wei, L.; Marco, M.L. Health Benefits of Kimchi, Sauerkraut, and Other Fermented Foods of the Ge-nus Brassica. Appl. Microbiol. 2024, 4, 1165–1176. [Google Scholar] [CrossRef]
- Tamang, J.P.; Kailasapathy, K. (Eds.) Fermented Foods and Beverages of the World; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-1-4200-9495-4. [Google Scholar]
- Ii, R.P.O.; Corbin, A.; Scott, B. Sauerkraut: A Probiotic Superfood. Funct. Foods Health Dis. 2016, 6, 536–543. [Google Scholar] [CrossRef]
- Özer, C.; Kalkan Yıldırım, H. Some Special Properties of Fermented Products with Cabbage Origin: Pickled Cabbage, Sauerkraut and Kimchi. Turk. J. Agric.-Food Sci. Technol. 2019, 7, 490–497. [Google Scholar] [CrossRef]
- Xu, Y.; Xing, M.; Song, L.; Yan, J.; Lu, W.; Zeng, A. Genome-Wide Analysis of Simple Sequence Repeats in Cabbage (Brassica oleracea L.). Front. Plant Sci. 2021, 12, 726084. [Google Scholar] [CrossRef]
- Alvarez, M.A.; Moreno-Arribas, M.V. The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends Food Sci. Technol. 2014, 39, 146–155. [Google Scholar] [CrossRef]
- Sánchez-Pérez, S.; Comas-Basté, O.; Rabell-González, J.; Veciana-Nogués, M.T.; Latorre-Moratalla, M.L.; Vidal-Carou, M.C. Biogenic Amines in Plant-Origin Foods: Are They Frequently Underestimated in Low-Histamine Diets? Foods 2018, 7, 205. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, X.; Wang, Y.; Liu, Y.; Li, X.; Wang, F.; Huang, Y.; Shi, P.; Brennan, C.S.; Wang, M. Mechanisms and factors influencing the ability of lactic acid bacteria on reducing biogenic amines in fermented food: A mini review. LWT 2024, 197, 115890. [Google Scholar] [CrossRef]
- Mishra, A.; Chakravarty, I.; Mandavgane, S. Current trends in non-dairy based synbiotics. Crit. Rev. Biotechnol. 2021, 41, 935–952. [Google Scholar] [CrossRef]
- Goyache, I.; Valdés-Varela, L.; Virto, R.; López-Yoldi, M.; López-Giral, N.; Sánchez-Vicente, A.; Milagro, F.I.; Aranaz, P. Novel Probiotic Strain Lactiplantibacillus plantarum CNTA 628 Modulates Lipid Metabolism and Improves Healthspan in C. elegans. Appl. Sci. 2025, 15, 8007. [Google Scholar] [CrossRef]
- Colautti, A.; Camprini, L.; Ginaldi, F.; Comi, G.; Reale, A.; Coppola, F.; Iacumin, L. Safety traits, genetic and technological characterization of Lacticaseibacillus rhamnosus strains. LWT 2024, 207, 116578. [Google Scholar] [CrossRef]
- Han, X.; Yi, H.; Zhang, L.; Huang, W.; Zhang, Y.; Zhang, L.; Du, M. Improvement of fermented Chinese cabbage characteristics by selected starter cultures. J. Food Sci. 2014, 79, M1387–M1392. [Google Scholar] [CrossRef]
- Padalino, M.; Perez-Conesa, D.; López-Nicolás, R.; Frontela-Saseta, C.; Ros-Berruezo, G. Effect of fructooligosaccharides and galactooligosaccharides on the folate production of some folate-producing bacteria in media cultures or milk. Int. Dairy J. 2012, 27, 27–33. [Google Scholar] [CrossRef]
- Serrano-Amatriain, C.; Ledesma-Amaro, R.; López-Nicolás, R.; Ros, G.; Jiménez, A.; Revuelta, J.L. Folic Acid Production by Engineered Ashbya gossypii. Metab. Eng. 2016, 38, 473–482. [Google Scholar] [CrossRef] [PubMed]
- López-Nicolás, R.; Frontela-Saseta, C.; González-Abellán, R.; Barado-Piqueras, A.; Perez-Conesa, D.; Ros-Berruezo, G. Folate fortification of white and whole-grain bread by adding Swiss chard and spinach. Acceptability by consumers. LWT-Food Sci. Technol. 2014, 59, 263–269. [Google Scholar] [CrossRef]
- Guerrouj, K.; Sánchez-Rubio, M.; Taboada-Rodríguez, A.; Roda, R.; Marín, F. Sonication at mild temperatures enhances bioactive compounds and microbiological quality of orange juice. Food Bioprod. Process. 2016, 99, 20–28. [Google Scholar] [CrossRef]
- Peñas, E.; Frias, J.; Sidro, B.; Vidal-Valverde, C. Chemical evaluation and sensory quality of sauerkrauts obtained by natural and induced fermentations at different NaCl levels from Brassica oleracea Var. capitata Cv. Bronco grown in eastern Spain. Effect of storage. J. Agric. Food Chem. 2010, 58, 3549–3557. [Google Scholar] [CrossRef]
- Filannino, P.; Cardinali, G.; Rizzello, C.G.; Buchin, S.; Angelis, M.D.; Gobbetti, M.; Cagno, R.D. Metabolic Responses of Lactobacillus plantarum Strains during Fermentation and Storage of Vegetable and Fruit Juices. Appl. Environ. Microbiol. 2014, 80, 2206–2215. [Google Scholar] [CrossRef]
- Kim, M.-J.; Lee, H.-W.; Kim, J.Y.; Kang, S.E.; Roh, S.W.; Hong, S.W.; Yoo, S.R.; Kim, T.-W. Impact of fermentation conditions on the diversity of white colony-forming yeast and analysis of metabolite changes by white colony-forming yeast in kimchi. Food Res. Int. 2020, 136, 109315. [Google Scholar] [CrossRef]
- Erdoğan, A.K.; Ertekin Filiz, B. Menaquinone content and antioxidant properties of fermented cabbage products: Effect of different fermentation techniques and microbial cultures. J. Funct. Foods 2023, 102, 105467. [Google Scholar] [CrossRef]
- Waters, D.M.; Mauch, A.; Coffey, A.; Arendt, E.K.; Zannini, E. Lactic acid bacteria as a cell factory for the delivery of functional biomolecules and ingredients in cereal-based beverages: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 503–520. [Google Scholar] [CrossRef]
- Di Cagno, R.; Coda, R.; De Angelis, M.; Gobbetti, M. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013, 33, 1–10. [Google Scholar] [CrossRef]
- Yang, X.; Hu, W.; Xiu, Z.; Jiang, A.; Yang, X.; Sarengaowa; Ji, Y.; Guan, Y.; Feng, K. Comparison of northeast sauerkraut fermentation between single lactic acid bacteria strains and traditional fermentation. Food Res. Int. 2020, 137, 109553. [Google Scholar] [CrossRef]
- Thakur, P.K.; Panja, P.; Kabir, J. Effect of Temperature on Fermentation and Quality of Sauerkraut. Indian J. Ecol. 2017, 44, 494–496. [Google Scholar]
- Park, K.-Y.; Jeong, J.-K.; Lee, Y.-E.; Daily, J.W. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J. Med. Food 2014, 17, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Satora, P.; Skotniczny, M.; Strnad, S.; Ženišová, K. Yeast Microbiota during Sauerkraut Fermentation and Its Characteristics. Int. J. Mol. Sci. 2020, 21, 9699. [Google Scholar] [CrossRef] [PubMed]
- Hur, S.J.; Lee, S.Y.; Kim, Y.-C.; Choi, I.; Kim, G.-B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Diwan, B.; Singh, B.P.; Kulshrestha, S. Probiotic fermentation of polyphenols: Potential sources of novel functional foods. Food Prod. Process. Nutr. 2022, 4, 21. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef]
- Filannino, P.; Di Cagno, R.; Gobbetti, M. Metabolic and functional paths of lactic acid bacteria in plant foods: Get out of the labyrinth. Curr. Opin. Biotechnol. 2018, 49, 64–72. [Google Scholar] [CrossRef]
- Dzandu, B.; Chotiko, A.; Sathivel, S. Antioxidant activity and viability of Lacticaseibacillus rhamnosus, Lacticaseibacillus casei, and Co-culture in fermented tomato juice during refrigerated storage. Food Biosci. 2022, 50, 102085. [Google Scholar] [CrossRef]
- Tan, S.; Lan, X.; Chen, S.; Zhong, X.; Li, W. Physical character, total polyphenols, anthocyanin profile and antioxidant activity of red cabbage as affected by five processing methods. Food Res. Int. 2023, 169, 112929. [Google Scholar] [CrossRef]
- Rossi, M.; Amaretti, A.; Raimondi, S. Folate production by probiotic bacteria. Nutrients 2011, 3, 118–134. [Google Scholar] [CrossRef]
- Saubade, F.; Hemery, Y.M.; Guyot, J.-P.; Humblot, C. Lactic acid fermentation as a tool for increasing the folate content of foods. Crit. Rev. Food Sci. Nutr. 2017, 57, 3894–3910. [Google Scholar] [CrossRef]
- Sybesma, W.; Starrenburg, M.; Tijsseling, L.; Hoefnagel, M.H.N.; Hugenholtz, J. Effects of cultivation conditions on folate production by lactic acid bacteria. Appl. Environ. Microbiol. 2003, 69, 4542–4548. [Google Scholar] [CrossRef] [PubMed]
- Jägerstad, M.; Jastrebova, J.; Svensson, U. Folates in fermented vegetables—A pilot study. LWT-Food Sci. Technol. 2004, 37, 603–611. [Google Scholar] [CrossRef]
- Anumudu, C.K.; Miri, T.; Onyeaka, H. Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods 2024, 13, 3714. [Google Scholar] [CrossRef]
- Cvetković, B.R.; Pestorić, M.V.; Gubić, J.M.; Novaković, A.R.; Mastilović, J.S.; Kevrešan, Ž.S.; Červenski, J.F. The dynamics of the fermentation process and sensorial evaluation of sauerkraut, cultivar Futoški and hybrid Bravo—Comparative study. In Proceedings of the 6th Central European Congress on Food, CEFood 2012, Novi Sad, Serbia, 23–26 May 2012; Available online: https://agris.fao.org/search/en/providers/122612/records/647369d453aa8c89630dcbf8 (accessed on 14 June 2025).
- Yang, H.; Zhang, X.; Liu, Y.; Liu, L.; Li, J.; Du, G.; Chen, J. Synthetic biology-driven microbial production of folates: Advances and perspectives. Bioresour. Technol. 2021, 324, 124624. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D. Studies on the changes of biochemical, microbiological and sensory parameters of sauerkraut and fermented mix vegetables. Food Res. Malays. 2021, 5, 78–83. [Google Scholar] [CrossRef]
- Xiong, T.; Guan, Q.; Song, S.; Hao, M.; Xie, M. Dynamic changes of lactic acid bacteria flora during Chinese sauerkraut fermentation. Food Control 2012, 26, 178–181. [Google Scholar] [CrossRef]
Day | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | |||
18 °C | Spontaneous | FA | 37.3 a ± 5.10 | 17.0 a ± 14.9 | 24.6 a ± 1.2 | 26.9 a ± 1.5 | 17.0 a ± 2.3 | 20.2 a ± 0.6 |
DHF | 375.8 a ± 103.6 | 152.0 a ± 57.5 | 243.9 a ± 21.2 | 219.7 a ± 25.1 | 206.8 a ± 49.0 | 166.5 a ± 11.7 | ||
THF | 490.6 a ± 49.0 | 340.1 a ± 69.0 | 311.0 a ± 11.9 | 340.5 a ± 5.8 | 183.2 a ± 10.3 | 277.2 a ± 13.1 | ||
5-MTHF | 294.4 a ± 47.6 | 175.3 a ± 55.5 | 290.2 a ± 128.3 | 323.8 a ± 67.8 | 383.2 a ± 91.3 | 248.0 a ± 7.3 | ||
5-FTHF | 117.9 a ± 24.3 | 57.3 a ± 26.2 | 79.0 a ± 22.1 | 74.4 a ± 16.6 | 88.7 a ± 8.2 | 82.9 a ± 4.6 | ||
Day | ||||||||
0 | 7 | 14 | 21 | 28 | 42 | |||
L. rhamnosus GG | FA | 37.7 a ± 5.30 | 20.4 a ± 4.8 | 20.8 b ± 0.7 | 21.4 a ± 5.1 | 11.0 b ± 0.6 | 18.5 a ± 1.8 | |
DHF | 366.6 a ± 159.3 | 228.6 a ± 69.4 | 212.0 a ± 7.6 | 239.8 a ± 44.0 | 128.1 b ± 2.8 | 173.2 a ± 20.8 | ||
THF | 476.3 a ± 18.1 | 362.3 a ± 22.1 | 258.8 b ± 8.3 | 357.2 a ± 24.8 | 117.7 b ± 9.3 | 195.8 b ± 6.1 | ||
5MTHF | 261.1 a ± 17.1 | 229.9 a ± 15.0 | 299.8 a ± 12.3 | 363.0 a ± 100.8 | 199.0 b ± 8.5 | 229.7 a ± 23.5 | ||
5FTHF | 100.5 a ± 15.8 | 77.6 a ± 6.3 | 81.0 a ± 7.3 | 72.4 a ± 11.5 | 52.8 b ± 6.1 | 55.6 b ± 2.4 | ||
Day | ||||||||
0 | 7 | 14 | 21 | 28 | 42 | |||
L. plantarum 229v | FA | 39.1 a ± 5.3 | 26.8 a ± 9.4 | 25.5 a ± 0.9 | 28.6 a ± 5.6 | 10.6 b ± 0.4 | 14.6 b ± 1.4 | |
DHF | 372.8 a ± 217.3 | 195.3 a ± 31.5 | 249.3 a ± 24.7 | 198.6 a ± 22.1 | 133.0 b ± 14.5 | 126.2 b ± 8.2 | ||
THF | 492.7 a ± 96.4 | 285.1 a ± 24.7 | 259.9 b ± 10.0 | 324.6 a ± 25.6 | 169.7 b ± 7.4 | 187.2 b ± 6.3 | ||
5MTHF | 299.7 a ± 81.9 | 211.8 a ± 4.8 | 279.1 a ± 7.2 | 217.3 a ± 3.9 | 157.3 b ± 7.7 | 163.3 b ± 10.9 | ||
5FTHF | 96.2 a ± 43.3 | 66.3 a ± 7.9 | 79.6 a ± 1.5 | 72.5 a ± 1.7 | 48.1 a ± 4.6 | 43.0 c ± 3.1 |
Day | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | |||
25 °C | Spontaneous | FA | 28.8 a ± 9.5 | 20.1 b ± 1.6 | 13.6 b ± 2.1 | 25.8 b ± 2.5 | 10.3 b ± 1.0 | 18.1 a ± 1.4 |
DHF | 433.0 a ± 108.3 | 190.3 a ± 0.1 | 130.1 ac ± 9.1 | 233.2 a ± 8.6 | 100.8 c ± 7.3 | 140.0 a ± 4.5 | ||
THF | 547.9 a ± 125.0 | 284.3 a ± 35.3 | 141.8 c ± 7.8 | 332.0 a ± 15.1 | 116.8 b ± 6.6 | 214.3 a ± 12.1 | ||
5MTHF | 285.8 a ± 23.0 | 231.5 a ± 32.5 | 296.0 a ± 4.4 | 285.6 a ± 99.6 | 156.2 b ± 6.9 | 176.6 a ± 5.1 | ||
5FTHF | 86.3 a ± 18.2 | 62.5 a ± 2.9 | 73.5 a ± 8.2 | 74.7 a ± 13.3 | 48.7 b ± 7.3 | 40.2 a ± 1.0 | ||
Day | ||||||||
0 | 7 | 14 | 21 | 28 | 42 | |||
L. rhamnosus GG | FA | 31.7 a ± 4.3 | 11.2 c ± 0.1 | 22.8 a ± 1.8 | 20.7 b ± 0.9 | 9.0 b ± 0.1 | 14.0 b ± 2.7 | |
DHF | 248.3 a ± 20.9 | 116.4 b ± 14 | 211.5 a ± 14.5 | 181.6 b ± 10.7 | 119.6 b ± 7.1 | 140.7 a ± 32.0 | ||
THF | 453.8 a ± 66.6 | 115.9 a ± 8.3 | 236.1 a ± 8.6 | 263.5 b ± 7.2 | 121.2 b ± 12.6 | 157.7 b ± 5.7 | ||
5MTHF | 259.3 a ± 25.4 | 177.0 a ± 21.9 | 289.3 a ± 10.8 | 208.4 a ± 3.2 | 211.8 b ± 42.3 | 180.3 a ± 22.2 | ||
5FTHF | 78.4 a ± 5.0 | 51.2 a ± 5.2 | 77.2 a ± 4.6 | 62.6 a ± 2.8 | 43.3 b ± 1.4 | 42.6 a ± 6.3 | ||
Day | ||||||||
0 | 7 | 14 | 21 | 28 | 42 | |||
L. plantarum 229v | FA | 38.5 a ± 10.3 | 24.8 a ± 0.0 | 19.8 a ± 2.7 | 22.2 a ± 3.7 | 16.5 a ± 1.7 | 8.4 c ± 1.0 | |
DHF | 423.5 a ± 191.1 | 146.2 ab ± 8.9 | 166.9 b ± 13.6 | 219.2 ab ± 33.8 | 166.8 a ± 5.7 | 98.0 a ± 15.5 | ||
THF | 485.3 a ± 99.4 | 359.6 a ± 3.9 | 201.0 b ± 7.8 | 339.3 a ± 35.3 | 177.4 a ± 18.2 | 58.2 c ± 7.3 | ||
5MTHF | 282.9 a ± 68.3 | 149.0 a ± 3.3 | 280.2 a ± 9.4 | 275.4 a ± 24.4 | 292.0 a ± 26.9 | 135.1 b ± 4.5 | ||
5FTHF | 100.1 a ± 31.8 | 74.9 a ± 8.5 | 81.5 a ± 8.5 | 75.2 a ± 17.2 | 84.4 a ± 11.6 | 36.8 a ± 2.5 |
Parameter | Spontaneous | L. rhamnosus GG | L. plantarum 229v | |
---|---|---|---|---|
18 °C | Appearance | 6.2 a ± 0.45 | 4.8 b ± 0.45 | 5.8 ab ± 0.84 |
Aroma | 6.2 a ± 0.84 | 5.4 a ± 0.55 | 5.0 a ± 0.71 | |
Texture | 5.4 a ± 0.55 | 5.2 a ± 0.45 | 5.2 a ± 0.45 | |
Flavour | 5.8 a ± 0.45 | 5.4 a ± 0.89 | 4.2 b ± 0.45 | |
Colour | 6.0 a ± 0.71 | 4.6 b ± 5.8 | 5.6 ab ± 0.55 | |
Acidity | 6.2 a ± 0.84 | 5.8 a ± 0.84 | 4.6 a ± 2.19 | |
Overall acceptability | 6.2 a ± 0.84 | 5.3 a ± 1.30 | 5.5 a ± 2.55 | |
Parameter | Spontaneous | L. rhamnosus GG | L. plantarum 229v | |
25 °C | Appearance | 5.8 a ± 0.45 | 5.4 a ± 1.14 | 6 a ± 1.41 |
Aroma | 5.4 a ± 0.89 | 4.8 a ± 0.45 | 4.6 a ± 0.89 | |
Texture | 5.6 a ± 0.55 | 5.2 a ± 0.45 | 5.4 a ± 0.55 | |
Flavour | 4.8 a ± 0.45 | 5 a ± 1.00 | 3.6 a ± 1.14 | |
Colour | 5.4 a ± 0.55 | 5.4 a ± 0.55 | 5.2 a ± 0.84 | |
Acidity | 4.6 a ± 0.55 | 3.8 a ± 0.84 | 4.0 a ± 0.71 | |
Overall acceptability | 5.4 a ± 0.55 | 4.6 a ± 0.55 | 5.0 a ± 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jácome-Silva, L.G.; Marín-Iniesta, F.; Tortosa-Díaz, L.; Planes-Muñoz, D.; López-Nicolas, R. Influence of the Type of Sauerkraut Fermentation with Probiotics Strains on Folate Content, Antioxidant Activity and Sensory Analysis. Appl. Sci. 2025, 15, 9934. https://doi.org/10.3390/app15189934
Jácome-Silva LG, Marín-Iniesta F, Tortosa-Díaz L, Planes-Muñoz D, López-Nicolas R. Influence of the Type of Sauerkraut Fermentation with Probiotics Strains on Folate Content, Antioxidant Activity and Sensory Analysis. Applied Sciences. 2025; 15(18):9934. https://doi.org/10.3390/app15189934
Chicago/Turabian StyleJácome-Silva, Leslie Gisella, Fulgencio Marín-Iniesta, Luis Tortosa-Díaz, David Planes-Muñoz, and Rubén López-Nicolas. 2025. "Influence of the Type of Sauerkraut Fermentation with Probiotics Strains on Folate Content, Antioxidant Activity and Sensory Analysis" Applied Sciences 15, no. 18: 9934. https://doi.org/10.3390/app15189934
APA StyleJácome-Silva, L. G., Marín-Iniesta, F., Tortosa-Díaz, L., Planes-Muñoz, D., & López-Nicolas, R. (2025). Influence of the Type of Sauerkraut Fermentation with Probiotics Strains on Folate Content, Antioxidant Activity and Sensory Analysis. Applied Sciences, 15(18), 9934. https://doi.org/10.3390/app15189934