Air Quality Assessment in Iran During 2016–2021: A Multi-Pollutant Analysis of PM2.5, PM10, NO2, SO2, CO, and Ozone
Abstract
1. Introduction
2. Study Area
3. Data Set and Methodology
3.1. Ground Based Data
3.2. MERRA-2 Reanalysis
4. Results and Discussion
4.1. Monthly and Seasonal Variability of PM10 and PM2.5 Concentrations
4.2. Gaseous Pollutants
4.3. Reanalysis Observations of Air Pollution in Iran
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, S.B.; Jain, S.; Khirwadkar, P.; Kulkarni, S. The effects of air pollution on the environment and human health. IJRPB 2013, 1, 391. [Google Scholar]
- Babatola, S.S. Global burden of diseases attributable to air pollution. J. Public Health Afr. 2018, 9, 813. [Google Scholar] [CrossRef]
- Jerrett, M. The death toll from air-pollution sources. Nature 2015, 525, 330–331. [Google Scholar] [CrossRef]
- Abadi, A.R.S.; Hamzeh, N.H.; Kaskaoutis, D.G.; Vuillaume, J.F.; Shukurov, K.A.; Gharibzadeh, M. Spatio-Temporal Distribution of PM2.5 and PM10 Concentrations and Assessment of Public Health Risk in the Three Most Polluted Provinces of Iran. Sustainability 2024, 17, 44. [Google Scholar] [CrossRef]
- Marlier, M.E.; Jina, A.S.; Kinney, P.L.; DeFries, R.S. Extreme air pollution in global megacities. Cur. Clim. Chang. Rep. 2016, 2, 15–27. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- Ghorani-Azam, A.; Riahi-Zanjani, B.; Balali-Mood, M. Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci. 2016, 21, 65. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Chen, H.; Zhang, L.; Luo, Y.; Shi, Y.; Zou, W. Energy consumption, air pollution, and public health in China: Based on the two-stage dynamic undesirable DEA model. Air Qual. Atmos. Health 2021, 14, 1349–1364. [Google Scholar] [CrossRef]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, J.; Shen, Z.; Tao, J.; Xiao, S.; Luo, L.; He, Q.; Tang, X. Chemical characteristics of PM2.5 during dust storms and air pollution events in Chengdu, China. Particuology 2013, 11, 70–77. [Google Scholar] [CrossRef]
- Blazy, R. Living Environment Quality Determinants, Including PM2.5 and PM10 Dust Pollution in the Context of Spatial Issues—The Case of Radzionków. Buildings 2020, 10, 58. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, G.; Xin, S.; Yang, Y. An evaluation model of indoor PM2.5 dynamic characteristics considering human activities. Energy Build. 2022, 263, 112037. [Google Scholar] [CrossRef]
- Bao, C.; Chai, P.; Lin, H.; Zhang, Z.; Ye, Z.; Gu, M.; Lu, H.; Shen, P.; Jin, M.; Wang, J.; et al. Association of PM2.5 pollution with the pattern of human activity: A case study of a developed city in eastern China. J. Air Was. Manag. Assoc. 2016, 66, 1202–1213. [Google Scholar] [CrossRef]
- Upadhyay, S.; Ganguly, K.; Stoeger, T. Inhaled ambient particulate matter and lung health burden. EMJ Respir. 2014, 2, 88–95. [Google Scholar] [CrossRef]
- Nho, R. Pathological effects of nano-sized particles on the respiratory system. Nanomed. Nanotec. Bio. Med. 2020, 29, 102242. [Google Scholar] [CrossRef]
- Basith, S.; Manavalan, B.; Shin, T.H.; Park, C.B.; Lee, W.S.; Kim, J.; Lee, G. The impact of fine particulate matter 2.5 on the cardiovascular system: A review of the invisible killer. Nanomaterials 2022, 12, 2656. [Google Scholar] [CrossRef]
- Mossman, B.T.; Borm, P.J.; Castranova, V.; Costa, D.L.; Donaldson, K.; Kleeberger, S.R. Mechanisms of action of inhaled fibers, particles and nanoparticles in lung and cardiovascular diseases. Part. Fibre Toxic. 2007, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Zhang, Y.; Yang, K.Q.; Yang, Y.K.; Zhou, X.L. Potential harmful effects of PM2.5 on occurrence and progression of acute coronary syndrome: Epidemiology, mechanisms, and prevention measures. Int. J. Environ. Res. Pub. Health 2016, 13, 748. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Sun, W.; Li, F.; Shi, M.; Meng, X.; Wang, C.; Meng, M.; Tang, W.; Liu, H.; Wang, L.; et al. The harmful effects of acute PM2. 5 exposures to the heart and a novel preventive and therapeutic function of CEOs. Sci. Rep. 2019, 9, 3495. [Google Scholar]
- Schulz, H.; Harder, V.; Ibald-Mulli, A.; Khandoga, A.; Koenig, W.; Krombach, F.; Radykewicz, R.; Stampfl, A.; Thorand, B.; Peters, A. Cardiovascular effects of fine and ultrafine particles. J. Aeros. Med. 2005, 18, 1–22. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Abadi, A.R.S.; Kaskaoutis, D.G.; Mirzaei, E.; Shukurov, K.A.; Sotiropoulou, R.E.P.; Tagaris, E. The importance of wind simulations over dried lake beds for dust emissions in the Middle East. Atmosphere 2023, 15, 24. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Shukurov, K.; Mohammadpour, K.; Kaskaoutis, D.G.; Saadatabadi, A.R.; Shahabi, H. A comprehensive investigation of the causes of drying and increasing saline dust in the Urmia Lake, northwest Iran, via ground and satellite observations, synoptic analysis and machine learning models. Ecol. Inform. 2023, 78, 102355. [Google Scholar] [CrossRef]
- Shukurov, K.A.; Simonenkov, D.V.; Nevzorov, A.V.; Rashki, A.; Hamzeh, N.H.; Abdullaev, S.F.; Shukurova, L.M.; Chkhetiani, O.G. CALIOP-Based Evaluation of Dust Emissions and Long-Range Transport of the Dust from the Aral−Caspian Arid Region by 3D-Source Potential Impact (3D-SPI) Method. Remote Sens. 2023, 15, 2819. [Google Scholar] [CrossRef]
- Mohammadpour, K.; Hassan, E.M.; Kaskaoutis, D.G.; Rashki, A.; Hamzeh, N.H.; Rahimi, S. Monitoring and simulation of a 7-day dust episode and associated dust radiative forcing over the Middle East via synergy of satellite observations, reanalysis datasets and regional/numerical models. Atmos. Res. 2025, 316, 107948. [Google Scholar] [CrossRef]
- Abadi, A.R.S.; Shukurov, K.A.; Hamzeh, N.H.; Kaskaoutis, D.G.; Opp, C.; Shukurova, L.M.; Ghasabi, Z. Dust events over the Urmia Lake Basin, NW Iran, in 2009–2022 and their potential sources. Rem. Sens. 2024, 16, 2384. [Google Scholar] [CrossRef]
- Singer, A.R.I.E.H.; Zobeck, T.; Poberezsky, L.; Argaman, E. The PM10 and PM2.5 dust generation potential of soils/sediments in the Southern Aral Sea Basin, Uzbekistan. J. Arid. Environ. 2003, 54, 705–728. [Google Scholar] [CrossRef]
- Middleton, N.J. Desert dust hazards: A global review. Aeo. Res. 2017, 24, 53–63. [Google Scholar] [CrossRef]
- Laryea, A.E.N.; Oluwaseun, O.O.; Kofi, A.S.; Oduro, N.B. Dust Sources and Impact: A Review. 2022. Available online: https://zenodo.org/record/7068922 (accessed on 12 September 2022).
- Zhang, Q.; Quan, J.; Tie, X.; Li, X.; Liu, Q.; Gao, Y.; Zhao, D. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China. Sci. Tot. Environ. 2015, 502, 578–584. [Google Scholar] [CrossRef]
- Abadi, A.R.S.; Hamzeh, N.H.; Kaskaoutis, D.G.; Opp, C.; Kazemi, A.F. Long-term spatio-temporal analysis, distribution, and trends of dust events over Iran. Atmosphere 2025, 16, 334. [Google Scholar] [CrossRef]
- Koziel, J.A.; Aneja, V.P.; Baek, B.H. Gas-to-particle conversion process between ammonia, acid gases, and fine particles in the atmosphere. ASABE 2006, 201–224. [Google Scholar] [CrossRef]
- Quan, J.; Liu, Q.; Li, X.; Gao, Y.; Jia, X.; Sheng, J.; Liu, Y. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events. Atmos. Environ. 2015, 122, 306–312. [Google Scholar] [CrossRef]
- Zaib, S.; Lu, J.; Bilal, M. Spatio-temporal characteristics of air quality index (AQI) over Northwest China. Atmosphere 2022, 13, 375. [Google Scholar] [CrossRef]
- Lucas, R.M.; Yazar, S.; Young, A.R.; Norval, M.; De Gruijl, F.R.; Takizawa, Y.; Rhodes, L.E.; Sinclair, C.A.; Neale, R.E. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem. Photobiol. Sci. 2019, 18, 641–680. [Google Scholar] [CrossRef]
- Madronich, S.; Sulzberger, B.; Longstreth, J.D.; Schikowski, T.; Andersen, M.S.; Solomon, K.R.; Wilson, S.R. Changes in tropospheric air quality related to the protection of stratospheric ozone in a changing climate. Photochem. Photobiol. Sci. 2023, 22, 1129–1176. [Google Scholar] [CrossRef]
- Lelieveld, J.; Dentener, F.J. What controls tropospheric ozone? J. Geophys. Res. Atmos. 2000, 105, 3531–3551. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, B.; Liu, C.; Meng, X.; Jiang, J.; Herrmann, H.; Chen, J.; Li, X. Nitrate pollution deterioration in winter driven by surface ozone increase. Clim. Atmos. Sci. 2024, 7, 160. [Google Scholar] [CrossRef]
- Ghozikali, M.G.; Borgini, A.; Tittarelli, A.; Amrane, A.; Naddafi, K.; Mohammadyan, M.; Goudarzi, G.; Bono, R.; Heibati, B. Quantification of the health effects of exposure to air pollution (NO2) in Tabriz, Iran. Fresenius Environ. Bulletin. 2015, 24, 4142–4148. [Google Scholar]
- Im, U.; Incecik, S.; Guler, M.; Tek, A.; Topcu, S.; Unal, Y.S.; Yenigun, O.; Kindap, T.; Odman, M.T.; Tayanc, M. Analysis of surface ozone and nitrogen oxides at urban, semi-rural and rural sites in Istanbul, Turkey. Sci. Tot. Environ. 2013, 443, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Susaya, J.; Kim, K.H.; Shon, Z.H.; Brown, R.J.C. Demonstration of long-term increases in tropospheric O3 levels: Causes and potential impacts. Chemosphere 2013, 92, 1520–1528. [Google Scholar] [CrossRef]
- Kirchhoff, V.W. Increasing concentrations of CO and O3 rising deforestation rates and increasing tropospheric carbon monoxide and ozone in Amazonia. Environ. Sci. Pollut. Res. 1996, 3, 210–212. [Google Scholar] [CrossRef]
- Borhani, F.; Shafiepour Motlagh, M.; Stohl, A.; Rashidi, Y.; Ehsani, A.H. Tropospheric Ozone in Tehran, Iran, during the last 20 years. Environ. Geochem. Health 2021, 44, 3615–3637. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Vuillaume, J.F.; Ooi, M.C.G. Seasonal and long-term variability of O3 and NO2 in Tehran from 2010 to 2022. Arab. J. Geosci. 2023, 16, 456. [Google Scholar] [CrossRef]
- Jaafari, J.; Naddafi, K.; Yunesian, M.; Nabizadeh, R.; Hassanvand, M.S.; Ghozikali, M.G.; Nazmara, S.; Shamsollahi, H.R.; Yaghmaeian, K. Study of PM10, PM2.5, and PM1 levels in during dust storms and local air pollution events in urban and rural sites in Tehran. Hum. Ecol. Risk Assess Int. J. 2018, 24, 482–493. [Google Scholar] [CrossRef]
- Barzeghar, V.; Sarbakhsh, P.; Hassanvand, M.S.; Faridi, S.; Gholampour, A. Long-term trend of ambient air PM10, PM2.5, and O3 and their health effects in Tabriz city, Iran, during 2006–2017. Sus. Cities Soc. 2020, 54, 101988. [Google Scholar] [CrossRef]
- Beyranvand, A.; Azizi, G.; Alizadeh-Choobari, O.; Darvishi Boloorani, A. Spatial and temporal variations in the incidence of dust events over Iran. Nat. Haz. 2019, 97, 229–241. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Kaskaoutis, D.G.; Rashki, A.; Mohammadpour, K. Long-term variability of dust events in southwestern Iran and its relationship with the drought. Atmosphere 2021, 12, 1350. [Google Scholar] [CrossRef]
- Rashki, A.; Feizollahi, S.; Bayat, A. Characteristics of aerosol types and identifying the external dust sources (the case of Mashhad city, Iran). E3S Web Conf. 2024, 575, 03003. [Google Scholar] [CrossRef]
- Ebrahimi-Khusfi, Z.; Soltanianzadeh, Z. Temporal Changes Trend in External-Origin Dust in Arid Cities of Iran. J. Environ. Health Sustain. Dev. 2024, 9, 2433–2450. [Google Scholar] [CrossRef]
- Alizadeh-Choobari, O.; Ghafarian, P.; Owlad, E. Temporal variations in the frequency and concentration of dust events over Iran based on surface observations. Inter. J. Clim. 2016, 36, 2050–2062. [Google Scholar] [CrossRef]
- Miri, A.; Ahmadi, H.; Ekhtesasi, M.R.; Panjehkeh, N.; Ghanbari, A. Environmental and socio-economic impacts of dust storms in Sistan Region, Iran. Int. J. Environ. Stud. 2009, 66, 343–355. [Google Scholar] [CrossRef]
- Najafi, M.S.; Khoshakhllagh, F.; Zamanzadeh, S.M.; Shirazi, M.H.; Samadi, M.; Hajikhani, S. Characteristics of TSP loads during the Middle East springtime dust storm (MESDS) in Western Iran. Arab. J. Geosci. 2014, 7, 5367–5381. [Google Scholar] [CrossRef]
- Broomandi, P.; Dabir, B.; Bonakdarpour, B.; Rashidi, Y. Identification of dust storm origin in South–West of Iran. J. Environ. Health Sci. Eng. 2017, 15, 16. [Google Scholar] [CrossRef]
- Sabetghadam, S.; Alizadeh, O.; Khoshsima, M.; Pierleoni, A. Aerosol properties, trends and classification of key types over the middle-east using satellite-derived atmospheric optical datasets. Atmos. Environ. 2021, 246, 118100. [Google Scholar] [CrossRef]
- Sabetghadam, S.; Khoshsima, M.; Pierleoni, A. Aerosol climatology and determination of different types over the semi-arid urban area of Tehran, Iran: Application of multi-platform remote sensing satellite data. Atmos. Poll. Res. 2020, 11, 1625–1636. [Google Scholar] [CrossRef]
- Abbasi, H.; Jalili, A.; Kosroshahi, M.; Fayaz, M.; Khaksarian, F.; Kenshlo, H.; Gohardoust, A.; Behnamfar, K.; Groll, M.; Opp, C. Land management to control sand and dust storm sources–case study: The dust hotspot of south-eastern Ahvaz, Iran. E3S Web Conf. 2024, 575, 07003. [Google Scholar] [CrossRef]
- Balali, H.; Zamani-Dadandeh, O.; Yousofi, A. The relationship between economic growth and environmental pollution in oil sector with emphasis on oil price volatility: Case study of Iran. Plan. Budg. 2013, 18, 49–66. [Google Scholar]
- Amoatey, P.; Omidvarborna, H.; Baawain, M.S.; Al-Mamun, A. Emissions and exposure assessments of SOX, NOX, PM10/2.5 and trace metals from oil industries: A review study (2000–2018). Process Saf. Environ. Prot. 2019, 123, 215–228. [Google Scholar] [CrossRef]
- Tayebi, M.; Bemani, A.; Fetanat, A.; Fehresti-Sani, M. A decision support system for sustainability prioritization of air pollution control technologies in energy and carbon management: Oil & gas industry of Iran. J. Nat. Gas Sci. Eng. 2022, 99, 104416. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Goudarzi, G.; Sabzalipour, S.; Rouzbahani, M.M.; Mobarak Hassan, E. An evaluation of CO, CO2, and SO2 emissions during continuous and non-continuous operation in a gas refinery using the AERMOD. Environ. Sci. Poll. Res. 2021, 28, 56996–57008. [Google Scholar] [CrossRef]
- Taksibi, F.; Khajehpour, H.; Saboohi, Y. On the environmental effectiveness analysis of energy policies: A case study of air pollution in the megacity of Tehran. Sci. Tot. Environ. 2020, 705, 135824. [Google Scholar] [CrossRef] [PubMed]
- Fenger, J. Air pollution in the last 50 years–From local to global. Atmos. Environ. 2009, 43, 13–22. [Google Scholar]
- Soleimani Sardoo, F.; Karami, S.; Hoseinhamzeh, N. Determining and analyzing the temporal and spatial trend of dust and its effect on vegetation and precipitation (Case study of Jazmourian Basin). Environ. Eros. Res. J. 2021, 11, 64–81. [Google Scholar]
- Ahrari, A.; Panchanathan, A.; Haghighi, A.T. Dust over water: Analyzing the impact of lake desiccation on dust storms on the Iranian Plateau. J. Hazard. Mater. 2024, 480, 136377. [Google Scholar] [CrossRef] [PubMed]
- Bosilovich, M.G. MERRA-2: Initial evaluation of the climate. NASA Tech. Rep. 2015, 43, 139. [Google Scholar]
- Rienecker, M.M. MERRA: NASA’s ModernEra Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Takacs, L.L.; Suárez, M.J.; Todling, R. Maintaining atmospheric mass and water balance in reanalyses. Quart. J. Roy. Meteor. Soc. 2016, 142, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Randles, C.A. The MERRA-2 aerosol assimilation. NASA Tech. Memo. 2016, 45, 132. [Google Scholar]
- Available online: https://giovanni.gsfc.nasa.gov/giovanni (accessed on 24 February 2024).
- Hamzeh, N.H.; Ranjbar Saadat Abadi, A.; Ooi, M.C.G.; Habibi, M.; Schöner, W. Analyses of a lake dust source in the Middle East through models’ performance. Remote Sens. 2022, 14, 2145. [Google Scholar] [CrossRef]
- Hajizadeh, Y.; Jafari, N.; Mohammadi, A.; Momtaz, S.M.; Fanaei, F.; Abdolahnejad, A. Concentrations and mortality due to short-and long-term exposure to PM2. 5 in a megacity of Iran (2014–2019). Environ. Sci. Poll. Res. 2020, 27, 38004–38014. [Google Scholar] [CrossRef]
- Yunesian, M.; Rostami, R.; Zarei, A.; Fazlzadeh, M.; Janjani, H. Exposure to high levels of PM2.5 and PM10 in the metropolis of Tehran and the associated health risks during 2016–2017. Microchem. J. 2019, 150, 104174. [Google Scholar] [CrossRef]
- Kermani, M.; Jafari, A.J.; Gholami, M.; Farzadkia, M.; Arfaeinia, H.; Shahsavani, A.; Norouzian, A.; Dowlati, M.; Fanaei, F. Investigation of relationship between particulate matter (PM2.5) and meteorological parameters in Isfahan, Iran. J. Air Poll. Health 2020, 5, 97–106. [Google Scholar]
- Alizadeh-Choobari, O.; Zawar-Reza, P.; Sturman, A. The “wind of 120 days” and dust storm activity over the Sistan Basin. Atmos. Res. 2014, 143, 328–341. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Mofidi, A.; Minvielle, F.; Chiapello, I.; Legrand, M.; Dumka, U.C.; Francois, P. Effects of Monsoon, Shamal and Levar winds on dust accumulation over the Arabian Sea during summer—The July 2016 case. Aeo. Res. 2019, 36, 27–44. [Google Scholar] [CrossRef]
- Obal, G.L.; Mosphere, A.; Tch, W. WMO air quality and climate bulletin. Europe 2023, 45, 35. [Google Scholar]
- Hamzeh, N.H.; Abadi, A.R.S.; Alam, K.; Shukurov, K.A.; Opp, C. Long-Term Wind and Air Temperature Patterns in the Southeastern Region of Iran through Model Simulation and Ground Observations. Atmosphere 2024, 15, 993. [Google Scholar] [CrossRef]
- Middleton, N. Dust storm hazards. E3S Web Conf. 2019, 99, 04001. [Google Scholar] [CrossRef]
- Darvishi Boloorani, A.; Samany, N.N.; Papi, R.; Soleimani, M. Dust source susceptibility mapping in Tigris and Euphrates basin using remotely sensed imagery. Catena 2022, 209, 105795. [Google Scholar] [CrossRef]
- Al-Hemoud, A.; Al-Dousari, A.; Al-Dashti, H.; Petrov, P.; Al-Saleh, A.; Al-Khafaji, S.; Behbehani, W.; Li, J.; Koutrakis, P. Sand and dust storm trajectories from Iraq Mesopotamian flood plain to Kuwait. Sci. Total Environ. 2020, 710, 136291. [Google Scholar] [CrossRef]
- Sissakian, V.; Al-Ansari, N.; Knutsson, S. Sand and dust storm events in Iraq. J. Nat. Sci. 2013, 5, 1084–1094. [Google Scholar] [CrossRef]
- Salmabadi, H.; Saeedi, M.; Notaro, M.; Roy, A. Dust transport pathways from the Mesopotamian Marshes. Aeolian Res. 2025, 73, 100975. [Google Scholar] [CrossRef]
- Kan, H. World Health Organization air quality guidelines 2021: Implication for air pollution control and climate goal in China. Chin. Med. J. 2022, 135, 513–515. [Google Scholar]
- Clapp, L.J.; Jenkin, M.E. Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NOx in the UK. Atmos. Environ. 2001, 35, 6391–6405. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Hannun, R.M.; Razzaq, A.H.A. March. Air pollution resulted from coal, oil and gas firing in thermal power plants and treatment: A review. IOP Conf. Ser. Earth Environ. Sci. 2022, 1002, 012008. [Google Scholar] [CrossRef]
- Aydın, H.; İlkılıç, C. Air pollution, pollutant emissions and harmfull effects. J. Eng. Tech. 2017, 1, 8–15. [Google Scholar]
- Norouzi, S.; Khademi, H.; Ayoubi, S. Seasonal and spatial variations in dust deposition rate and concentrations of dust-borne heavy metals, a case study from Isfahan, central Iran. Atmos. Pollut. Res. 2017, 8, 686–699. [Google Scholar] [CrossRef]
- Marjovvi, A.; Soleimani, M.; Mirghaffari, N.; Karimzadeh, H.; Yuan, Y.; Fang, L. Monitoring, Source Identification and Environmental Risk of Potentially Toxic Elements of Dust in Isfahan Province, Central Iran. Bull. Environ. Contam. Toxicol. 2022, 108, 901–908. [Google Scholar] [CrossRef]
- Behrooz, R.D.; Mohammadpour, K.; Broomandi, P.; Kosmopoulos, P.G.; Gholami, H.; Kaskaoutis, D.G. Long-term (2012–2020) PM10 concentrations and increasing trends in the Sistan Basin: The role of Levar wind and synoptic meteorology. Atmos. Poll. Res. 2022, 13, 101460. [Google Scholar] [CrossRef]
- Khorshiddoust, A.M.; Valizadeh Kamran, K.; Ghasemi Bghtash, A. Analysis of temporal-spatial distribution of dangerous contaminants in Tabriz with emphasis on PM10. Phys. Geogr. Res. Q. 2017, 49, 585–602. [Google Scholar]
- Khalesi, B.; Mansouri Daneshvar, M.R. Comprehensive temporal analysis of temperature inversions across urban atmospheric boundary layer of Tehran within 2014–2018. Model. Earth Syst. Environ. 2020, 6, 967–982. [Google Scholar] [CrossRef]
- Yousefian, F.; Faridi, S.; Azimi, F.; Aghaei, M.; Shamsipour, M.; Yaghmaeian, K.; Hassanvand, M.S. Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012–2017. Sci. Rep. 2020, 10, 292. [Google Scholar] [CrossRef]
- Nejad, M.T.; Ghalehteimouri, K.J.; Talkhabi, H.; Dolatshahi, Z. The relationship between atmospheric temperature inversion and urban air pollution characteristics: A case study of Tehran, Iran. Discov. Environ. 2023, 1, 17. [Google Scholar] [CrossRef]
- David, L.M.; Nair, P.R. Diurnal and seasonal variability of surface ozone and NOx at a tropical coastal site: Association with mesoscale and synoptic meteorological conditions. J. Geophys. Res. Atmos. 2011, 116, D10. [Google Scholar] [CrossRef]
- Coates, J.; Mar, K.A.; Ojha, N.; Butler, T.M. The influence of temperature on ozone production under varying NOx conditions–a modelling study. Atmos. Chem. Phys. 2016, 16, 11601–11615. [Google Scholar] [CrossRef]
- Tartaglione, N.; Toniazzo, T.; Orsolini, Y.; Otterå, O.H. Impact of solar irradiance and geomagnetic activity on polar NOx, ozone and temperature in WACCM simulations. J. Atmos. Sol.-Terr. Phys. 2020, 209, 105398. [Google Scholar] [CrossRef]
- Wei, W.; Wang, S.; Hao, J.; Cheng, S. Projection of anthropogenic volatile organic compounds (VOCs) emissions in China for the period 2010–2020. Atmos. Environ. 2011, 45, 6863–6871. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, L.; Fang, X.; Liu, M.; Zhang, J.; Shao, M.; Lu, S.; Mao, H. Emission factors of volatile organic compounds (VOCs) based on the detailed vehicle classification in a tunnel study. Sci. Total environ. 2018, 624, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Archer, D.; Eby, M.; Brovkin, V.; Ridgwell, A.; Cao, L.; Mikolajewicz, U.; Caldeira, K.; Matsumoto, K.; Munhoven, G.; Montenegro, A.; et al. Atmospheric lifetime of fossil fuel carbon dioxide. Ann. Rev. Earth Planet. Sci. 2009, 37, 117–134. [Google Scholar] [CrossRef]
- Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31–49. [Google Scholar] [CrossRef]
- Song, W.; Liu, X.Y.; Hu, C.C.; Chen, G.Y.; Liu, X.J.; Walters, W.W.; Michalski, G.; Liu, C.Q. Important contributions of non-fossil fuel nitrogen oxides emissions. Nat. Commun. 2021, 12, 243. [Google Scholar] [CrossRef]
- Azimi, F.; Hafezi, F.; Ghaderpoori, M.; Kamarehie, B.; Karami, M.A.; Sorooshian, A.; Baghani, A.N. Temporal characteristics and health effects related to NO2, O3, and SO2 in an urban area of Iran. Environ. Poll. 2024, 349, 123975. [Google Scholar]
- Baravati, Z.A.; Khanjani, N.; Malakootian, M. Air Pollution and Mortality in the Elderly in Kerman, Iran. Health Scope. 2021, 10, e105567. [Google Scholar] [CrossRef]
- Abdolahnejad, A.; Jafari, N.; Mohammadi, A.; Miri, M.; Hajizadeh, Y. Mortality and morbidity due to exposure to ambient NO2, SO2, and O3 in Isfahan in 2013–2014. Int. J. Prev. Med. 2018, 9, 11–34. [Google Scholar] [PubMed]
- Mansouri, B.; Hamidian, A.H. Assessment of the air quality of Isfahan city, Iran, using selected air quality parameters. Iran. J. Toxic. 2013, 7, 842–848. [Google Scholar]
- Duan, B.; Lai, S.; Zhu, Q.; Pan, Z.; Zhang, Y. Ozone and nitrogen dioxide mediated protein multiphase reactions under ultraviolet radiation conditions. Environ. Poll. 2025, 371, 125890. [Google Scholar]
- Wadanambi, R.T.; Wandana, L.S.; Chathumini, K.K.G.L.; Dassanayake, N.P.; Preethika, D.D.P.; Arachchige, U.S. The effects of industrialization on climate change. J. Res. Technol. Eng. 2020, 1, 86–94. [Google Scholar]
- Lu, J.; Gong, S.; Zhang, J.; Chen, J.; Zhang, L.; Zhou, C. Assessment of the impacts of cloud chemistry on surface SO2 and sulfate levels in typical regions of China. Atmos. Chem. Phys. 2023, 23, 8021–8037. [Google Scholar]
- Zhang, J.; Peng, A.; Lv, Y.; Zhang, Y.; Wang, X.; Zhang, G.; Tian, Z. A colorimetric fluorescent probe for SO2 derivatives-bisulfite and sulfite at nanomolar level. J. Fluoresc. 2017, 27, 1767–1775. [Google Scholar] [CrossRef]
- Asadifard, E.; Masoudi, M. Status and prediction of carbon monoxide as an air pollutant in Ahvaz City, Iran. Casp. J. Environ. Sci. 2018, 16, 203–213. [Google Scholar]
- Safarianzengir, V.; Sobhani, B.; Yazdani, M.H.; Kianian, M. Monitoring, analysis and spatial and temporal zoning of air pollution (carbon monoxide) using Sentinel-5 satellite data for health management in Iran, located in the Middle East. Air Qual. Atmos. Health 2020, 13, 709–719. [Google Scholar] [CrossRef]
- Shahbazi, H.; Taghvaee, S.; Hosseini, V.; Hosseini, A. A GIS Based Emission Inventory Development for Tehran. Urban Clim. 2016, 17, 216–229. [Google Scholar] [CrossRef]
- Ansari, M.; Ahmadi, M.; Goudarzi, G. Spatial analysis of air quality in Tehran with emphasis on particulate matter (PM2.5 and PM10). J. Nat. Environ. Haz. 2022, 11, 109–128. [Google Scholar]
- Gholizadeh, M.H.; Farajzadeh, M.; Darand, M. The correlation between air pollution and human mortality in Tehran. Hakim J. 2009, 2, 65–71. [Google Scholar]
- Mehmood, T.; Ahmad, I.; Bibi, S.; Mustafa, B.; Ali, I. Insight into monsoon for shaping the air quality of Islamabad, Pakistan: Comparing the magnitude of health risk associated with PM10 and PM2.5 exposures. J. Air Was. Manag. Assoc. 2020, 70, 1340–1355. [Google Scholar]
- Asadi, A.; Goharnejad, H.; Niri, M.Z. Regression modelling of air quality based on meteorological parameters and satellite data. J. Element. 2019, 24, 81–99. [Google Scholar]
- Mohammadi, A.; Nemati, S.; Abdolahnejad, A.; Nikonahad, A. The trend of changes in air quality index (AQI) in Mashhad using GIS. J. Health Res. Com. 2016, 2, 12–20. [Google Scholar]
- Safavy, S.N.; Mousavi, M.; Dehghanzadeh Reihani, R.; Shakeri, M. Seasonal and spatial zoning of air quality index and ambient air pollutants by Arc-GIS for Tabriz city and assessment of the current executive problem. J. Health 2016, 7, 158–177. [Google Scholar]
- Ghaneian, M.T.; Ehrampoush, M.H.; Alidadi, H.; Najafpour, A.A.; Sadeghi, A.; Bonyadi, Z. Analysis of PM2.5 Concentration in Mashhad City, Iran in 2013. J.T. Heydar. Uni. Med. Sci. 2014, 2, 19–24. [Google Scholar]
- Heidari, M.; Heidarinejad, Z.; Alipour, V.; Dindarloo, K.; Rahmanian, O.; Goodarzi, B.; Mousapour, H. Evaluation of Air Quality based on Air Quality Index in Kerman City, 2015. J. Res. Environ. Health 2017, 3, 208–218. [Google Scholar]
- Karami, S.; Hamzeh, N.H.; Kaskaoutis, D.G.; Rashki, A.; Alam, K.; Ranjbar, A. Numerical simulations of dust storms originated from dried lakes in central and southwest Asia: The case of Aral Sea and Sistan Basin. Aeo. Res. 2021, 50, 100679. [Google Scholar]
- Hamzeh, N.H.; Abadi, A.R.S.; Kaskaoutis, D.; Opp, C.; Shukurov, K. Investigation of Levar wind by WRF model in Zabol City (Southeast Iran) in 17 years duration (2005–2021). E3S Web Conf. 2024, 575, 01012. [Google Scholar] [CrossRef]
- Saadatabadi, A.R.; Hamzeh, N.H.; Kaskaoutis, D.G.; Ghasabi, Z.; Penchah, M.M.; Sotiropoulou, R.E.P.; Habibi, M. Optimization and evaluation of the Weather Research and Forecasting (WRF) model for wind energy resource assessment and mapping in Iran. App. Sci. 2024, 14, 3304. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Francois, P.; Kosmopoulos, P.G.; Legrand, M.J.A.R. Dust-storm dynamics over Sistan region, Iran: Seasonality, transport characteristics and affected areas. Aeolian Res. 2015, 16, 35–48. [Google Scholar] [CrossRef]
- Miri, A.; Maleki, S.; Middleton, N. An investigation into climatic and terrestrial drivers of dust storms in the Sistan region of Iran in the early twenty-first century. Sci. Tot. Environ. 2021, 757, 143952. [Google Scholar] [CrossRef] [PubMed]
PM2.5 | CO | SO2 | PM10 | O3 | |
---|---|---|---|---|---|
r | 0.22 | 0.37 | 0.12 | 0.03 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamzeh, N.H.; Kaskaoutis, D.G.; Abadi, A.R.S.; Vuillaume, J.-F.; Shukurov, K.A. Air Quality Assessment in Iran During 2016–2021: A Multi-Pollutant Analysis of PM2.5, PM10, NO2, SO2, CO, and Ozone. Appl. Sci. 2025, 15, 9925. https://doi.org/10.3390/app15189925
Hamzeh NH, Kaskaoutis DG, Abadi ARS, Vuillaume J-F, Shukurov KA. Air Quality Assessment in Iran During 2016–2021: A Multi-Pollutant Analysis of PM2.5, PM10, NO2, SO2, CO, and Ozone. Applied Sciences. 2025; 15(18):9925. https://doi.org/10.3390/app15189925
Chicago/Turabian StyleHamzeh, Nasim Hossein, Dimitris G. Kaskaoutis, Abbas Ranjbar Saadat Abadi, Jean-Francois Vuillaume, and Karim Abdukhakimovich Shukurov. 2025. "Air Quality Assessment in Iran During 2016–2021: A Multi-Pollutant Analysis of PM2.5, PM10, NO2, SO2, CO, and Ozone" Applied Sciences 15, no. 18: 9925. https://doi.org/10.3390/app15189925
APA StyleHamzeh, N. H., Kaskaoutis, D. G., Abadi, A. R. S., Vuillaume, J.-F., & Shukurov, K. A. (2025). Air Quality Assessment in Iran During 2016–2021: A Multi-Pollutant Analysis of PM2.5, PM10, NO2, SO2, CO, and Ozone. Applied Sciences, 15(18), 9925. https://doi.org/10.3390/app15189925