A Single-Nucleus Transcriptomic Atlas of Human Supernumerary Tooth Pulp Reveals Lineage Diversity and Transcriptional Heterogeneity Using PCA-Based Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Supernumerary Tooth Pulp Collection and Nuclei Isolation
2.2. mRNA Capture and Library Preparation
2.3. Preprocessing and Quality Control
2.4. Principal Component Analysis, Clustering, and t-SNE Visualization
2.5. Pathway Enrichment and Module Scoring
2.6. Visualization and Interpretation
2.7. Data Availability
3. Results
3.1. Principal Component Analysis Reveals Major Axes of Transcriptomic Variation in Supernumerary Tooth Pulp Cells
3.2. Pathway Enrichment Analysis of Principal Components
3.3. PC1 and PC2 Module Scores Distinguish Vascular and Mesenchymal Lineages
3.4. PCA Reveals Vascular–Mesenchymal Dual Axes of Heterogeneity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PCA | Principal Component Analysis |
PC | Principal Component |
snRNA-seq | Single-nucleus RNA sequencing |
ORA | Over-representation analysis |
GSEA | Gene Set Enrichment Analysis |
DPSC | Dental Pulp Stem Cell |
ECM | Extracellular Matrix |
EMT | Epithelial–Mesenchymal Transition |
VSMC | Vascular Smooth Muscle Cell |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
STAT3 | Signal Transducer and Activator of Transcription 3 |
IL-6 | Interleukin-6 |
IFN | Interferon |
TNFα | Tumor Necrosis Factor alpha |
RUNX2 | Runt-related transcription factor 2 |
NRP1 | Neuropilin-1 |
JAG2 | Jagged canonical Notch ligand 2 |
GEO | Gene Expression Omnibus |
IRB | Institutional Review Board |
UMI | Unique Molecular Identifier |
BSA | Bovine Serum Albumin |
DPBS | Dulbecco’s Phosphate-Buffered Saline |
AO/PI | Acridine Orange/Propidium Iodide |
References
- Som, P.; Miletich, I. Review of the Embryology of the Teeth. Neurographics 2018, 8, 369–393. [Google Scholar] [CrossRef]
- Maas, R.; Bei, M. The genetic control of early tooth development. Crit. Rev. Oral Biol. Med. 1997, 8, 4–39. [Google Scholar] [CrossRef]
- Liu, M.; Goldman, G.; MacDougall, M.; Chen, S. BMP signaling pathway in dentin development and diseases. Cells 2022, 11, 2216. [Google Scholar] [CrossRef] [PubMed]
- Tworkowski, K.; Gasowska, E.; Baryla, D.; Gabiec, K. Supernumerary teeth-literature review. J. Pre-Clin. Clin. Res. 2020, 14, 18–21. [Google Scholar] [CrossRef]
- Rajab, L.; Hamdan, M. Supernumerary teeth: Review of the literature and a survey of 152 cases. Int. J. Paediatr. Dent. 2002, 12, 244–254. [Google Scholar] [CrossRef]
- Kumar, D.K.; Gopal, K.S. An epidemiological study on supernumerary teeth: A survey on 5000 people. J. Clin. Diagn. Res. 2013, 7, 1504–1507. [Google Scholar] [CrossRef]
- Demiriz, L.; Durmuşlar, M.C.; Mısır, A.F. Prevalence and characteristics of supernumerary teeth: A survey on 7348 people. J. Int. Soc. Prev. Community Dent. 2015, 5, S39–S43. [Google Scholar] [CrossRef]
- Alarcón, J.; Guzmán, J.; Masuko, T.S.; Cáceres, P.N.; Fuentes, R. Non-Syndromic Familial Mesiodens: Presentation of Three Cases. Diagnostics 2022, 12, 1869. [Google Scholar] [CrossRef] [PubMed]
- Dias, G.F.; Hagedorn, H.; Maffezzolli, M.D.L.; Silva, F.d.F.d.; Alves, F.B.T. Diagnosis and treatment of supernumerary teeth in the pediatric clinic-case report. Rev. Cefac. 2019, 21, e16319. [Google Scholar] [CrossRef]
- Lertruangpanya, K.; Roytrakul, S.; Surarit, R.; Horsophonphong, S. Comparative proteomic analysis of dental pulp from supernumerary and normal permanent teeth. Clin. Oral Investig. 2024, 28, 321. [Google Scholar] [CrossRef]
- Ren, H.; Wen, Q.; Zhao, Q.; Wang, N.; Zhao, Y. Atlas of human dental pulp cells at multiple spatial and temporal levels based on single-cell sequencing analysis. Front. Physiol. 2022, 13, 993478. [Google Scholar] [CrossRef]
- Yang, Y.; Alves, T.; Miao, M.; Wu, Y.; Li, G.; Lou, J.; Hasturk, H.; Van Dyke, T.; Kantarci, A.; Wu, D. Single-cell transcriptomic analysis of dental pulp and periodontal ligament stem cells. J. Dent. Res. 2024, 103, 71–80. [Google Scholar] [CrossRef]
- Lall, S.; Sinha, D.; Bandyopadhyay, S.; Sengupta, D. Structure-aware principal component analysis for single-cell RNA-seq data. J. Comput. Biol. 2018, 25, 1365–1373. [Google Scholar] [CrossRef]
- Chen, G.; Ning, B.; Shi, T. Single-cell RNA-seq technologies and related computational data analysis. Front. Genet. 2019, 10, 317. [Google Scholar] [CrossRef]
- Gough, A.; Stern, A.M.; Maier, J.; Lezon, T.; Shun, T.-Y.; Chennubhotla, C.; Schurdak, M.E.; Haney, S.A.; Taylor, D.L. Biologically relevant heterogeneity: Metrics and practical insights. SLAS Discov. 2017, 22, 213–237. [Google Scholar] [CrossRef]
- Deleersnijder, D.; Callemeyn, J.; Arijs, I.; Naesens, M.; Van Craenenbroeck, A.H.; Lambrechts, D.; Sprangers, B. Current methodological challenges of single-cell and single-nucleus RNA-sequencing in glomerular diseases. J. Am. Soc. Nephrol. 2021, 32, 1838–1852. [Google Scholar] [CrossRef]
- Oh, M.; Zhang, Z.; Mantesso, A.; Oklejas, A.E.; Nör, J.E. Endothelial-Initiated Crosstalk Regulates Dental Pulp Stem Cell Self-Renewal. J. Dent. Res. 2020, 99, 1102–1111. [Google Scholar] [CrossRef]
- Zaw, S.Y.M.; Kaneko, T.; Zaw, Z.C.T.; Sone, P.P.; Murano, H.; Gu, B.; Okada, Y.; Han, P.; Katsube, K.I.; Okiji, T. Crosstalk between dental pulp stem cells and endothelial cells augments angiogenic factor expression. Oral Dis. 2020, 26, 1275–1283. [Google Scholar] [CrossRef]
- Yushkov, B.; Chereshnev, V.; Korneva, E.; Yushkova, V.; Sarapultsev, A. Stem-Cell Niches in Health and Disease: Microenvironmental Determinants of Regeneration and Pathology. Cells 2025, 14, 981. [Google Scholar] [CrossRef]
- Goldberg, M.; Smith, A.J. Cells and Extracellular Matrices of Dentin and Pulp: A Biological Basis for Repair and Tissue Engineering. Crit. Rev. Oral Biol. Med. 2004, 15, 13–27. [Google Scholar] [CrossRef]
- Balic, A.; Perver, D.; Pagella, P.; Rehrauer, H.; Stadlinger, B.; Moor, A.E.; Vogel, V.; Mitsiadis, T.A. Extracellular matrix remodelling in dental pulp tissue of carious human teeth through the prism of single-cell RNA sequencing. Int. J. Oral Sci. 2023, 15, 30. [Google Scholar] [CrossRef]
- Di, T.; Wang, L.; Feng, C.; Xu, J.; Shao, B.; Cheng, B.; Wang, L.; Zhang, X.; Zhang, L.; Chen, Y. ECM remodeling by PDGFRβ+ dental pulp stem cells drives angiogenesis and pulp regeneration via integrin signaling. Stem Cell Res. Ther. 2025, 16, 283. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Zhou, J.; Zhang, Q. The Role of Sensory Nerves in Dental Pulp Homeostasis: Histological Changes and Cellular Consequences after Sensory Denervation. Int. J. Mol. Sci. 2024, 25, 1126. [Google Scholar] [CrossRef]
- Duan, Y.; Liang, Y.; Yang, F.; Ma, Y. Neural Regulations in Tooth Development and Tooth–Periodontium Complex Homeostasis: A Literature Review. Int. J. Mol. Sci. 2022, 23, 14150. [Google Scholar] [CrossRef]
- Opasawatchai, A.; Nguantad, S.; Sriwilai, B.; Matangkasombut, P.; Matangkasombut, O.; Srisatjaluk, R.; Charoensawan, V. Single-Cell Transcriptomic Profiling of Human Dental Pulp in Sound and Carious Teeth: A Pilot Study. Front. Dent. Med. 2022, 2, 71–80. [Google Scholar] [CrossRef]
- Ohyama, S.; Ouchi, T.; Kimura, M.; Kurashima, R.; Yasumatsu, K.; Nishida, D.; Hitomi, S.; Ubaidus, S.; Kuroda, H.; Ito, S.; et al. Piezo1-pannexin-1-P2X3 axis in odontoblasts and neurons mediates sensory transduction in dentinal sensitivity. Front. Physiol. 2022, 13, 891759. [Google Scholar] [CrossRef]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef]
- He, X.; Jiang, W.; Luo, Z.; Qu, T.; Wang, Z.; Liu, N.; Zhang, Y.; Cooper, P.R.; He, W. IFN-γ regulates human dental pulp stem cells behavior via NF-κB and MAPK signaling. Sci. Rep. 2017, 7, 40681. [Google Scholar] [CrossRef]
- Chen, Z.; Lang, G.; Xu, X.; Liang, X.; Han, Y.; Han, Y. The role of NF-kappaB in the inflammatory processes related to dental caries, pulpitis, apical periodontitis, and periodontitis—A narrative review. PeerJ 2024, 12, e17953. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Y.; Xue, N.; Xu, H.; Zhang, D.; Ji, N.; Chen, Q. TSG-6 Inhibits the NF-κB Signaling Pathway and Promotes the Odontogenic Differentiation of Dental Pulp Stem Cells via CD44 in an Inflammatory Environment. Biomolecules 2024, 14, 368. [Google Scholar] [CrossRef]
PC | Direction | Genes |
---|---|---|
PC1 | Positive | COL27A1, COL1A1, ERBB4, MMP20, ST8SIA1, COL24A1, SEMA3E, SORBS2, SPOCK3, LTBP1, DTNBP1, GRAMD1B, PCDH7, SLC2A13, GRIK1, DOK6, MAP1B, LRP1B, GPC3, CD36, SLIT3, CYFIP2, WDR72, B3GALT1, PPFIA2, RANBP3L, COBL, DIAPH3, NRXN1, TMEM117 |
Negative | PTPRB, HLA-E, TXNIP, SHANK3, NFIB, CD34, IGFBP7, PECAM1, CD74, FLT1, VWF, IGFBP4, EMCN, SPARCL1, KLF2, HLA-B, DIPK2B, LDB2, CYYR1, PLCB4, EGFL7, MMRN2, MYRIP, ADGRF5, B2M, HLA-A, EPAS1, ADGRL4, FZD4, PLCB1 | |
PC2 | Positive | PTPRK, ST8SIA1, MMP20, SLC12A2, SEMA3E, SPOCK3, SLC2A13, COL27A1, GRIK1, DOK6, CD36, GPC3, HDAC9, MAP1B, ERBB4, WDR72, SORBS2, UCK2, CYFIP2, FAM107B, DTNBP1, SLIT3, COBL, ABLIM2, SYBU, ENSG00000289986, LTBP1, PHEX, PPFIA2, ZNF385B |
Negative | NRXN1, CPA6, LSAMP, LRP1B, SLIT2, ENSG00000255595, BMPR1B, POSTN, TF, SLC4A4, COL3A1, VCAN, NRXN3, ENSG00000225096, CTNNA2, CHSY3, PRICKLE1, PTN, EFNA5, ITGA8, GALNTL6, IGFBP5, CP, NGF, ARL15, CXCL14, ENSG00000239268, PDZRN3, CHRM3, GRM7 | |
PC3 | Positive | COL14A1, CDH6, CDH19, ITIH5, LGI4, ERBB3, MCAM, PLP1, OLFML2A, PLCE1, SOX5, MPZ, GUCY1A1, ASPA, DMD, ACTA2, XKR4, SOD3, SOX10, NGFR, NR2F2-AS1, TAGLN, EDNRA, PMP22, CRYAB, SLC35F1, GJC1, PARM1, EGFLAM, GFRA3 |
Negative | LRP1B, TSHZ2, CPA6, ENSG00000255595, CHRM3, SLCO2A1, POSTN, SLC4A4, LINC01515, ZNF521, ARL15, CTNNA2, ITGA9, ENSG00000225096, LSAMP, RAPGEF4, BMPR1B, ADAMTSL1, CADPS2, PRKCH, DNM3, PRICKLE1, ABCB1, ST6GALNAC3, LINC02147, ITGA8, DIPK2B, NOSTRIN, EMCN, TLL1 | |
PC4 | Positive | CDH19, ERBB3, PLP1, XKR4, ASPA, SOX10, MPZ, COL28A1, GFRA3, L1CAM, GAS2L3, CADM2, TRPM3, ZNF536, SCN7A, CHL1, HSPA12A, ADAM23, SORCS1, NKAIN3, ITGB8, CADM3, SLITRK5, MATN2, FIGN, MAL, ADGRB3, GRIK3, NCAM2, NGFR |
Negative | GUCY1A1, NOTCH3, ACTA2, EDNRA, SOD3, FRZB, TAGLN, PARM1, MYH11, RCAN2, NDUFA4L2, IRAG1, GJC1, CARMN, STEAP4, RGS5, MCAM, THY1, ANGPT2, LINGO1, CASQ2, SMOC2, SUSD2, CACNA1H, TEX41, SGIP1, INPP4B, ABCC9, CPE, GUCY1B1 | |
PC5 | Positive | NR2F2-AS1, INPP4B, LETR1, EDNRA, PARM1, ABCC9, TEX41, CCDC102B, TRPC6, NEURL1B, CDH6, SMOC2, STEAP4, RGS6, DACH1, CARMN, LINC02147, GUCY1A1, RCAN2, GJC1, RAPGEF4, ARHGAP6, SGIP1, POU6F2, IRAG1, UBE2E2, DOCK8, SOX5, NR2F2, ARHGAP15 |
Negative | MT-ATP6, MT-CO3, MT-ND4, MT-ND2, MT-ND1, MT-ND3, MT-CO2, MT-CYB, MT-CO1, CLU, CXCL14, MT-ND5, PTN, CRABP1, MMP2, EEF1A1, ACTB, TF, IGFBP5, TMSB4X, TPT1, IFITM3, IGFBP3, RPL34, RPS6, RPL32, RPL23, KCTD12, RPL39, RPS8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.; Kim, I.-R. A Single-Nucleus Transcriptomic Atlas of Human Supernumerary Tooth Pulp Reveals Lineage Diversity and Transcriptional Heterogeneity Using PCA-Based Analysis. Appl. Sci. 2025, 15, 9900. https://doi.org/10.3390/app15189900
Lee E, Kim I-R. A Single-Nucleus Transcriptomic Atlas of Human Supernumerary Tooth Pulp Reveals Lineage Diversity and Transcriptional Heterogeneity Using PCA-Based Analysis. Applied Sciences. 2025; 15(18):9900. https://doi.org/10.3390/app15189900
Chicago/Turabian StyleLee, Eungyung, and In-Ryoung Kim. 2025. "A Single-Nucleus Transcriptomic Atlas of Human Supernumerary Tooth Pulp Reveals Lineage Diversity and Transcriptional Heterogeneity Using PCA-Based Analysis" Applied Sciences 15, no. 18: 9900. https://doi.org/10.3390/app15189900
APA StyleLee, E., & Kim, I.-R. (2025). A Single-Nucleus Transcriptomic Atlas of Human Supernumerary Tooth Pulp Reveals Lineage Diversity and Transcriptional Heterogeneity Using PCA-Based Analysis. Applied Sciences, 15(18), 9900. https://doi.org/10.3390/app15189900