Classification of Climate-Driven Geomorphic Provinces Using Supervised Machine Learning Methods
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data and Data Set Preparations
2.3. Supervised Machine Learning Classification
2.3.1. Model Training and Optimization
2.3.2. Testing Models
2.3.3. Evaluation of Testing Performance Metrics
2.3.4. Determination of Feature Importance of Geomorphometric Parameters
3. Results
3.1. Model Training and Optimization Results
3.2. Model Testing (Classification) and Classification Results
3.3. Determination of Feature Importance of Geomorphometric Parameters Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DEM | Digital Elevation Model |
RS | Remote Sensing |
GIS | Geographic Information Systems |
K-G | Köppen-Geiger |
RF | Random Forest |
SVM | Support Vector Machines |
KNN | K Nearest Neighbors |
SRS | Simple Random Sampling |
LGPL | GNU Lesser General Public License |
MDA | Mean Decrease Accuracy |
MDG | Mean Decrease Gini |
References
- Evans, I.S. General Geomorphometry, Derivatives of Altitude, and Descriptive Statistics. In Spatial Analysis in Geomorphology; Methuen: London, UK, 1972; pp. 17–90. [Google Scholar]
- Hengl, T.; Reuter, H.I. Geomorphometry: Concepts, Software, Applications; Newnes: Oxford, UK, 2008; ISBN 978-0-08-092188-4. [Google Scholar]
- Pike, R.J.; Evans, I.S.; Hengl, T. Chapter 1 Geomorphometry: A Brief Guide. In Developments in Soil Science; Hengl, T., Reuter, H.I., Eds.; Geomorphometry; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 3–30. [Google Scholar]
- Hutchinson, M.F.; Gallant, J.C. Digital Elevation Models and Representation of Terrain Shape. In Terrain Analysis: Principles and Applications; Wiley: Hoboken, NJ, USA, 2000; pp. 29–50. [Google Scholar]
- Xiong, L.; Li, S.; Tang, G.; Strobl, J. Geomorphometry and Terrain Analysis: Data, Methods, Platforms and Applications. Earth-Sci. Rev. 2022, 233, 104191. [Google Scholar] [CrossRef]
- Bishop, M.P.; James, L.A.; Shroder, J.F.; Walsh, S.J. Geospatial Technologies and Digital Geomorphological Mapping: Concepts, Issues and Research. Geomorphology 2012, 137, 5–26. [Google Scholar] [CrossRef]
- Amatulli, G.; McInerney, D.; Sethi, T.; Strobl, P.; Domisch, S. Geomorpho90m, Empirical Evaluation and Accuracy Assessment of Global High-Resolution Geomorphometric Layers. Sci. Data 2020, 7, 162. [Google Scholar] [CrossRef]
- Sofia, G. Combining Geomorphometry, Feature Extraction Techniques and Earth-Surface Processes Research: The Way Forward. Geomorphology 2020, 355, 107055. [Google Scholar] [CrossRef]
- Borji, M.; Samani, A.N.; Rashidi, S.; Tiefenbacher, J.P. Catchment-Scale Soil Conservation: Using Climate, Vegetation, and Topo-Hydrological Parameters to Support Decision Making and Implementation. Sci. Total Environ. 2020, 712, 136124. [Google Scholar] [CrossRef] [PubMed]
- De Caires, S.A.; Keshavarzi, A.; Leonel Bottega, E.; Kaya, F. Towards Site-Specific Management of Soil Organic Carbon: Comparing Support Vector Machine and Ordinary Kriging Approaches Based on Pedo-Geomorphometric Factors. Comput. Electron. Agric. 2024, 216, 108545. [Google Scholar] [CrossRef]
- Ke, X.; Wang, W.; Niu, F.; Gao, Z. Investigating Soil Properties and Their Effects on Freeze-Thaw Processes in a Thermokarst Lake Region of Qinghai-Tibet Plateau, China. Eng. Geol. 2024, 342, 107734. [Google Scholar] [CrossRef]
- McCullagh, M.J. Terrain and Surface Modelling Systems: Theory and Practice. Photogramm. Rec. 1988, 12, 747–779. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Shary, P.A.; Kuryakova, G.A.; Florinsky, I.V. On the International Experience of Topographic Methods Employment in Landscape Researches (the Concise Review). In The Geometry of the Earth Surface Structures; Pushchino Research Centre Press: Pushchino, Russia, 1991; pp. 15–29. [Google Scholar]
- Florinsky, I.V. Combined Analysis of Digital Terrain Models and Remotely Sensed Data in Landscape Investigations. Prog. Phys. Geogr. Earth Environ. 1998, 22, 33–60. [Google Scholar] [CrossRef]
- Florinsky, I.V. An Illustrated Introduction to General Geomorphometry. Prog. Phys. Geogr. Earth Environ. 2017, 41, 723–752. [Google Scholar] [CrossRef]
- Pike, R.J. Geomorphometry-Diversity in Quantitative Surface Analysis. Prog. Phys. Geogr. Earth Environ. 2000, 24, 1–20. [Google Scholar] [CrossRef]
- Pike, R.J. Digital Terrain Modelling and Industrial Surface Metrology—Converging Crafts. Int. J. Mach. Tools Manuf. 2001, 41, 1881–1888. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Bates, P.; Neal, J.; Tooth, S.; Hawker, L.; Maffei, C. Digital Elevation Models for Topographic Characterisation and Flood Flow Modelling along Low-Gradient, Terminal Dryland Rivers: A Comparison of Spaceborne Datasets for the Río Colorado, Bolivia. J. Hydrol. 2020, 591, 125617. [Google Scholar] [CrossRef]
- Zandsalimi, Z.; Barbosa, S.A.; Alemazkoor, N.; Goodall, J.L.; Shafiee-Jood, M. Deep Learning-Based Downscaling of Global Digital Elevation Models for Enhanced Urban Flood Modeling. J. Hydrol. 2025, 653, 132687. [Google Scholar] [CrossRef]
- Shary, P.A.; Sharaya, L.S.; Mitusov, A.V. Fundamental Quantitative Methods of Land Surface Analysis. Geoderma 2002, 107, 1–32. [Google Scholar] [CrossRef]
- Böhner, J.; Antonić, O. Chapter 8 Land-Surface Parameters Specific to Topo-Climatology. In Developments in Soil Science; Hengl, T., Reuter, H.I., Eds.; Geomorphometry; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 195–226. [Google Scholar]
- Prasicek, G.; Otto, J.-C.; Montgomery, D.R.; Schrott, L. Multi-Scale Curvature for Automated Identification of Glaciated Mountain Landscapes. Geomorphology 2014, 209, 53–65. [Google Scholar] [CrossRef]
- Skentos, A. Topographic Position Index Based Landform Analysis of Messaria (Ikaria Island, Greece). Acta Geobalcanica 2018, 4, 7–15. [Google Scholar] [CrossRef]
- Kılıç Gül, F. Geomorphometry-Automatic Landform Classification. J. Geogr. 2018, 36, 15–26. [Google Scholar] [CrossRef]
- Li, S.; Xiong, L.; Tang, G.; Strobl, J. Deep Learning-Based Approach for Landform Classification from Integrated Data Sources of Digital Elevation Model and Imagery. Geomorphology 2020, 354, 107045. [Google Scholar] [CrossRef]
- Dyba, K. Explanation of the Influence of Geomorphometric Variables on the Landform Classification Based on Selected Areas in Poland. Sci. Rep. 2024, 14, 5447. [Google Scholar] [CrossRef] [PubMed]
- Martonne, E. de Nouvelle carte mondial de l’indice d’aridité. Ann. Géographie 1942, 51, 241–250. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Trewartha, G.T.; Horn, L.H.; Sale, R.D. An Introduction to Climate; McGraw-Hill: New York, NY, USA, 1954; Volume 402. [Google Scholar]
- Köppen, W.; Geiger, R. Klima Der Erde (Climate of the Earth) Wall Map; Klett-Perthes: Gotha, FL, USA, 1954. [Google Scholar]
- Köppen, W. Klassifikation Der Klimate Nach Temperatur, Niederschlag. Jahreslauf. Pet. Mitt. 1918, 64, 243. [Google Scholar]
- Öztürk, M.Z.; Çetinkaya, G.; Aydın, S. Climate Types of Turkey According to Köppen-Geiger Climate Classification. J. Geogr. 2017, 35, 17–27. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Beck, H.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Lutsko, N.J.; Dufour, A.; Zeng, Z.; Jiang, X.; Van Dijk, A.I.J.M.; Miralles, D.G. High-Resolution (1 Km) Köppen-Geiger Maps for 1901–2099 Based on Constrained CMIP6 Projections. Sci. Data 2023, 10, 724. [Google Scholar] [CrossRef]
- Taşoğlu, E.; Öztürk, M.Z.; Yazıcı, Ö. High Resolution Köppen-Geiger Climate Zones of Türkiye. Int. J. Climatol. 2024, 44, 5248–5265. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Rubel, F.; Kottek, M. Observed and Projected Climate Shifts 1901–2100 Depicted by World Maps of the Köppen-Geiger Climate Classification. Meteorol. Z. 2010, 19, 135. [Google Scholar] [CrossRef]
- Hobbi, S.; Michael Papalexiou, S.; Rupa Rajulapati, C.; Nerantzaki, S.D.; Markonis, Y.; Tang, G.; Clark, M.P. Detailed Investigation of Discrepancies in Köppen-Geiger Climate Classification Using Seven Global Gridded Products. J. Hydrol. 2022, 612, 128121. [Google Scholar] [CrossRef]
- Erinç, S. The Climates of Turkey According to Thornthwaite’s Classifications. Ann. Assoc. Am. Geogr. 1949, 39, 26–46. [Google Scholar] [CrossRef]
- Zeroual, A.; Assani, A.A.; Meddi, M.; Alkama, R. Assessment of Climate Change in Algeria from 1951 to 2098 Using the Köppen–Geiger Climate Classification Scheme. Clim. Dyn. 2019, 52, 227–243. [Google Scholar] [CrossRef]
- He, H.; Luo, G.; Cai, P.; Hamdi, R.; Termonia, P.; De Maeyer, P.; Kurban, A.; Li, J. Assessment of Climate Change in Central Asia from 1980 to 2100 Using the Köppen-Geiger Climate Classification. Atmosphere 2021, 12, 123. [Google Scholar] [CrossRef]
- Akçar, N.; Yavuz, V.; Ivy-Ochs, S.; Kubik, P.W.; Vardar, M.; Schlüchter, C. Paleoglacial Records from Kavron Valley, NE Turkey: Field and Cosmogenic Exposure Dating Evidence. Quat. Int. 2007, 164–165, 170–183. [Google Scholar] [CrossRef]
- Sarıkaya, M.A.; Çiner, A.; Zreda, M. Quaternary Glaciations of Turkey. In Developments in Quaternary Sciences; Elsevier: Amsterdam, The Netherlands, 2011; pp. 393–403. [Google Scholar]
- Reber, R.; Akçar, N.; Yesilyurt, S.; Yavuz, V.; Tikhomirov, D.; Kubik, P.W.; Schlüchter, C. Glacier Advances in Northeastern Turkey before and during the Global Last Glacial Maximum. Quat. Sci. Rev. 2014, 101, 177–192. [Google Scholar] [CrossRef]
- Dede, V.; Çiçek, I.; Sarıkaya, M.A.; Çiner, A.; Uncu, L. First Cosmogenic Geochronology from the Lesser Caucasus: Late Pleistocene Glaciation and Rock Glacier Development in the Karçal Valley, NE Turkey. Quat. Sci. Rev. 2017, 164, 54–67. [Google Scholar] [CrossRef]
- Sarikaya, M.A.; Çiner, A. Late Pleistocene Glaciations and Paleoclimate of Turkey. Bull. Miner. Res. Explor. 2015, 151, 107–127. [Google Scholar] [CrossRef]
- Kuzucuoğlu, C.; Çiner, A.; Kazancı, N. The Geomorphological Regions of Turkey. In World Geomorphological Landscapes; Springer International Publishing: Cham, Switzerland, 2019; pp. 41–178. ISBN 978-3-030-03513-6. [Google Scholar]
- Sarıkaya, M.A.; Çiner, A. Ice in Paradise: Glacial Heritage Landscapes of Anatolia. In World Geomorphological Landscapes; Springer International Publishing: Cham, Switzerland, 2019; pp. 397–411. ISBN 978-3-030-03513-6. [Google Scholar]
- Azzoni, R.S.; Bollati, I.M.; Pelfini, M.; Sarıkaya, M.A.; Zerboni, A. Geomorphology of a Recently Deglaciated High Mountain Area in Eastern Anatolia (Turkey). J. Maps 2022, 18, 258–267. [Google Scholar] [CrossRef]
- Çılğın, Z.; Evans, I.S.; Keserci, F.; Canpolat, E.; Bayrakdar, C. Morphometric Characteristics of Glacial Cirques and Former Glaciers in the Geyik Mountains, Western Taurus, Türkiye. Geomorphology 2024, 467, 109474. [Google Scholar] [CrossRef]
- Bayrakdar, C.; Çılğın, Z.; Sarış, F.; Yeşilyurt, S.; Keserci, F.; Büyükdeniz, Y.; Halis, O.; Vockenhuber, C.; Ivy-Ochs, S.; Akçar, N. Late Pleistocene Glacial History of Mount Karadağ, SW Türkiye. Geomorphology 2024, 467, 109467. [Google Scholar] [CrossRef]
- Doğan, U. Climate-Controlled River Terrace Formation in the Kızılırmak Valley, Cappadocia Section, Turkey: Inferred from Ar–Ar Dating of Quaternary Basalts and Terraces Stratigraphy. Geomorphology 2011, 126, 66–81. [Google Scholar] [CrossRef]
- Turoğlu, H. Kızılırmak Deltası ve Yakın Çevresinin Jeomorfolojik Özellikleri ve Insan Yaşamındaki Etkileri. Anadolu Araştırmaları 2010, 19, 99–111. [Google Scholar]
- Kuzucuoğlu, C. Geomorphological Landscapes in the Konya Plain and Surroundings. In World Geomorphological Landscapes; Springer International Publishing: Cham, Switzerland, 2019; pp. 353–368. ISBN 978-3-030-03513-6. [Google Scholar]
- Özsayın, E.; Gürbüz, A.; Kuzucuoğlu, C.; Erdoğu, B. Salted Landscapes in the Tuz Gölü (Central Anatolia): The End Stage of a Tertiary Basin. In World Geomorphological Landscapes; Springer International Publishing: Cham, Switzerland, 2019; pp. 339–351. ISBN 978-3-030-03513-6. [Google Scholar]
- Whittaker, A.C. How Do Landscapes Record Tectonics and Climate? Lithosphere 2012, 4, 160–164. [Google Scholar] [CrossRef]
- Scheingross, J.S.; Limaye, A.B.; McCoy, S.W.; Whittaker, A.C. The Shaping of Erosional Landscapes by Internal Dynamics. Nat. Rev. Earth Environ. 2020, 1, 661–676. [Google Scholar] [CrossRef]
- Westaway, R.; Pringle, M.; Yurtmen, S.; Demir, T.; Bridgland, D.; Rowbotham, G.; Maddy, D. Pliocene and Quaternary Regional Uplift in Western Turkey: The Gediz River Terrace Staircase and the Volcanism at Kula. Tectonophysics 2004, 391, 121–169. [Google Scholar] [CrossRef]
- Çiner, A.; Doğan, U.; Yıldırım, C.; Akçar, N.; Ivy-Ochs, S.; Alfimov, V.; Kubik, P.W.; Schlüchter, C. Quaternary Uplift Rates of the Central Anatolian Plateau, Turkey: Insights from Cosmogenic Isochron-Burial Nuclide Dating of the Kızılırmak River Terraces. Quat. Sci. Rev. 2015, 107, 81–97. [Google Scholar] [CrossRef]
- Karakoca, E.; Uncu, L.; Sarikaya, M.A.; Şahiner, E.; Köse, O. Geomorphology and Chronology of Late Quaternary Terrace Staircases of the Sakarya River, Northwest Türkiye. J. Quat. Sci. 2025, 40, 386–399. [Google Scholar] [CrossRef]
- Çiner, A. Turkish Glaciers and Glacial Deposits. In Developments in Quaternary Sciences; Elsevier: Amsterdam, The Netherlands, 2004; Volume 2, pp. 419–429. ISBN 978-0-444-51462-2. [Google Scholar]
- Köse, O.; Sarıkaya, M.A.; Çiner, A.; Candaş, A. Late Quaternary Glaciations and Cosmogenic 36Cl Geochronology of Mount Dedegöl, South-West Turkey. J. Quat. Sci. 2019, 34, 51–63. [Google Scholar] [CrossRef]
- Altınay, O.; Sarıkaya, M.A.; Çiner, A. Late-Glacial to Holocene Glaciers in the Turkish Mountains. Med. Geosc. Rev. 2020, 2, 119–133. [Google Scholar] [CrossRef]
- Evans, I.S.; Çılğın, Z.; Bayrakdar, C.; Canpolat, E. The Form, Distribution and Palaeoclimatic Implications of Cirques in Southwest Turkey (Western Taurus). Geomorphology 2021, 391, 107885. [Google Scholar] [CrossRef]
- Berndt, C.; Frenzel, P.; Çiner, A.; Ertunç, G.; Yıldırım, C. Holocene Marginal Marine Ostracod Successions from the Kızılırmak River Delta; Implications for Depositional Environments and Sea-Level Changes at the Southern Black Sea Coast. Sediment. Geol. 2019, 382, 103–121. [Google Scholar] [CrossRef]
- Yılmaz, E.; Çiçek, İ. Detailed Köppen-Geiger Climate Regions of Turkey. J. Hum. Sci. 2018, 15, 225–242. [Google Scholar] [CrossRef]
- Chen, R.-C.; Dewi, C.; Huang, S.-W.; Caraka, R.E. Selecting Critical Features for Data Classification Based on Machine Learning Methods. J. Big Data 2020, 7, 52. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Zafari, A.; Zurita-Milla, R.; Izquierdo-Verdiguier, E. A Multiscale Random Forest Kernel for Land Cover Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2842–2852. [Google Scholar] [CrossRef]
- Giaccone, E.; Oriani, F.; Tonini, M.; Lambiel, C.; Mariéthoz, G. Using Data-Driven Algorithms for Semi-Automated Geomorphological Mapping. Stoch. Environ. Res. Risk Assess. 2022, 36, 2115–2131. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chen, C.; Zhou, S.; Hu, W.; Zhang, W. Land Use Classification in Mine-Agriculture Compound Area Based on Multi-Feature Random Forest: A Case Study of Peixian. Front. Sustain. Food Syst. 2024, 7, 1335292. [Google Scholar] [CrossRef]
- Baccari, N.; Hamza, M.H.; Slama, T.; Sebei, A.; Ouerghi, S.; Elsheikh, R.; Rebai, N.; Hasanean, H.; Almazroui, M.; Elhag, M. Assessment of Machine Learning Techniques in Mapping Land Use/Land Cover Changes in a Semi-Arid Environment. Earth Syst. Env. 2025, 9, 519–539. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L. Manual on Setting up, Using, and Understanding Random Forests v3. 1. Stat. Dep. Univ. Calif. Berkeley CA USA 2002, 1, 3–42. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inform. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Erol, O. Dördüncü Çağ (Kuvaterner) Jeoloji ve Jeomorfolojisinin Ana Çizgileri; Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Basımevi: Ankara, Turkey, 1979. [Google Scholar]
- Varol, B.; Akiska, E. Evaporitler. In Kuvaterner Bilimi; Ankara Üniversitesi: Ankara, Turkey, 2012; pp. 361–388. ISBN 978-605-136-056-0. [Google Scholar]
- Bahadır, M. Akşehir Gölü’nde Alansal Değişimlerin Uzaktan Algilama Teknikleri İle Belirlenmesi. Marmara Coğrafya Derg. 2013, 28, 246–275. [Google Scholar]
- Atalay, İ. Sultandağları ile Akşehir ve Eber Gölleri Havzalarının Strüktüral, Jeomorfolojik ve Toprak Erozyonu Etüdü. Ph.D. Thesis, Atatürk Üniversitesi Basımevi, Erzurum, Turkey, 1977. [Google Scholar]
- İnandık, H. Sinop-Terme Arasındaki Kıyıların Morfolojik Etüdü. Türk Coğrafya Derg. 1957, 17, 51–71. [Google Scholar]
- Yalçınlar, İ. Samsun Bölgesinin Neojen ve Kuaterner Kıyı Depoları. İstanbul Üniver. Coğrafya Enstitüsü Derg. 1958, 9, 11–21. [Google Scholar]
- Köksal, A. Bafra Ovasının Coğrafya Etüdü; Üniversitesi Basımevi: İstanbul, Turkey, 1972; Volume 220. [Google Scholar]
- Atalay Dutucu, A. Yeşilırmak Deltası’nda Jeomorfolojik Değişiklikler ve Gelecek ile Ilgili Öngörüler. Ph.D. Thesis, İstanbul Üniversitesi: Sosyal Bilimler Enstitüsü, İstanbul, Turkey, 2016. [Google Scholar]
- Erinç, S. Glacial Evidences of the Climatic Variations in Turkey. Geogr. Ann. 1952, 34, 89–98. [Google Scholar] [CrossRef]
- Erinç, S. The Present Day Glaciation in Turkey. In Proceedings of the General assembly and 17th International Congress of the International Geographical Union, 8th Proceedings, Washington, DC, USA, 8–15 August 1952; pp. 326–330. [Google Scholar]
- Çiner, A. Recent Glaciers and Late Quaternary Glacial Deposits of Turkey. Geol. Bull. Turk. 2003, 46, 56–78. [Google Scholar]
- Yılmaz, E.; Çiçek, İ. Türkiye’de Köppen-Geiger İklim Tiplerindeki Zamanmekansal Değişimler. Ank. Üniver. Tar.-Coğrafya Fakültesi Derg. 2019, 59, 181–202. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F.; Chang, C.-C.; Lin, C.-C.; Meyer, M.D. Package ‘E1071’. R J. 2019, 1–67. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- ASF DAAC. ALOS PALSAR High Resolution Radiometric Terrain Corrected Product 2014. [CrossRef]
- Weifeng, X.; Jun, L.; Dailiang, P.; Jinge, J.; Hongxuan, X.; Hongyue, Y.; Jun, Y. Multi-source DEM accuracy evaluation based on ICESat-2 in Qinghai-Tibet Plateau, China. Int. J. Digit. Earth 2024, 17, 2297843. [Google Scholar] [CrossRef]
- Xu, W.; Li, J.; Peng, D.; Yin, H.; Jiang, J.; Xia, H.; Wen, D. Vertical Accuracy Assessment and Improvement of Five High-Resolution Open-Source Digital Elevation Models Using ICESat-2 Data and Random Forest: Case Study on Chongqing, China. Remote Sens. 2024, 16, 1903. [Google Scholar] [CrossRef]
- Travis, M.R. VIEWIT: Computation of Seen Areas, Slope, and Aspect for Land-Use Planning; Pacific Southwest Forest and Range Experiment Station, Forest Service, USA: Berkley, CA, USA, 1975; Volume 11. [Google Scholar]
- Tarboton, D.G. A New Method for the Determination of Flow Directions and Upslope Areas in Grid Digital Elevation Models. Water Resour. Res. 1997, 33, 309–319. [Google Scholar] [CrossRef]
- Horn, B.K.P. Hill Shading and the Reflectance Map. Proc. IEEE 1981, 69, 14–47. [Google Scholar] [CrossRef]
- Costa-Cabral, M.C.; Burges, S.J. Digital Elevation Model Networks (DEMON): A Model of Flow over Hillslopes for Computation of Contributing and Dispersal Areas. Water Resour. Res. 1994, 30, 1681–1692. [Google Scholar] [CrossRef]
- Heerdegen, R.G.; Beran, M.A. Quantifying Source Areas through Land Surface Curvature and Shape. J. Hydrol. 1982, 57, 359–373. [Google Scholar] [CrossRef]
- Olaya, V. Chapter 6 Basic Land-Surface Parameters. In Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2009; pp. 141–169. [Google Scholar] [CrossRef]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative Analysis of Land Surface Topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Haralick, R.M. Ridges and Valleys on Digital Images. Comput. Vision Graph. Image Process. 1983, 22, 28–38. [Google Scholar] [CrossRef]
- Florinsky, I.V. Computation of the Third-order Partial Derivatives from a Digital Elevation Model. Int. J. Geogr. Inf. Sci. 2009, 23, 213–231. [Google Scholar] [CrossRef]
- Beasley, D.B.; Huggins, L.F. Answers-User’s Manual (EPA-905/9-82-001); Environmental Protection Agency Great Lakes National Program Office: Chicago, IL, USA, 1982.
- Evans, I.S. An Integrated System of Terrain Analysis and Slope Mapping: Final Report on Grant DA-ERO-591-73-G0040; Durham University: Durham, UK, 1979. [Google Scholar]
- Bauer, J.; Rohdenburg, H.; Bork, H. Ein Digitales Reliefmodell Als Vorraussetzung Für Ein Deterministisches Modell Der Wasser-Und Stoff-Flüsse. Landschaftsgenese Landschaftsökologie 1985, 10, 1–15. [Google Scholar]
- Tarini, M.; Cignoni, P.; Montani, C. Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization. IEEE Trans. Visual. Comput. Graph. 2006, 12, 1237–1244. [Google Scholar] [CrossRef]
- Köthe, R.; Lehmeier, F. SARA-System Zur Automatischen Relief-Analyse. User Man. 2 1996, 2. [Google Scholar]
- Marchi, L.; Dalla Fontana, G. GIS Morphometric Indicators for the Analysis of Sediment Dynamics in Mountain Basins. Env. Geol. 2005, 48, 218–228. [Google Scholar] [CrossRef]
- Melton, M.A. The Geomorphic and Paleoclimatic Significance of Alluvial Deposits in Southern Arizona. J. Geol. 1965, 73, 1–38. [Google Scholar] [CrossRef]
- O’Callaghan, J.F.; Mark, D.M. The Extraction of Drainage Networks from Digital Elevation Data. Comput. Vis. Graph. Image Process. 1984, 28, 323–344. [Google Scholar] [CrossRef]
- Böhner, J.; Koethe, R.; Conrad, O.; Gross, J.; Ringeler, A.; Selige, T. Soil Regionalisation by Means of Terrain Analysis and Process Parameterisation. Soil Classif. 2001, 7, 213. [Google Scholar]
- Böhner, J.; Selige, T. Spatial Prediction of Soil Attributes Using Terrain Analysis and Climate Regionalisation. Gott. Geogr. Abh. 2006, 115, 13–28. [Google Scholar]
- Riley, S.; Degloria, S.; Elliot, S.D. A Terrain Ruggedness Index That Quantifies Topographic Heterogeneity. Int. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Iwahashi, J.; Pike, R.J. Automated Classifications of Topography from DEMs by an Unsupervised Nested-Means Algorithm and a Three-Part Geometric Signature. Geomorphology 2007, 86, 409–440. [Google Scholar] [CrossRef]
- Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA Spatial Modeling of Plant Species Distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- Weiss, A. Topographic Position and Landforms Analysis. In Proceedings of the Poster Presentation, Esri User Conference, San Diego, CA, USA, 9–13 July 2001; Volume 200. [Google Scholar]
- Gallant, J.; Wilson, J. Terrain Analysis: Principles and Applications: Primary Topographic Attributes; John Wiley and Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: London, UK, 2002; ISBN 978-0-203-40721-9. [Google Scholar]
- Häntzschel, J.; Goldberg, V.; Bernhofer, C. GIS-based Regionalisation of Radiation, Temperature and Coupling Measures in Complex Terrain for Low Mountain Ranges. Meteorol. Appl. 2005, 12, 33–42. [Google Scholar] [CrossRef]
- Yokoyama, R.; Shirasawa, M.; Pike, R.J. Visualizing Topography by Openness: A New Application of Image Processing to Digital Elevation Models. Photogramm. Eng. Remote Sens. 2002, 68, 257–266. [Google Scholar]
- Prima, O.D.A.; Echigo, A.; Yokoyama, R.; Yoshida, T. Supervised Landform Classification of Northeast Honshu from DEM-Derived Thematic Maps. Geomorphology 2006, 78, 373–386. [Google Scholar] [CrossRef]
- Anders, N.; Seijmonsbergen, A.; Bouten, W. Multi-Scale and Object-Oriented Image Analysis of High-Res LiDAR Data for Geomorphological Mapping in Alpine Mountains. Proc. Geomorphometry 2009, 31, 61–63. [Google Scholar]
- Lohr, S.L. Sampling: Design and Analysis, 3rd ed.; Chapman and Hall/CRC: New York, NY, USA, 2021; ISBN 978-0-429-29889-9. [Google Scholar]
- Wadoux, A.M.J.-C.; Brus, D.J. How to Compare Sampling Designs for Mapping? Eur. J. Soil Sci. 2021, 72, 35–46. [Google Scholar] [CrossRef]
- Cabello-Solorzano, K.; Ortigosa de Araujo, I.; Peña, M.; Correia, L.; Tallón-Ballesteros, A.J. The Impact of Data Normalization on the Accuracy of Machine Learning Algorithms: A Comparative Analysis. In Proceedings of the 18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023), Salamanca, Spain, 5–7 September 2023; García Bringas, P., Pérez García, H., Martínez de Pisón, F.J., Martínez Álvarez, F., Troncoso Lora, A., Herrero, Á., Calvo Rolle, J.L., Quintián, H., Corchado, E., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 344–353. [Google Scholar]
- Ou, G.; Zhu, Z.; Dong, B. Introduction to Data Science; World Scientific: Singapore, 2023. [Google Scholar]
- Gutierrez, D.D. Machine Learning and Data Science: An Introduction to Statistical Learning Methods with R; Technics Publications: Sedona, AZ, USA, 2015. [Google Scholar]
- Nokeri, T.C. Data Science Revealed: With Feature Engineering, Data Visualization, Pipeline Development, and Hyperparameter Tuning; Apress: Berkeley, CA, USA, 2021; ISBN 978-1-4842-6869-8. [Google Scholar] [CrossRef]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: Cambridge, UK, 2014; ISBN 9781107298019. [Google Scholar] [CrossRef]
- Bartz, E.; Bartz-Beielstein, T.; Zaefferer, M.; Mersmann, O. Hyperparameter Tuning for Machine and Deep Learning with R: A Practical Guide; Springer Nature: Singapore, 2023; ISBN 978-981-19-5169-5. [Google Scholar] [CrossRef]
- Pham, K.; Kim, D.; Park, S.; Choi, H. Ensemble Learning-Based Classification Models for Slope Stability Analysis. CATENA 2021, 196, 104886. [Google Scholar] [CrossRef]
- Zhang, P.; Yin, Z.-Y.; Jin, Y.-F.; Liu, X.-F. Modelling the Mechanical Behaviour of Soils Using Machine Learning Algorithms with Explicit Formulations. Acta Geotech. 2022, 17, 1403–1422. [Google Scholar] [CrossRef]
- Ghezelbash, R.; Maghsoudi, A.; Shamekhi, M.; Pradhan, B.; Daviran, M. Genetic Algorithm to Optimize the SVM and K-Means Algorithms for Mapping of Mineral Prospectivity. Neural Comput. Appl. 2023, 35, 719–733. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing and Graphics. Found. Stat. Comput. 2022. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Viera, A.J.; Garrett, J.M. Understanding Interobserver Agreement: The Kappa Statistic. Fam. Med. 2005, 37, 360–363. [Google Scholar]
- Bhattacharya, S. A Primer on Machine Learning in Subsurface Geosciences; Springer Briefs in Petroleum Geoscience & Engineering; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-71767-4. [Google Scholar]
- Lin, Y.; Guo, J. Fuzzy Geospatial Objects—Based Wetland Remote Sensing Image Classification: A Case Study of Tianjin Binhai New Area. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104051. [Google Scholar] [CrossRef]
- Shah, C. A Hands-On Introduction to Data Science. Available online: https://www.cambridge.org/highereducation/books/a-hands-on-introduction-to-data-science/9D55C29C653872F13289EA7909953842 (accessed on 15 July 2025).
- Siqueira, R.G.; Veloso, G.V.; Fernandes-Filho, E.I.; Francelino, M.R.; Schaefer, C.E.G.R.; Corrêa, G.R. Evaluation of Machine Learning Algorithms to Classify and Map Landforms in Antarctica. Earth Surf. Process. Landf. 2022, 47, 367–382. [Google Scholar] [CrossRef]
- Rainio, O.; Teuho, J.; Klén, R. Evaluation Metrics and Statistical Tests for Machine Learning. Sci. Rep. 2024, 14, 6086. [Google Scholar] [CrossRef] [PubMed]
- Goodling, P.; Belitz, K.; Stackelberg, P.; Fleming, B. A Spatial Machine Learning Model Developed from Noisy Data Requires Multiscale Performance Evaluation: Predicting Depth to Bedrock in the Delaware River Basin, USA. Environ. Model. Softw. 2024, 179, 106124. [Google Scholar] [CrossRef]
- Han, H.; Guo, X.; Yu, H. Variable Selection Using Mean Decrease Accuracy and Mean Decrease Gini Based on Random Forest. In Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016; IEEE: Beijing, China, 2016; pp. 219–224. [Google Scholar]
- Pouyan, S.; Pourghasemi, H.R.; Bordbar, M.; Rahmanian, S.; Clague, J.J. A Multi-Hazard Map-Based Flooding, Gully Erosion, Forest Fires, and Earthquakes in Iran. Sci. Rep. 2021, 11, 14889. [Google Scholar] [CrossRef]
- Scornet, E. Trees, Forests, and Impurity-Based Variable Importance in Regression. Ann. Inst. H. Poincaré Probab. Statist. 2023, 59, 21–52. [Google Scholar] [CrossRef]
- Derbyshire, E. (Ed.) Climatic Geomorphology; Macmillan Education UK: London, UK, 1973; ISBN 978-0-333-13653-9. [Google Scholar]
- Gutierrez, M.; Benito, G. Climatic Geomorphology; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
K-G Climate Classes Observed in Türkiye | Description |
---|---|
B | Arid |
C | Temperate |
D | Cold |
Geomorphometric Parameters | References |
---|---|
Height (Elevation) | The data source was used to obtain parameters [95]. |
Slope | [98,99,100,101,102,103,104,105,106,107,108,109] |
General Curvature | |
Profile Curvature | |
Plan Curvature | |
Tangential Curvature | |
Longitudinal Curvature | |
Cross-Sectional Curvature | |
Minimal Curvature | |
Maximal Curvature | |
Total Curvature | |
Flow Line Curvature | |
Analytical Hillshading | [110] |
Convergence Index | [111] |
Catchment Area | [112,113,114] |
Maximum Height (Altitude) | |
Melton Ruggedness Number | |
Valley Depth | |
Topographic Wetness Index | [115,116] |
Terrain Ruggedness Index | [117] |
Convexity | [118] |
Texture | [118] |
Topographic Position Index | [119,120,121] |
Visible Sky | [22,122,123] |
Sky View Factor | |
Sky View Factor Simplified | |
Terrain View Factor | |
Average View Distance | |
Positive Openness | [124,125,126] |
Negative Openness |
Geomorphometric Parameter | n | Raw Data | Normalized Data | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Median | Min | Max | Mean | Median | ||
Height (Elevation) | 3000 | 17 | 3988 | 1185.6174 | 998 | −1 | 1 | −0.3250 | −0.4248 |
Slope | 3000 | 0 | 1.3215 | 0.1736 | 0.0565 | −1 | 1 | −0.6704 | −0.8994 |
General Curvature | 3000 | −0.2124 | 0.1312 | −0.0002 | 0 | −1 | 1 | 0.0702 | 0.2000 |
Profile Curvature | 3000 | −0.0218 | 0.0195 | −8.40 × 10−5 | 0 | −1 | 1 | 0.0358 | 0.0563 |
Plan Curvature | 3000 | −0.16 | 0.2515 | 0.0008 | 0 | −1 | 1 | −0.1074 | −0.2224 |
Tangential Curvature | 3000 | −0.0242 | 0.0320 | 5.94 × 10−5 | 0 | −1 | 1 | −0.0394 | −0.1387 |
Longitudinal Curvature | 3000 | −0.1694 | 0.0737 | −0.0002 | 0 | −1 | 1 | 0.1653 | 0.3425 |
Cross-Sectional Curvature | 3000 | −0.0455 | 0.0714 | 9.42 × 10−5 | 0 | −1 | 1 | −0.0919 | −0.2212 |
Minimal Curvature | 3000 | −0.1185 | 0.0262 | −0.0025 | −0.001 | −1 | 1 | 0.4284 | 0.5813 |
Maximal Curvature | 3000 | −0.0114 | 0.0635 | 0.0025 | 0.001 | −1 | 1 | −0.4500 | −0.5934 |
Total Curvature | 3000 | 0 | 0.0140 | 5.28 × 10−5 | 1.50 × 10−5 | −1 | 1 | −0.9267 | −0.9971 |
Flow Line Curvature | 3000 | −0.2263 | 0.2667 | 0.0001 | 0 | −1 | 1 | −0.2877 | −0.0819 |
Analytical Hillshading | 3000 | 0.0256 | 2.0115 | 0.7987 | 0.785398 | −1 | 1 | −0.1058 | −0.2060 |
Convergence Index | 3000 | −100 | 100 | 0.1626 | 0 | −1 | 1 | 0.0018 | 0 |
Catchment Area | 3000 | 12.5 | 42850 | 223.6853 | 12.6513 | −1 | 1 | −0.9900 | −1.0000 |
Maximum Height (Altitude) | 3000 | 22 | 4014 | 1213.4611 | 998 | −1 | 1 | −0.3177 | −0.4264 |
Melton Ruggedness Number | 3000 | 0 | 31.1477 | 1.5494 | 0 | −1 | 1 | −0.8579 | −1 |
Valley Depth | 3000 | 0 | 695.3850 | 100.8271 | 82.7508 | −1 | 1 | −0.6309 | −0.7124 |
Topographic Wetness Index | 3000 | 2.7986 | 13.3214 | 7.6506 | 7.2668 | −1 | 1 | −0.1239 | −0.3085 |
Terrain Ruggedness Index | 3000 | 0 | 31.8904 | 1.7025 | 0.6325 | −1 | 1 | −0.7839 | −0.9603 |
Convexity | 3000 | 0 | 71.3827 | 33.6363 | 33.0040 | −1 | 1 | 0.0767 | −0.0511 |
Texture | 3000 | 0 | 20.2032 | 0.7642 | 0 | −1 | 1 | −0.9239 | −1 |
Topographic Position Index | 3000 | −81.4456 | 44.4715 | −0.0796 | −0.0102 | −1 | 1 | 0.1257 | 0.2820 |
Visible Sky | 3000 | 48.2083 | 100 | 92.5771 | 97.4864 | −1 | 1 | 0.6186 | 0.9049 |
Sky View Factor | 3000 | 0.4052 | 1 | 0.9547 | 0.9977 | −1 | 1 | 0.7950 | 0.9941 |
Sky View Factor Simplified | 3000 | 0.6234 | 1 | 0.9793 | 0.9992 | −1 | 1 | 0.8468 | 0.9947 |
Terrain View Factor | 3000 | 0.000001 | 0.3335 | 0.0245 | 0.0015 | −1 | 1 | −0.8134 | −0.9943 |
Average View Distance | 3000 | 20.3125 | 10000 | 1820.3922 | 1526.6550 | −1 | 1 | −0.6148 | −0.6984 |
Positive Openness | 3000 | 0.7573 | 1.5902 | 1.4562 | 1.5314 | −1 | 1 | 0.6012 | 0.9166 |
Negative Openness | 3000 | 0.8034 | 1.5929 | 1.4652 | 1.5327 | −1 | 1 | 0.5909 | 0.8931 |
Model Training/Evaluation Parameters and Training Results | |||||
---|---|---|---|---|---|
Model | Parameter | Ranges | Optimal Value | Accuracy (%) | Kappa Value |
RF | mtry (number of variables tried at each split) | 1, 2, 3, 4, 5, …, 16 | 10 | 100 | 1 |
RF | ntree (number of trees) | 100, 200, 300, …, 1000 | 800 | ||
SVM | C (regularization parameter) | 1, 2, 4, 8, 16 | 2 | 100 | 1 |
KNN | k (number of neighbors) | 1, 2, 3, 4, 5, …, 29 | 3 | 100 | 1 |
Model | Accuracy (%) | Kappa | Climate Class | Precision (%) | Sensitivity (%) | Specificity (%) | F1 Score (%) |
---|---|---|---|---|---|---|---|
RF | 99.27 | 0.99 | Temperate | 100.00 | 100.00 | 100.00 | 100.00 |
Arid | 100.00 | 97.80 | 100.00 | 98.89 | |||
Cold | 97.85 | 100.00 | 98.90 | 98.91 | |||
SVM | 99.70 | 0.99 | Temperate | 100.00 | 100.00 | 100.00 | 100.00 |
Arid | 100.00 | 99.00 | 100.00 | 99.50 | |||
Cold | 99.01 | 100.00 | 99.50 | 99.50 | |||
KNN | 99.30 | 0.99 | Temperate | 100.00 | 100.00 | 100.00 | 100.00 |
Arid | 99.20 | 98.60 | 99.60 | 98.90 | |||
Cold | 98.61 | 99.20 | 99.30 | 98.90 |
Feature Set Description | Model | Accuracy (%) | Kappa | Climate Class | Precision (%) | Sensitivity (%) | Specificity (%) | F1 Score (%) |
---|---|---|---|---|---|---|---|---|
21 parameters (after correlation filtering) | RF | 98.40 | 0.98 | Temperate | 100.00 | 100.00 | 100.00 | 100.00 |
Arid | 100.00 | 95.20 | 100.00 | 97.54 | ||||
Cold | 95.42 | 100.00 | 97.60 | 97.66 | ||||
SVM | 99.73 | 0.99 | Temperate | 100.00 | 100.00 | 100.00 | 100.00 | |
Arid | 100.00 | 99.20 | 100.00 | 99.60 | ||||
Cold | 99.21 | 100.00 | 99.60 | 99.60 | ||||
KNN | 99.60 | 0.99 | Temperate | 100.00 | 100.00 | 100.00 | 100.00 | |
Arid | 99.60 | 99.20 | 99.80 | 99.40 | ||||
Cold | 99.20 | 99.60 | 99.60 | 99.40 | ||||
20 parameters (after correlation and elevation removed) | RF | 56.07 | 0.34 | Temperate | 0.70 | 0.20 | 86.40 | 0.30 |
Arid | 40.84 | 68.20 | 50.60 | 51.09 | ||||
Cold | 94.51 | 99.80 | 97.10 | 97.08 | ||||
SVM | 69.27 | 0.53 | Temperate | 53.38 | 99.40 | 56.60 | 69.46 | |
Arid | 100.00 | 8.80 | 100.00 | 16.18 | ||||
Cold | 94.86 | 99.60 | 97.30 | 97.17 | ||||
KNN | 62.13 | 0.43 | Temperate | 45.82 | 50.40 | 70.20 | 48.00 | |
Arid | 43.42 | 37.60 | 75.50 | 40.30 | ||||
Cold | 95.16 | 98.40 | 97.50 | 95.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özmen, H.B.; Pekkan, E. Classification of Climate-Driven Geomorphic Provinces Using Supervised Machine Learning Methods. Appl. Sci. 2025, 15, 9894. https://doi.org/10.3390/app15189894
Özmen HB, Pekkan E. Classification of Climate-Driven Geomorphic Provinces Using Supervised Machine Learning Methods. Applied Sciences. 2025; 15(18):9894. https://doi.org/10.3390/app15189894
Chicago/Turabian StyleÖzmen, Hasan Burak, and Emrah Pekkan. 2025. "Classification of Climate-Driven Geomorphic Provinces Using Supervised Machine Learning Methods" Applied Sciences 15, no. 18: 9894. https://doi.org/10.3390/app15189894
APA StyleÖzmen, H. B., & Pekkan, E. (2025). Classification of Climate-Driven Geomorphic Provinces Using Supervised Machine Learning Methods. Applied Sciences, 15(18), 9894. https://doi.org/10.3390/app15189894