Analysis of Dynamic Response Characteristics and Failure Pattern of Rock Slopes Containing X-Joints and Underlying Weak Interlayers
Abstract
1. Introduction
2. Geological Setting of the Study Slope
3. Shaking Table Test
3.1. Similar Materials of Slope Model
3.2. Test Equipment and Model Boundaries
3.3. Loading Options
4. Results
4.1. Dynamic Response of the Slope
4.1.1. Transfer Function Analysis
4.1.2. Response Characteristics Under Different Input Directions
- (1)
- Response characteristics in horizontal input direction
- (2)
- Response characteristics in vertical input direction
- (3)
- Influence of different input directions
4.2. Phase Classification of Failure and Damage Identifications in the Slope
4.2.1. Hilbert Spectrum Analysis
4.2.2. Marginal Spectrum Analysis
4.3. Seismic-Induced Instability Mechanism of the Slope
- (1)
- Progressive failure evolution process of Slope Model I
- (2)
- Progressive failure evolution process of Slope Model II
5. Discussion
- Integrity reduction: X-joints network diminishes slope cohesion and accelerates crack propagation.
- Stress field complexity: multi-directional joints promote diverse stress concentration paths and delayed energy release.
- Dispersed failure patterns: fragmentation and multi-surface failure modes increase the likelihood of avalanche-type behavior.
6. Conclusions
- (1)
- Due to the presence of a weak interlayer, the horizontal acceleration of low-frequency seismic waves responds significantly at the slope toe (beneath the weak interlayer), exhibiting a distinct “seismic isolation effect,” which is not influenced by the amplitude of the input seismic waves. When the frequency of the input seismic waves approaches the natural frequency of the slope model, the acceleration amplification factor increases sharply, resulting in a “resonance” phenomenon. In the middle and lower parts of the slope, and under low-amplitude seismic excitation, the response to vertical seismic waves is more pronounced.
- (2)
- By combining the changes in PAHS values obtained from the HHT analysis with the macroscopic deformation and failure phenomena of the slope, the failure process of the rock slope containing X-joints and underlying weak interlayer is divided into four stages: elastic stage (0.1–0.2 g), plastic stage (0.2–0.5 g), cumulative damage stage (0.5–0.7 g), and unstable failure stage (0.7–1.1 g). Marginal spectrum analysis further identifies the location of the damage within the slope.
- (3)
- The presence of X-joints significantly reduces the integrity of the slope rock mass, leading to earlier initiation of failure and a shorter elastic failure stage. During the plastic failure stage, X-joints facilitate multi-directional stress redistribution and reflection within the slope, delaying energy dissipation, prolonging the duration of this stage, and resulting in a more dispersed failure pattern.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Li, T.; Li, W.; Yuan, Z. Late cenozoic and present tectonic deformation in the Pamir salient, Northwestern China. Seismol. Geol. 2011, 33, 241–259. (In Chinese) [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Q.; Li, Z.; Li, H.; Cai, Z.; Liang, F.; Dong, H.; Cao, H.; Chen, X.; Huang, X.; et al. Indo-Asian Collision: Tectonic Transition from Compression to Strike Slip. ACTA Geol. Sin. 2016, 90, 1–23. (In Chinese) [Google Scholar] [CrossRef]
- Cowgill, E. Cenozoic Right-Slip Faulting along the Eastern Margin of the Pamir Salient, Northwestern China. Geol. Soc. Am. Bull. 2010, 122, 145–161. [Google Scholar] [CrossRef]
- Shou, K.-J.; Wang, C.-F. Analysis of the Chiufengershan Landslide Triggered by the 1999 Chi-Chi Earthquake in Taiwan. Eng. Geol. 2003, 68, 237–250. [Google Scholar] [CrossRef]
- Huang, C.-C. Influence of Surface-Normal Ground Acceleration on the Initiation of the Jih-Feng-Erh-Shan Landslide during the 1999 Chi-Chi, Taiwan, Earthquake. Bull. Seismol. Soc. Am. 2004, 91, 953–958. [Google Scholar] [CrossRef]
- Sepúlveda, S.A.; Murphy, W.; Jibson, R.W.; Petley, D.N. Seismically Induced Rock Slope Failures Resulting from Topographic Amplification of Strong Ground Motions: The Case of Pacoima Canyon, California. Eng. Geol. 2005, 80, 336–348. [Google Scholar] [CrossRef]
- Brideau, M.-A.; Yan, M.; Stead, D. The Role of Tectonic Damage and Brittle Rock Fracture in the Development of Large Rock Slope Failures. Geomorphology 2009, 103, 30–49. [Google Scholar] [CrossRef]
- Yuan, R.; Tang, C.-L.; Deng, Q. Effect of the Acceleration Component Normal to the Sliding Surface on Earthquake-Induced Landslide Triggering. Landslides 2015, 12, 335–344. [Google Scholar] [CrossRef]
- Cui, S.; Wang, G.; Pei, X.; Huang, R.; Kamai, T. On the Initiation and Movement Mechanisms of a Catastrophic Landslide Triggered by the 2008 Wenchuan (Ms 8.0) Earthquake in the Epicenter Area. Landslides 2017, 14, 805–819. [Google Scholar] [CrossRef]
- Cui, S. Seismic responses of wake interlayer and initiation mechanisms of large landslides during strong earthquake. Chin. J. Rock Mech. Eng. 2018, 37, 1560. (In Chinese) [Google Scholar] [CrossRef]
- Wang, B.; Che, A.; Ge, X. Shaking Table Test on Earthquake Response of Discontinuous Medium High and Steep RockSlope. J. Shanghai Jiaotong Univ. 2015, 49, 951–956. (In Chinese) [Google Scholar] [CrossRef]
- Song, D.; Che, A.; Chen, Z.; Ge, X. Seismic Stability of a Rock Slope with Discontinuities under Rapid Water Drawdown and Earthquakes in Large-Scale Shaking Table Tests. Eng. Geol. 2018, 245, 153–168. [Google Scholar] [CrossRef]
- Feng, X.; Jiang, Q.; Zhang, X.; Zhang, H. Shaking Table Model Test on the Dynamic Response of Anti-Dip Rock Slope. Geotech. Geol. Eng. 2019, 37, 1211–1221. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Q.; Zhou, F.; Yang, Z.; Wang, F. Shaking table test for seismic responses of slopes with a weak interlayer. Chin. J. Rock Mech. Eng. 2015, 34, 994–1005. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Z.-L.; Hu, X.; Xu, Q. Experimental Study of Motion Characteristics of Rock Slopes with Weak Intercalation under Seismic Excitation. J. Mt. Sci. 2016, 13, 546–556. [Google Scholar] [CrossRef]
- Liu, H.; Qiu, T.; Xu, Q. Dynamic Acceleration Response of a Rock Slope with a Horizontal Weak Interlayer in Shaking Table Tests. PLoS ONE 2021, 16, e0250418. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Zhang, J.; Wu, J.; Yan, K. Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table. Rock Mech. Rock Eng. 2016, 49, 3243–3256. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, J.; Liu, H.; Wang, C. Seismic Response and Damage Model Analysis of Rocky Slopes with Weak Interlayers. Open Geosci. 2025, 17, 20220621. [Google Scholar] [CrossRef]
- Yu, L. Multiple Phases of Tectonic Deformation and Its Impact on Landslides Characterized by the Maotai Syncline in Southeast Sichuan, China. Master’s Thesis, Chongqing Jiaotong University, Chongqing, China, 2024. (In Chinese). [Google Scholar]
- Zhang, Y.; Wang, Q.; Guo, Z.; Gao, W. Collapse Distribution, Controls and Approaches in Bailixia Resort of Yesanpo Geopark. Resour. Ind. 2007, 9, 82–87. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, X. Study on the Relationship Between Geological Hazards and Regional Geological Environment in Guangxin District, Shangrao City, Jiangxi Province. Master’s Thesis, Guilin University of Technology, Guilin, China, 2023. (In Chinese). [Google Scholar]
- Zhu, X. Joint Structure in the Dam Area of the Yebatan Hydropower Station on the Jinsha River. Acta Geol. Sichuan 2009, 29, 449–451, 454. (In Chinese) [Google Scholar] [CrossRef]
- Wang, S.; Wang, D.; Wang, Y.; Huang, W.; Xu, Q. Joint structure in the dam area of the Jinchuan Hydropower Station on the Dadu River and its influence of project stability. Geol. China 2007, 34, 682–687. (In Chinese) [Google Scholar] [CrossRef]
- Wang, T. Development characteristics and engineering response of rock joints and fissures in Luliang Mountain Area—Taking the characteristics of rock joints and fissures along a highway as an example. West-China Explor. Eng. 2020, 32, 23–25, 30. (In Chinese) [Google Scholar] [CrossRef]
- Thomas, J.C.; Chauvin, A.; Gapais, D.; Bazhenov, M.L.; Perroud, H.; Cobbold, P.R.; Burtman, V.S. Paleomagnetic Evidence for Cenozoic Block Rotations in the Tadjik Depression (Central Asia). J. Geophys. Res. 1994, 99, 15141–15160. [Google Scholar] [CrossRef]
- Cowgill, E.; Yin, A.; Harrison, T.M.; Wang, X.F. Reconstruction of the Altyn Tagh Fault Based on U-Pb Geochronology: Role of Back Thrusts, Mantle Sutures, and Heterogeneous Crustal Strength in Forming the Tibetan Plateau. J. Geophys. Res. 2003, 108, 2002JB002080. [Google Scholar] [CrossRef]
- Sobel, E.R.; Dumitru, T.A. Thrusting and Exhumation around the Margins of the Western Tarim Basin during the India-Asia Collision. J. Geophys. Res. 1997, 102, 5043–5063. [Google Scholar] [CrossRef]
- Arrowsmith, J.R.; Strecker, M.R. Seismotectonic Range-Front Segmentation and Mountain-Belt Growth in the Pamir-Alai Region, Kyrgyzstan (India-Eurasia Collision Zone). Geol. Soc. Am. Bull. 1999, 111, 1665. [Google Scholar] [CrossRef]
- Zubovich, A.V.; Wang, X.; Scherba, Y.G.; Schelochkov, G.G.; Reilinger, R.; Reigber, C.; Mosienko, O.I.; Molnar, P.; Michajljow, W.; Makarov, V.I.; et al. GPS Velocity Field for the Tien Shan and Surrounding Regions: GPS Velocity Field for the Tien Shan. Tectonics 2010, 29, TC6014. [Google Scholar] [CrossRef]
- Ischuk, A.; Bendick, R.; Rybin, A.; Molnar, P.; Khan, S.F.; Kuzikov, S.; Mohadjer, S.; Saydullaev, U.; Ilyasova, Z.; Schelochkov, G.; et al. Kinematics of the Pamir and Hindu Kush Regions from GPS Geodesy. JGR Solid Earth 2013, 118, 2408–2416. [Google Scholar] [CrossRef]
- Strecker, M.R.; Hilley, G.E.; Ramón Arrowsmith, J.; Coutand, I. Differential Structural and Geomorphic Mountain-Front Evolution in an Active Continental Collision Zone: The Northwest Pamir, Southern Kyrgyzstan. Geol. Soc. Am. Bull. 2003, 115, 166–181. [Google Scholar] [CrossRef]
- Reigber, C.; Michel, G.W.; Galas, R.; Angermann, D.; Klotz, J.; Chen, J.Y.; Papschev, A.; Arslanov, R.; Tzurkov, V.E.; Ishanov, M.C. New Space Geodetic Constraints on the Distribution of Deformation in Central Asia. Earth Planet. Sci. Lett. 2001, 191, 157–165. [Google Scholar] [CrossRef]
- Yuan, Z.; Chen, J.; Owen, L.A.; Hedrick, K.A.; Caffee, M.W.; Li, W.; Schoenbohm, L.M.; Robinson, A.C. Nature and Timing of Large Landslides within an Active Orogen, Eastern Pamir, China. Geomorphology 2013, 182, 49–65. [Google Scholar] [CrossRef]
- Jibson, R.W. Use of Landslides for Paleoseismic Analysis. Eng. Geol. 1996, 43, 291–323. [Google Scholar] [CrossRef]
- Shi, A.-W.; Wang, Y.-F.; Cheng, Q.-G.; Lin, Q.-W.; Li, T.-H.; Wünnemann, B. The Largest Rock Avalanche in China at Iymek, Eastern Pamir, and Its Spectacular Emplacement Landscape. Geomorphology 2023, 421, 108521. [Google Scholar] [CrossRef]
- Argentin, A.-L.; Hauthaler, T.; Liebl, M.; Robl, J.; Hergarten, S.; Prasicek, G.; Salcher, B.; Hölbling, D.; Pfalzner-Gibbon, C.; Mandl, L.; et al. Influence of Rheology on Landslide-Dammed Lake Impoundment and Sediment Trapping: Back-Analysis of the Hintersee Landslide Dam. Geomorphology 2022, 414, 108363. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Cheng, Q.-G.; Shi, A.-W.; Yuan, Y.-Q.; Qiu, Y.-H.; Yin, B.-M. Characteristics and Transport Mechanism of the Nyixoi Chongco Rock Avalanche on the Tibetan Plateau, China. Geomorphology 2019, 343, 92–105. [Google Scholar] [CrossRef]
- Jarman, D.; Agliardi, F.; Crosta, G.B. Megafans and Outsize Fans from Catastrophic Slope Failures in Alpine Glacial Troughs: The Malser Haide and the Val Venosta Cluster, Italy; Special Publications: London, UK, 2011; Volume 351, pp. 253–277. [Google Scholar] [CrossRef]
- Yang, X.; Dong, J.; Yang, J.; Han, X. Similar Material Proportioning Tests and Mechanical Properties Based on Orthogonal Design. Materials 2023, 16, 6439. [Google Scholar] [CrossRef]
- Li, S.C.; Wang, H.P.; Zhang, Q.Y.; Li, Y. New Type Geo-Mechanical Similar Material Experiments Research and Its Application. Key Eng. Mater. 2006, 326–328, 1801–1804. [Google Scholar] [CrossRef]
- Valério, D.; Tejado, I. Identifying a Non-Commensurable Fractional Transfer Function from a Frequency Response. Signal Process. 2015, 107, 254–264. [Google Scholar] [CrossRef]
- Fan, G.; Zhang, J.; Fu, X.; Wang, M. Application of transfer function to on-site shaking table test. Rock Soil Mech. 2016, 37, 2869–2876. [Google Scholar] [CrossRef]
- Zhang, C.; Miao, S.; Su, L. Seismic Behaviour of Granular Slope under Railway Embankment in Large-Scale Shaking Table Test. Eng. Geol. 2022, 305, 106714. [Google Scholar] [CrossRef]
- Zhu, J.B.; Perino, A.; Zhao, G.F.; Barla, G.; Li, J.C.; Ma, G.W.; Zhao, J. Seismic Response of a Single and a Set of Filled Joints of Viscoelastic Deformational Behaviour: Seismic Response of Viscoelastic Filled Joint. Geophys. J. Int. 2011, 186, 1315–1330. [Google Scholar] [CrossRef]
- Huang, R.; Yu, J. Modelling of the effects of properties of a buried weak layer on seismic waves. J. Eng. Geol. 2003, 11, 312–317. (In Chinese) [Google Scholar] [CrossRef]
- Fan, L.; Li, N. Transmission model of weak intercalation and its vibration isolation properties. Chin. J. Rock Mech. Eng. 2005, 24, 2456–2462. (In Chinese) [Google Scholar] [CrossRef]
- Taber, J.J.; Smith, E.G.C. Frequency Dependent Amplification of Weak Ground Motions in Porirua and Lower Hutt, New Zealand. Bull. N. Z. Soc. Earthq. Eng. 1992, 25, 303–331. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Xin, C.; Li, W.; Wang, Z.; Feng, W.; Hajirasouliha, I.; Yu, X. Shaking Table Tests on the Stability of Dip and Anti-Dip Rock Slopes with Structural Planes Induced by Seismic Motions. Eng. Geol. 2024, 341, 107707. [Google Scholar] [CrossRef]
- Roveri, N.; Carcaterra, A. Damage Detection in Structures under Traveling Loads by Hilbert–Huang Transform. Mech. Syst. Signal Process. 2012, 28, 128–144. [Google Scholar] [CrossRef]
- Fan, G.; Zhang, L.-M.; Zhang, J.-J.; Ouyang, F. Energy-Based Analysis of Mechanisms of Earthquake-Induced Landslide Using Hilbert–Huang Transform and Marginal Spectrum. Rock Mech. Rock Eng. 2017, 50, 2425–2441. [Google Scholar] [CrossRef]
- Ma, Z.; Tao, Z.; Wei, H.; Wu, H.; He, M. Shaking Table Tests on Dynamic Damage Evolution Mechanism of Tunnel-Slope System by Seismic Motions. Soil Dyn. Earthq. Eng. 2025, 196, 109468. [Google Scholar] [CrossRef]
Rock Character | Density (kg/m3) | Compressive Strength (MPa) | Tensile Strength (MPa) | Elastic Modulus (GPa) | Poisson’s Ratio (μ) | Cohesion (MPa) | Internal Friction Angle φ (◦) | |
---|---|---|---|---|---|---|---|---|
Marble | Prototype slope | 2.73 | 90 | 3.3 | 42 | 0.22 | 16.5 | 39.5 |
Model slope | 2.65 | 3.735 | 0.216 | 0.388 | 0.2 | 0.711 | 28.3 | |
Metamorphic conglomerate | Prototype slope | 2.53 | 55 | 2 | 12.3 | 0.19 | 10 | 33 |
Model slope | 2.5 | 0.418 | 0.044 | 0.120 | 0.22 | 0.165 | 34 |
Seismic Events | Components | Predominant Frequency (Hz) | PGA (cm/s2) |
---|---|---|---|
Wuqia Ms6.8 | EW | 1.93 | 101.14 |
NS | 2.09 | 139.06 | |
UD | 0.39 | 51.90 | |
Akto Ms6.7 | EW | 20.28 | 31.42 |
NS | 12.17 | 27.03 | |
UD | 10.74 | 14.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, H.; Shang, Y.; Zhou, L.; Li, Y.; Yi, X.; Meng, Q. Analysis of Dynamic Response Characteristics and Failure Pattern of Rock Slopes Containing X-Joints and Underlying Weak Interlayers. Appl. Sci. 2025, 15, 10209. https://doi.org/10.3390/app151810209
Meng H, Shang Y, Zhou L, Li Y, Yi X, Meng Q. Analysis of Dynamic Response Characteristics and Failure Pattern of Rock Slopes Containing X-Joints and Underlying Weak Interlayers. Applied Sciences. 2025; 15(18):10209. https://doi.org/10.3390/app151810209
Chicago/Turabian StyleMeng, He, Yanjun Shang, Liyun Zhou, Yangfan Li, Xuetao Yi, and Qingsen Meng. 2025. "Analysis of Dynamic Response Characteristics and Failure Pattern of Rock Slopes Containing X-Joints and Underlying Weak Interlayers" Applied Sciences 15, no. 18: 10209. https://doi.org/10.3390/app151810209
APA StyleMeng, H., Shang, Y., Zhou, L., Li, Y., Yi, X., & Meng, Q. (2025). Analysis of Dynamic Response Characteristics and Failure Pattern of Rock Slopes Containing X-Joints and Underlying Weak Interlayers. Applied Sciences, 15(18), 10209. https://doi.org/10.3390/app151810209