Cell State-of-Charge Estimation with Limited Voltage Sensor Measurements
Abstract
1. Introduction
- A heterogeneous battery pack was constructed for real-world validation of DEKF-based SOC estimation.
- A thorough validation of DEKF was performed, where only battery pack terminal voltage was used as input to the estimation algorithm for estimating the SOC for each single cell. By validating the DEKF performance under realistic conditions, this study demonstrates its potential for scalable deployment in real-world battery packs. The findings contribute to the greater goal of developing efficient and embedding-friendly algorithms for future energy storage and electric mobility systems.
- Our manual tuning results shows that the DEKF, starting from an initial SOC estimate of 98%, converged to accurate SOC values in less than 200 s, achieving an RMSE of under 1%.
- An auto-tuning approach based on genetic algorithms is proposed to tune the DEKF’s noise covariances. Starting from a more uncertain initial SOC estimate of 90%, the filter achieved a SOC RMSE < 1% after 1000 s, highlighting the robustness and practicality of the method while significantly reducing calibration effort.
2. Dense EKF for Cell SOC Estimation
2.1. Cell Dynamics
2.2. Dense EKF
3. Experimental Setup
4. Results and Discussions
4.1. Parameter Identification
Algorithm 1 GA for battery parameter optimization. |
|
4.2. DEKF Results with Manual Tuning
4.3. DEKF Results with Automatic Tuning
Algorithm 2 GA for battery parameter optimization. |
|
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dixon, J. Energy storage for electric vehicles. In Proceedings of the 2010 IEEE International Conference on Industrial Technology, Via del Mar, Chile, 14–17 March 2010; pp. 20–26. [Google Scholar] [CrossRef]
- Gao, Z.W.; Lan, T.; Yin, H.; Liu, Y. Development and Commercial Application of Lithium-Ion Batteries in Electric Vehicles: A Review. Processes 2025, 13, 756. [Google Scholar] [CrossRef]
- Denholm, P.; Ela, E.; Kirby, B.; Milligan, M. Role of Energy Storage with Renewable Electricity Generation; Technical Report National Renewable Energy Lab. (NREL): Golden, CO, USA, 2010. [Google Scholar]
- Dehghani-Sanij, A.; Tharumalingam, E.; Dusseault, M.; Fraser, R. Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 2019, 104, 192–208. [Google Scholar] [CrossRef]
- Pimm, A.J.; Palczewski, J.; Barbour, E.R.; Cockerill, T.T. Using electricity storage to reduce greenhouse gas emissions. Appl. Energy 2021, 282, 116199. [Google Scholar] [CrossRef]
- Arbabzadeh, M.; Sioshansi, R.; Johnson, J.X.; Keoleian, G.A. The role of energy storage in deep decarbonization of electricity production. Nat. Commun. 2019, 10, 3413. [Google Scholar]
- Jones, C.; Gilbert, P.; Stamford, L. Assessing the climate change mitigation potential of stationary energy storage for electricity grid services. Environ. Sci. Technol. 2019, 54, 67–75. [Google Scholar] [CrossRef]
- Huang, J.; Shi, D.; Chen, T. Event-triggered state estimation with an energy harvesting sensor. IEEE Trans. Autom. Control 2017, 62, 4768–4775. [Google Scholar] [CrossRef]
- Chiasson, J.; Vairamohan, B. Estimating the state of charge of a battery. In Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003; Volume 4, pp. 2863–2868. [Google Scholar]
- Chen, J.; Behal, A.; Li, Z.; Li, C. Active Battery Cell Balancing by Real Time Model Predictive Control for Extending Electric Vehicle Driving Range. IEEE Trans. Auto. Sci. Eng. 2024, 21, 4003–4015. [Google Scholar] [CrossRef]
- Pozzi, A.; Zambelli, M.; Ferrara, A.; Raimondo, D.M. Balancing-aware charging strategy for series-connected lithium-ion cells: A nonlinear model predictive control approach. IEEE Trans. Control Syst. Technol. 2020, 28, 1862–1877. [Google Scholar] [CrossRef]
- Lai, X.; Zheng, Y.; Sun, T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries. Electrochim. Acta 2018, 259, 566–577. [Google Scholar] [CrossRef]
- Moura, S.J.; Argomedo, F.B.; Klein, R.; Mirtabatabaei, A.; Krstic, M. Battery state estimation for a single particle model with electrolyte dynamics. IEEE Trans. Control Syst. Technol. 2016, 25, 453–468. [Google Scholar]
- Movassagh, K.; Raihan, S.A.; Balasingam, B. Performance analysis of coulomb counting approach for state of charge estimation. In Proceedings of the 2019 IEEE Electrical Power and Energy Conference (EPEC), Montreal, QC, Canada, 16–18 October 2019; pp. 1–6. [Google Scholar]
- Fathoni, G.; Widayat, S.A.; Topan, P.A.; Jalil, A.; Cahyadi, A.I.; Wahyunggoro, O. Comparison of State-of-Charge (SOC) estimation performance based on three popular methods: Coulomb counting, open circuit voltage, and Kalman filter. In Proceedings of the 2017 2nd International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT), Jakarta, Indonesia, 23–24 October 2017; pp. 70–74. [Google Scholar]
- Kulikov, G.Y.; Kulikova, M.V. Accurate numerical implementation of the continuous-discrete extended Kalman filter. IEEE Trans. Autom. Control 2013, 59, 273–279. [Google Scholar]
- Tsiamis, A.; Pappas, G.J. Online learning of the kalman filter with logarithmic regret. IEEE Trans. Autom. Control 2022, 68, 2774–2789. [Google Scholar]
- Liu, S.; Wang, Z.; Chen, Y.; Wei, G. Protocol-based unscented Kalman filtering in the presence of stochastic uncertainties. IEEE Trans. Autom. Control 2019, 65, 1303–1309. [Google Scholar]
- Xiong, R.; He, H.; Sun, F.; Zhao, K. Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach. IEEE Trans. Veh. Technol. 2012, 62, 108–117. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation. J. Power Sources 2004, 134, 277–292. [Google Scholar]
- Sun, D.; Yu, X.; Wang, C.; Zhang, C.; Huang, R.; Zhou, Q.; Amietszajew, T.; Bhagat, R. State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator. Energy 2021, 214, 119025. [Google Scholar] [CrossRef]
- Valade, A.; Acco, P.; Grabolosa, P.; Fourniols, J.Y. A study about Kalman filters applied to embedded sensors. Sensors 2017, 17, 2810. [Google Scholar] [CrossRef] [PubMed]
- Closas, P.; Vila-Valls, J.; Fernández-Prades, C. Computational complexity reduction techniques for quadrature Kalman filters. In Proceedings of the 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Cancun, Mexico, 13–16 December 2015; pp. 485–488. [Google Scholar]
- Zhang, D.; Couto, L.D.; Gill, P.S.; Benjamin, S.; Zeng, W.; Moura, S.J. Thermal-enhanced adaptive interval estimation in battery packs with heterogeneous cells. IEEE Trans. Control Syst. Technol. 2021, 30, 1102–1115. [Google Scholar] [CrossRef]
- Deng, Z.; Hu, X.; Lin, X.; Che, Y.; Xu, L.; Guo, W. Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression. Energy 2020, 205, 118000. [Google Scholar] [CrossRef]
- Song, L.; Zhang, K.; Liang, T.; Han, X.; Zhang, Y. Intelligent state of health estimation for lithium-ion battery pack based on big data analysis. J. Energy Storage 2020, 32, 101836. [Google Scholar] [CrossRef]
- Eleftheriadis, P.; Giazitzis, S.; Leva, S.; Ogliari, E. Data-driven methods for the state of charge estimation of lithium-ion batteries: An overview. Forecasting 2023, 5, 576–599. [Google Scholar] [CrossRef]
- How, D.N.; Hannan, M.; Lipu, M.H.; Ker, P.J. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review. IEEE Access 2019, 7, 136116–136136. [Google Scholar] [CrossRef]
- Lipu, M.H.; Hannan, M.; Hussain, A.; Ayob, A.; Saad, M.H.; Karim, T.F.; How, D.N. Data-driven state of charge estimation of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends. J. Clean. Prod. 2020, 277, 124110. [Google Scholar]
- Nuculaj, L.; Chen, J. Simultaneous Cell State Estimation via Dense Adaptive Extended Kalman Filter. IEEE Trans. Control Syst. Technol. 2025. to appear. [Google Scholar] [CrossRef]
- Pei, Z.; Zhao, X.; Yuan, H.; Peng, Z.; Wu, L. An equivalent circuit model for lithium battery of electric vehicle considering self-healing characteristic. J. Control Sci. Eng. 2018, 2018, 5179758. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Zhang, X.; Sun, F.; Fan, J. State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model. IEEE Trans. Veh. Technol. 2011, 60, 1461–1469. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Guo, H.; Li, S. Comparison study on the battery state of charge estimation methods for electric vehicles. Energy Procedia 2011, 12, 159–165. [Google Scholar]
- Plett, G.L. Battery Management Systems, Volume II: Equivalent-Circuit Methods; Artech House: London, UK, 2015. [Google Scholar]
- Nuculaj, L.; Kidwell, A.; Homayouni, C.; Fillmore, A.; Hanna, D.; Chen, J. Optimal FPGA Implementation of Dense Extended Kalman Filter for Simultaneous Cell State Estimation. In Proceedings of the IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 11–14 August 2024. [Google Scholar]
Parameter | Cell 1 | Cell 2 | Cell 3 |
---|---|---|---|
Rp | 0.0063 | 0.01 | 0.0095 |
Cp | 90,610 | 80,199 | 81,940 |
Ro | 0.2465 | 0.2451 | 0.3473 |
Cost | 0.01311 | 0.01319 | 0.009674 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogdeh, O.; Nuculaj, L.; Irshayyid, A.; Zhou, Z.; Chen, J. Cell State-of-Charge Estimation with Limited Voltage Sensor Measurements. Appl. Sci. 2025, 15, 10127. https://doi.org/10.3390/app151810127
Ogdeh O, Nuculaj L, Irshayyid A, Zhou Z, Chen J. Cell State-of-Charge Estimation with Limited Voltage Sensor Measurements. Applied Sciences. 2025; 15(18):10127. https://doi.org/10.3390/app151810127
Chicago/Turabian StyleOgdeh, Owais, Luke Nuculaj, Ali Irshayyid, Zhaodong Zhou, and Jun Chen. 2025. "Cell State-of-Charge Estimation with Limited Voltage Sensor Measurements" Applied Sciences 15, no. 18: 10127. https://doi.org/10.3390/app151810127
APA StyleOgdeh, O., Nuculaj, L., Irshayyid, A., Zhou, Z., & Chen, J. (2025). Cell State-of-Charge Estimation with Limited Voltage Sensor Measurements. Applied Sciences, 15(18), 10127. https://doi.org/10.3390/app151810127