Development and Characterization of Chitosan–Polyvinylpyrrolidone Nanoparticles for Antimicrobial Drug Delivery Applications
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chitosan (CS)-Based Nanoparticles (CS-NPs)
2.2. Chitosan (CS)–Polyvinylpyrrolidone (PVP)-Based Nanoparticles (CS-PVP NPs)
2.3. Encapsulation of Bioactive Compounds
2.4. Nanoparticles Characterization
2.5. Antimicrobial Activity
2.6. Cytotoxicity Assay
2.7. In Vitro Controlled-Release Study in Gastric Fluid
2.8. Statistical Analysis
3. Results
3.1. CS-PVP-Based NP Synthesis and Cargo Encapsulation
3.2. CS-PVP NPs Characterization
3.2.1. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis
3.2.2. Thermogravimetric Analysis (TGA)
3.2.3. X-Ray Diffraction (XRD)
3.2.4. Atomic Force Microscopy (AFM)
3.3. Antimicrobial Activity
3.4. Cytotoxic Evaluation
3.5. Encapsulation Efficiency (EE, %), Load Capacity (LC, %), and Cumulative Release
4. Discussion
4.1. NPs Synthesis and Characterization
4.2. Biological Approach
4.3. Encapsulation Metrics and Controlled Release in Gastric Fluid
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CS | Chitosan |
PVP | Polyvinylpyrrolidone |
NPs | Nanoparticles |
TPP | Sodium Tripolyphosphate |
FTIR | Fourier-Transform Infrared Spectroscopy |
TGA | Thermogravimetric Analysis |
XRD | X-ray Diffraction |
AFM | Atomic Force Microscopy |
MTT assay | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay |
DDSs | Drug Delivery Systems |
Bis-THTT | Bis-tetrahydro-1,3,5-thiadiazine-2-thione |
LMWCS | Low-Molecular-Weight Chitosan |
HMWCS | High-Molecular-Weight Chitosan |
CQ | Chloroquine |
ANOVA | Analysis of Variance |
EE | Encapsulation Efficiency |
LC | Load Capacity |
References
- Obeidat, W.M.; Lahlouh, I.K. Chitosan Nanoparticles: Approaches to Preparation, Key Properties, Drug Delivery Systems, and Developments in Therapeutic Efficacy. AAPS PharmSciTech 2025, 26, 108. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef]
- Sharma, D.; Gautam, S.; Singh, S.; Srivastava, N.; Khan, A.M.; Bisht, D. Unveiling the Nanoworld of Antimicrobial Resistance: Integrating Nature and Nanotechnology. Front. Microbiol. 2024, 15, 1391345. [Google Scholar] [CrossRef]
- Bashir, S.M.; Ahmed Rather, G.; Patrício, A.; Haq, Z.; Sheikh, A.A.; Shah, M.Z.u.H.; Singh, H.; Khan, A.A.; Imtiyaz, S.; Ahmad, S.B.; et al. Chitosan Nanoparticles: A Versatile Platform for Biomedical Applications. Materials 2022, 15, 6521. [Google Scholar] [CrossRef]
- Cho, C.S.; Hwang, S.K.; Gu, M.J.; Kim, C.G.; Kim, S.K.; Ju, D.B.; Yun, C.H.; Kim, H.J. Mucosal Vaccine Delivery Using Mucoadhesive Polymer Particulate Systems. Tissue Eng. Regen. Med. 2021, 18, 693–712. [Google Scholar] [CrossRef]
- De Jong, W.H.; Borm, P.J.A. Drug Delivery and Nanoparticles: Applications and Hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef]
- Jiao, M.; Kong, W.; Liu, W.; Dong, Z.; Yang, J.; Wei, Z.; Lu, X.; Wei, Y.; Zhuang, J. Boosting the Antibacterial Potency of Natural Products through Nanotechnologies. Int. J. Pharm. 2025, 674, 125437. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Sahoo, J.; De, M. Development of Nanomaterials-Based Agents for Selective Antibacterial Activity. ChemBioChem 2025, 26, e202400693. [Google Scholar] [CrossRef] [PubMed]
- Gangal, A.; Sethiya, N.K.; Duseja, M.; Shukla, R.K.; Bisht, D.; Rana, V.S.; Lalhlenmawia, H.; Azizov, S.; Kumar, D. Green Nanotechnology: Nanoparticle Synthesis Using Curcuma Amada, Curcuma Caesia, Curcuma Longa, and Curcuma Zedoaria. Green Chem. Lett. Rev. 2025, 18, 2449122. [Google Scholar] [CrossRef]
- Ortiz, M.; Rodríguez, H.; Lucci, E.; Coro, J.; Pernía, B.; Montero-Calderon, A.; Tingo-Jácome, F.J.; Espinoza, L.; Spencer, L.M. Serological Cross-Reaction between Six Thiadiazine by Indirect ELISA Test and Their Antimicrobial Activity. Methods Protoc. 2023, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y. An Overview of Bioactive Natural Products-Based Nano-Drug Delivery Systems in Antitumor Chemotherapy. Proc. E3S Web Conf. 2021, 271, 03042. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Yu, T.; Song, G.; Xu, T.; Xin, T.; Lin, Y.; Han, B. Nano-Based Drug Delivery Systems for Periodontal Tissue Regeneration. Pharmaceutics 2022, 14, 2250. [Google Scholar] [CrossRef]
- Sohail, M.; Rabbi, F.; Younas, A.; Hussain, A.; Yu, B.; Li, Y.; Iqbal, S.; Ullah, K.H.; Qadeer, A.; Aquib, M.; et al. Herbal Bioactive-Based Nano Drug Delivery Systems; Academic Press: Cambridge, MA, USA, 2022; ISBN 9780128243855. [Google Scholar]
- Pęczkowski, P.; Szostak, E.; Pocheć, E.; Michalik, J.M.; Piętosa, J.; Tahraoui, T.; Łuszczek, M.; Gondek, Ł. Biocompatibility and Potential Functionality of Lanthanum-Substituted Cobalt Ferrite Spinels. J. Alloys Compd. 2023, 966, 171433. [Google Scholar] [CrossRef]
- Kurakula, M.; Rao, G.S.N.K. Pharmaceutical Assessment of Polyvinylpyrrolidone (PVP): As Excipient from Conventional to Controlled Delivery Systems with a Spotlight on COVID-19 Inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. [Google Scholar] [CrossRef]
- Gull, N.; Khan, S.M.; Khalid, S.; Zia, S.; Islam, A.; Sabir, A.; Sultan, M.; Hussain, F.; Khan, R.U.; Butt, M.T.Z. Designing of Biocompatible and Biodegradable Chitosan Based Crosslinked Hydrogel for in Vitro Release of Encapsulated Povidone-Iodine: A Clinical Translation. Int. J. Biol. Macromol. 2020, 164, 4370–4380. [Google Scholar] [CrossRef]
- Grant, J.J.; Pillai, S.C.; Perova, T.S.; Hehir, S.; Hinder, S.J.; McAfee, M.; Breen, A. Electrospun Fibres of Chitosan/PVP for the Effective Chemotherapeutic Drug Delivery of 5-Fluorouracil. Chemosensors 2021, 9, 70. [Google Scholar] [CrossRef]
- Gerami, S.E.; Pourmadadi, M.; Fatoorehchi, H.; Yazdian, F.; Rashedi, H.; Nigjeh, M.N. Preparation of PH-Sensitive Chitosan/Polyvinylpyrrolidone/α-Fe2O3 Nanocomposite for Drug Delivery Application: Emphasis on Ameliorating Restrictions. Int. J. Biol. Macromol. 2021, 173, 409–420. [Google Scholar] [CrossRef]
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef]
- Ezike, T.C.; Okpala, U.S.; Onoja, U.L.; Nwike, C.P.; Ezeako, E.C.; Okpara, O.J.; Okoroafor, C.C.; Eze, S.C.; Kalu, O.L.; Odoh, E.C.; et al. Advances in Drug Delivery Systems, Challenges and Future Directions. Heliyon 2023, 9, e17488. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, Y.; Yu, Z.; Du, L. Synthesis, Characterization of Chitosan/Tripolyphosphate Nanoparticles Loaded with 4-Chloro-2-Methylphenoxyacetate Sodium Salt and Its Herbicidal Activity against Bidens pilosa L. Sci. Rep. 2024, 14, 18754. [Google Scholar] [CrossRef]
- Fan, W.; Yan, W.; Xu, Z.; Ni, H. Formation Mechanism of Monodisperse, Low Molecular Weight Chitosan Nanoparticles by Ionic Gelation Technique. Colloids Surf. B Biointerfaces 2012, 90, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Hoang, N.H.; Thanh, T.L.; Sangpueak, R.; Treekoon, J.; Saengchan, C.; Thepbandit, W.; Papathoti, N.K.; Kamkaew, A.; Buensanteai, N. Chitosan Nanoparticles-Based Ionic Gelation Method: A Promising Candidate for Plant Disease Management. Polymers 2022, 14, 662. [Google Scholar] [CrossRef]
- Hafizi, T.; Shahriari, M.H.; Abdouss, M.; Kahdestani, S.A. Synthesis and Characterization of Vancomycin-Loaded Chitosan Nanoparticles for Drug Delivery. Polym. Bull. 2023, 80, 5607–5621. [Google Scholar] [CrossRef]
- Ali, S.W.; Rajendran, S.; Joshi, M. Synthesis and Characterization of Chitosan and Silver Loaded Chitosan Nanoparticles for Bioactive Polyester. Carbohydr. Polym. 2011, 83, 438–446. [Google Scholar] [CrossRef]
- CellTiter 96® Non-Radioactive Cell Proliferation Assay (MTT) | MTT Assay. Available online: https://worldwide.promega.com/es-es/products/cell-health-assays/cell-viability-and-cytotoxicity-assays/celltiter-96-non_radioactive-cell-proliferation-assay-_mtt_/?catNum=G4000#protocols (accessed on 31 August 2025).
- Yanat, M.; Schroën, K. Preparation Methods and Applications of Chitosan Nanoparticles; with an Outlook toward Reinforcement of Biodegradable Packaging. React. Funct. Polym. 2021, 161, 104849. [Google Scholar] [CrossRef]
- Des Bouillons-Gamboa, R.E.; Montes de Oca, G.; Baudrit, J.R.V.; Ríos Duarte, L.C.; Lopretti, M.; Rentería Urquiza, M.; Zúñiga-Umaña, J.M.; Barreiro, F.; Vázquez, P. Synthesis of Chitosan Nanoparticles (CSNP): Effect of CH-CH-TPP Ratio on Size and Stability of NPs. Front. Chem. 2024, 12, 1469271. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Silva, M.F.; Da Silva, C.A.; Fogo, F.C.; Pineda, E.A.G.; Hechenleitner, A.A.W. Thermal and Ftir Study of Polyvinylpyrrolidone/Lignin Blends. J. Therm. Anal. Calorim. 2005, 79, 367–370. [Google Scholar] [CrossRef]
- Coro, J.; Atherton, R.; Little, S.; Wharton, H.; Yardley, V.; Alvarez, A., Jr.; Súarez, M.; Pérez, R.; Rodríguez, H. Alkyl-Linked Bis-THTT Derivatives as Potent in Vitro Trypanocidal Agents. Bioorg. Med. Chem. Lett. 2006, 16, 1312–1315. [Google Scholar] [CrossRef]
- Loachamin, K.S.; Rodríguez, H.M. Effect of Six Bis-THTT Derivatives in the Control of Parasitaemia in Two Rodent Malaria Species. Bionatura Conf. Ser. 2019, 2, 2–4. Available online: https://n9.cl/cbjz6 (accessed on 10 September 2025).
- Quintero-Bonilla, K.; López, L.; De Lima, L. Índices de absorción por espectroscopía infrarroja como parámetros de madurez en bitúmenes extraídos de rocas fuentes de petróleo. Geos 2013, 44, 127–133. Available online: https://n9.cl/zvj4o (accessed on 10 September 2025).
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Matwijczuk, A.; Florek, M.; Barłowska, J.; Wolanciuk, A.; Matwijczuk, A.; Chruściel, E.; Walkowiak, R.; Karcz, D.; Gładyszewska, B. Application of FTIR Spectroscopy for Analysis of the Quality of Honey. BIO Web Conf. 2018, 10, 02008. [Google Scholar] [CrossRef]
- Šuran, J.; Cepanec, I.; Mašek, T.; Radić, B.; Radić, S.; Gajger, I.T.; Vlainić, J. Propolis Extract and Its Bioactive Compounds—From Traditional to Modern Extraction Technologies. Molecules 2021, 26, 2930. [Google Scholar] [CrossRef] [PubMed]
- Gerçek, Y.C.; Bayram, N.E. Major Constituents of Different Propolis Samples. Hacet. J. Biol. Chem. 2017, 4, 581–584. [Google Scholar] [CrossRef]
- Šturm, L.; Ulrih, N.P. Advances in the Propolis Chemical Composition between 2013 and 2018: A Review. eFood 2020, 1, 24–37. [Google Scholar] [CrossRef]
- Falcão, S.I.; Vale, N.; Gomes, P.; Domingues, M.R.M.; Freire, C.; Cardoso, S.M.; Vilas-Boas, M. Phenolic Profiling of Portuguese Propolis by LC-MS Spectrometry: Uncommon Propolis Rich in Flavonoid Glycosides. Phytochem. Anal. 2013, 24, 309–318. [Google Scholar] [CrossRef]
- Mello, B.C.B.S.; Petrus, J.C.C.; Hubinger, M.D. Concentration of Flavonoids and Phenolic Compounds in Aqueous and Ethanolic Propolis Extracts through Nanofiltration. J. Food Eng. 2010, 96, 533–539. [Google Scholar] [CrossRef]
- Corazzari, I.; Nisticò, R.; Turci, F.; Faga, M.G.; Franzoso, F.; Tabasso, S.; Magnacca, G. Advanced Physico-Chemical Characterization of Chitosan by Means of TGA Coupled on-Line with FTIR and GCMS: Thermal Degradation and Water Adsorption Capacity. Polym. Degrad. Stab. 2015, 112, 1–9. [Google Scholar] [CrossRef]
- Pawlak, A.; Mucha, M. Thermogravimetric and FTIR Studies of Chitosan Blends. Thermochim. Acta 2003, 396, 153–166. [Google Scholar] [CrossRef]
- Jelić, D.; Liavitskaya, T.; Vyazovkin, S. Thermal Stability of Indomethacin Increases with the Amount of Polyvinylpyrrolidone in Solid Dispersion. Thermochim. Acta 2019, 676, 172–176. [Google Scholar] [CrossRef]
- Ben Osman, Y.; Liavitskaya, T.; Vyazovkin, S. Polyvinylpyrrolidone Affects Thermal Stability of Drugs in Solid Dispersions. Int. J. Pharm. 2018, 551, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.R.; Jian, R.; Yu, J.; Ma, X. Fabrication and Characterisation of Chitosan Nanoparticles/Plasticised-Starch Composites. Food Chem. 2010, 120, 736–740. [Google Scholar] [CrossRef]
- Govindan, S.; Nivethaa, E.A.K.; Saravanan, R.; Narayanan, V.; Stephen, A. Synthesis and Characterization of Chitosan–Silver Nanocomposite. Appl. Nanosci. 2012, 2, 299–303. [Google Scholar] [CrossRef]
- Sankararamakrishnan, N.; Sanghi, R. Preparation and Characterization of a Novel Xanthated Chitosan. Carbohydr. Polym. 2006, 66, 160–167. [Google Scholar] [CrossRef]
- Chadha, R.; Kapoor, V.K.; Kumar, A. Analytical Techniques Used to Characterize Drug-Polyvinylpyrrolidone Systems in Solid and Liquid States—An Overview. J. Sci. Ind. Res. 2006, 65, 459–469. [Google Scholar]
- Salman; Ardiansyah; Nasrul, E.; Rivai, H.; Ben, E.S.; Zaini, E. Physicochemical Characterization of Amorphous Solid Dispersion of Ketoprofen–Polyvinylpyrrolidone K-30. Int. J. Pharm. Pharm. Sci. 2015, 7, 209–212. [Google Scholar]
- Qi, L.; Xu, Z.; Jiang, X.; Hu, C.; Zou, X. Preparation and Antibacterial Activity of Chitosan Nanoparticles. Carbohydr. Res. 2004, 339, 2693–2700. [Google Scholar] [CrossRef]
- Sizílio, R.H.; Galvão, J.G.; Trindade, G.G.G.; Pina, L.T.S.; Andrade, L.N.; Gonsalves, J.K.M.C.; Lira, A.A.M.; Chaud, M.V.; Alves, T.F.R.; Arguelho, M.L.P.M.; et al. Chitosan/Pvp-Based Mucoadhesive Membranes as a Promising Delivery System of Betamethasone-17-Valerate for Aphthous Stomatitis. Carbohydr. Polym. 2018, 190, 339–345. [Google Scholar] [CrossRef]
- Epp, J. X-Ray Diffraction (XRD) Techniques for Materials Characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Woodhead Publishing: Cambridge, UK, 2016; pp. 81–124. [Google Scholar] [CrossRef]
- Hajimohammadi, S.; Momtaz, H.; Tajbakhsh, E. Fabrication and Antimicrobial Properties of Novel Meropenem-Honey Encapsulated Chitosan Nanoparticles against Multiresistant and Biofilm-Forming Staphylococcus Aureus as a New Antimicrobial Agent. Vet. Med. Sci. 2024, 10, e1440. [Google Scholar] [CrossRef]
- Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent Advances on Chitosan-Based Micro- and Nanoparticles in Drug Delivery. J. Control. Release 2004, 100, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Nematollahi, E.; Pourmadadi, M.; Yazdian, F.; Fatoorehchi, H.; Rashedi, H.; Nigjeh, M.N. Synthesis and Characterization of Chitosan/Polyvinylpyrrolidone Coated Nanoporous γ-Alumina as a PH-Sensitive Carrier for Controlled Release of Quercetin. Int. J. Biol. Macromol. 2021, 183, 600–613. [Google Scholar] [CrossRef]
- Asim Raza, M.; Shahzad, K.; Dutt Purohit, S.; Hyun Park, S.; Soo Han, S. The Fabrication Strategies for Chitosan/Poly(Vinyl Pyrrolidone) Based Hydrogels and Their Biomedical Applications: A Focused Review. Polym.-Plast. Technol. Mater. 2023, 62, 2255–2271. [Google Scholar] [CrossRef]
- Onyango, L.A.; Alreshidi, M.M. Adaptive Metabolism in Staphylococci: Survival and Persistence in Environmental and Clinical Settings. J. Pathog. 2018, 2018, 1092632. [Google Scholar] [CrossRef]
- Peng, Q.; Tang, X.; Dong, W.; Sun, N.; Yuan, W. A Review of Biofilm Formation of Staphylococcus Aureus and Its Regulation Mechanism. Antibiotics 2023, 12, 12. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M. Antibacterial Action of Nanoparticle Loaded Nanocomposites Based on Graphene and Its Derivatives: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 3563. [Google Scholar] [CrossRef]
- Erejuwa, O.O.; Sulaiman, S.A.; Ab Wahab, M.S. Effects of Honey and Its Mechanisms of Action on the Development and Progression of Cancer. Molecules 2014, 19, 2497–2522. [Google Scholar] [CrossRef]
- Mehdi, I.E.; Falcão, S.I.; Harandou, M.; Boujraf, S.; Calhelha, R.C.; Ferreira, I.C.F.R.; Anjos, O.; Campos, M.G.; Vilas-Boas, M. Chemical, Cytotoxic, and Anti-Inflammatory Assessment of Honey Bee Venom from Apis Mellifera Intermissa. Antibiotics 2021, 10, 1514. [Google Scholar] [CrossRef] [PubMed]
- Qadirifard, M.S.; Fathabadi, A.; Hajishah, H.; Gholami, K.; Abbasi, M.; Sami, N.; Zo, M.M.; Kadkhodaei, F.; Sina, M.; Ansari, A.; et al. Anti-Breast Cancer Potential of Honey: A Narrative Review. OncoReview 2022, 12, 5–15. [Google Scholar] [CrossRef]
- Ghaderi Ghahfarokhi, M.; Barzegar, M.; Sahari, M.A.; Azizi, M.H. Enhancement of Thermal Stability and Antioxidant Activity of Thyme Essential Oil by Encapsulation in Chitosan Nanoparticles. J. Agric. Sci. Technol. 2016, 18, 1781–1792. [Google Scholar]
- Shetta, A.; Kegere, J.; Mamdouh, W. Comparative Study of Encapsulated Peppermint and Green Tea Essential Oils in Chitosan Nanoparticles: Encapsulation, Thermal Stability, in-Vitro Release, Antioxidant and Antibacterial Activities. Int. J. Biol. Macromol. 2019, 126, 731–742. [Google Scholar] [CrossRef]
- Aboelwafa, M.A.; Abdelghany, A.M.; Meikhail, M.S. Preparation, Characterization, and Antibacterial Activity of ZnS-NP’s Filled Polyvinylpyrrolidone/Chitosan Thin Films. Biointerface Res. Appl. Chem. 2021, 11, 14336–14343. [Google Scholar] [CrossRef]
- Alghamdi, H.M.; Rajeh, A. Study of the Photoluminescence, Optical, Thermal, and Electrical Parameters of the Cs/PVP Blend/Zinc Oxide Nanorods Films for Energy Storage Devices. Polym. Test. 2023, 124, 108093. [Google Scholar] [CrossRef]
- Ramadan, R.; Ismail, A.M. Structural and Physical Comparison Between CS/PVP Blend and CS/PVP/Sr-Hexaferrite Nanocomposite Films. J. Inorg. Organomet. Polym. Mater. 2023, 33, 2506–2516. [Google Scholar] [CrossRef]
- Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Peppas, N.A.; Gurny, R. Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications. Eur. J. Pharm. Biopharm. 2004, 57, 19–34. [Google Scholar] [CrossRef]
- Abu Elella, M.H.; Kolawole, O.M. Recent Advances in Modified Chitosan-Based Drug Delivery Systems for Transmucosal Applications: A Comprehensive Review. Int. J. Biol. Macromol. 2024, 277, 134531. [Google Scholar] [CrossRef]
- Sharaf, M.; Zahra, A.A.; Alharbi, M.; Mekky, A.E.; Shehata, A.M.; Alkhudhayri, A.; Ali, A.M.; Al Suhaimi, E.A.; Zakai, S.A.; Al Harthi, N.; et al. Bee Chitosan Nanoparticles Loaded with Apitoxin as a Novel Approach to Eradication of Common Human Bacterial, Fungal Pathogens and Treating Cancer. Front. Microbiol. 2024, 15, 1345478. [Google Scholar] [CrossRef]
- Salatin, S.; Yari Khosroushahi, A. Overviews on the Cellular Uptake Mechanism of Polysaccharide Colloidal Nanoparticles. J. Cell. Mol. Med. 2017, 21, 1668–1686. [Google Scholar] [CrossRef] [PubMed]
- Alarfaj, R.E.; Alkhulaifi, M.M.; Al-Fahad, A.J.; Aljihani, S.; Yassin, A.E.B.; Alghoribi, M.F.; Halwani, M.A. Antibacterial Efficacy of Liposomal Formulations Containing Tobramycin and N-Acetylcysteine against Tobramycin-Resistant Escherichia Coli, Klebsiella Pneumoniae, and Acinetobacter Baumannii. Pharmaceutics 2022, 14, 130. [Google Scholar] [CrossRef] [PubMed]
- Altuwaijri, N.; Fitaihi, R.; Alkathiri, F.A.; Bukhari, S.I.; Altalal, A.M.; Alsalhi, A.; Alsulaiman, L.; Alomran, A.O.; Aldosari, N.S.; Alqhafi, S.A.; et al. Assessing the Antibacterial Potential and Biofilm Inhibition Capability of Atorvastatin-Loaded Nanostructured Lipid Carriers via Crystal Violet Assay. Pharmaceuticals 2025, 18, 417. [Google Scholar] [CrossRef] [PubMed]
- de Souza, J.B.; de Lacerda Coriolano, D.; dos Santos Silva, R.C.; da Costa Júnior, S.D.; de Almeida Campos, L.A.; Cavalcanti, I.D.L.; Lira Nogueira, M.C.d.B.; Pereira, V.R.A.; Brelaz-de-Castro, M.C.A.; Cavalcanti, I.M.F. Ceftazidime and Usnic Acid Encapsulated in Chitosan-Coated Liposomes for Oral Administration against Colorectal Cancer-Inducing Escherichia coli. Pharmaceuticals 2024, 17, 802. [Google Scholar] [CrossRef] [PubMed]
- Ozdal, M.; Gurkok, S. Recent Advances in Nanoparticles as Antibacterial Agent. ADMET DMPK 2022, 10, 115–129. [Google Scholar] [CrossRef]
- Yeh, Y.C.; Huang, T.H.; Yang, S.C.; Chen, C.C.; Fang, J.Y. Nano-Based Drug Delivery or Targeting to Eradicate Bacteria for Infection Mitigation: A Review of Recent Advances. Front. Chem. 2020, 8, 286. [Google Scholar] [CrossRef]
- Roy, S.; Hasan, I.; Guo, B. Recent Advances in Nanoparticle-Mediated Antibacterial Applications. Coord. Chem. Rev. 2023, 482, 215075. [Google Scholar] [CrossRef]
- Ryu, S.; Park, S.; Lee, H.Y.; Lee, H.; Cho, C.W.; Baek, J.S. Biodegradable Nanoparticles-Loaded Plga Microcapsule for the Enhanced Encapsulation Efficiency and Controlled Release of Hydrophilic Drug. Int. J. Mol. Sci. 2021, 22, 2792. [Google Scholar] [CrossRef]
- Mandal, M.D.; Mandal, S. Honey: Its Medicinal Property and Antibacterial Activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Arung, E.T.; Ramadhan, R.; Khairunnisa, B.; Amen, Y.; Matsumoto, M.; Nagata, M.; Kusuma, I.W.; Paramita, S.; Sukemi; Yadi; et al. Cytotoxicity Effect of Honey, Bee Pollen, and Propolis from Seven Stingless Bees in Some Cancer Cell Lines. Saudi J. Biol. Sci. 2021, 28, 7182–7189. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinel, P.S.; Spencer, L.; Albericio, F.; Rodríguez, H. Development and Characterization of Chitosan–Polyvinylpyrrolidone Nanoparticles for Antimicrobial Drug Delivery Applications. Appl. Sci. 2025, 15, 10103. https://doi.org/10.3390/app151810103
Espinel PS, Spencer L, Albericio F, Rodríguez H. Development and Characterization of Chitosan–Polyvinylpyrrolidone Nanoparticles for Antimicrobial Drug Delivery Applications. Applied Sciences. 2025; 15(18):10103. https://doi.org/10.3390/app151810103
Chicago/Turabian StyleEspinel, Pablo Sebastián, Lilian Spencer, Fernando Albericio, and Hortensia Rodríguez. 2025. "Development and Characterization of Chitosan–Polyvinylpyrrolidone Nanoparticles for Antimicrobial Drug Delivery Applications" Applied Sciences 15, no. 18: 10103. https://doi.org/10.3390/app151810103
APA StyleEspinel, P. S., Spencer, L., Albericio, F., & Rodríguez, H. (2025). Development and Characterization of Chitosan–Polyvinylpyrrolidone Nanoparticles for Antimicrobial Drug Delivery Applications. Applied Sciences, 15(18), 10103. https://doi.org/10.3390/app151810103