Geohazard Susceptibility Assessment in Karst Terrain: A Novel Coupling Model Integrating Information Value and XGBoost Machine Learning in Guizhou Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
3. Research Methods
3.1. Bayesian Optimization
3.2. Information Quantity Model
3.3. Machine Learning Model
3.3.1. Logistic Regression (LR)
3.3.2. Decision Tree Algorithm (DT)
3.3.3. Support Vector Machine (SVM)
3.3.4. Random Forest (RF)
3.3.5. Extreme Gradient Boosting (XGBoost)
3.4. Confusion Matrix and Receiver Operating Characteristic (ROC) Curve
3.5. SHAP Algorithm
3.6. Geological Hazard Susceptibility Evaluation Process
3.7. Coupling Model and Processing Flow
4. Results and Analysis of Geological Disaster Susceptibility Evaluation
4.1. Selection of Evaluation Factors
4.2. Correlation of Evaluation Factors
4.3. Evaluation of the Accuracy of the Coupling Model
4.4. Geological Hazard Susceptibility Assessment Results
4.5. Global Feature Explanation
5. Discussion and Outlook
5.1. Superiority of the Coupled Model
5.2. Applicability of Interpretability Methods
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Shen, W.; Huang, S. Strategic Thinking on the Prevention and Response of Geological Disasters in China. J. Catastrophol. 2022, 37, 1–4+11. [Google Scholar]
- Ge, Q.; Sun, Q.; Zhang, N.; Hu, J. Evaluation of Geological Hazard Susceptibility of Baiyin City Based on Multi-temporal InSAR Deformation Measurements. Geomat. Inf. Sci. Wuhan Univ. 2024, 49, 1434–1443. [Google Scholar]
- Wang, J.; Kang, Y.; Feng, B. Disaster resilience in the geohazard-prone mountainous areas: Evidence from the Hengduan Mountain, southwest China. Int. J. Disaster Risk Reduct. 2025, 119, 105331. [Google Scholar] [CrossRef]
- Guizhou Provincial Department of Natural Resources. 2023 Geological Disaster Prevention and Control Plan of Guizhou Province. [EB/OL]. 16 March 2023. Available online: https://zrzy.guizhou.gov.cn/wzgb/zwgk/zdlyxxgk/dzkcgl/dzzhfz/202309/t20230921_82465226.html (accessed on 16 March 2023).
- Fan, H.; Li, J.; Wang, J.H.; Sun, W. Exploration of Experience in Prevention, Response and Disposal of Major and Above-Grade Geological Disasters-Taking Guizhou Province as an Example. China Emerg. Rescue 2024, 2, 74–79. [Google Scholar]
- Zhang, B.; Yang, Z.; Hu, Y.; Chen, J. Analysis of Slope Deformation Characteristics and Stability under Underground Mining in Guizhou Mountainous Areas. Resour. Inf. Eng. 2025, 40, 63–67+71. [Google Scholar]
- Huang, L.; Sun, Q.; Hu, J. Landslide Susceptibility Evaluation and Error Correction Based on InSAR and Random Forest. Bull. Surv. Mapp. 2022, 10, 13–20. [Google Scholar]
- Lan, Y.; Guo, C.; Zhu, Y. Review of Geological Hazard Susceptibility Evaluation Methods. Geol. Resour. 2024, 33, 65–73. [Google Scholar]
- Zhang, R.; Zhang, D.; Shu, B.; Chen, Y. Predicting the Spatial Distribution of Geological Hazards in Southern Sichuan, China, Using Machine Learning and ArcGIS. Land 2025, 14, 577. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Tan, S.; Zhou, J. Landslide Susceptibility Evaluation Based on a Coupled Informative—Logistic Regression Model—Shuangbai County as an Example. Sustainability 2023, 15, 12449. [Google Scholar] [CrossRef]
- Xu, K.; Guo, Q.; Li, Z.W.; Xiao, J.; Qin, Y.S.; Chen, D.; Kong, C.F. Landslide susceptibility evaluation based on BPNN and GIS: A case of Guojiaba in the Three Gorges Reservoir Area. Int. J. Geogr. Inf. Sci. 2015, 29, 1111–1124. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, C.; Nie, R.; Yang, Z.; Li, W.; Dai, X.; Cheng, J.; Zhang, J.; Ma, L.; Fu, X.; et al. A Comparative Analysis of Certainty Factor-Based Machine Learning Methods for Collapse and Landslide Susceptibility Mapping in Wenchuan County, China. Remote Sens. 2022, 14, 3259. [Google Scholar] [CrossRef]
- Zhou, X.; Wen, H.; Zhang, Y.; Xu, J.; Zhang, W. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geosci. Front. 2021, 12, 101211. [Google Scholar] [CrossRef]
- Lee, S.; Lee, M.J.; Jung, H.S.; Lee, S. Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea. Geocarto Int. 2019, 35, 1665–1679. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Chen, T. Landslide Susceptibility Evaluation Based on Optimized Random Forest Model. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 1085–1091. [Google Scholar]
- Chen, X.; Shi, Y.; Zhao, K.; Wen, Y. Landslide Susceptibility Evaluation Based on CF-Integrated SSA Optimizing SVM and RF Models. J. Xi’an Univ. Technol. 2024, 40, 121–131+142. [Google Scholar]
- Xu, S.; Liu, J.; Wang, X.; Zhang, Y.; Lin, R.; Zhang, M.; Liu, M.; Jiang, T. Landslide Disaster Susceptibility Evaluation Method with Entropy Index Integrated into Support Vector Machine—Taking Shaanxi Province as an Example. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 1214–1222. [Google Scholar]
- Ma, S.; Xu, C.; Tian, Y.; Xu, X. Risk Assessment of Earthquake-Induced Landslides in Jiuzhaigou Based on Logistic Regression Model. Seismol. Geol. 2019, 41, 162–177. [Google Scholar]
- Li, X.; Xue, G.; Xia, N.; Liu, C.; Yang, Y.; Ma, B. Study on the Geological Disaster Susceptibility of National Tropical Rainforest Parks Based on CF, CF-LR and CF-AHP Models: A Case Study of Baoting, Hainan. Geoscience 2023, 37, 1033–1043. [Google Scholar]
- Wang, M.; Wang, Q.; Pian, F.; Shan, P.; Li, Z.; Ma, Z. Quantitative analysis method of diabetes blood Raman spectroscopy based on XGBoost. Spectrosc. Spectr. Anal. 2022, 42, 1721–1727. [Google Scholar]
- He, W.; Chen, G.; Zhao, J.; Lin, Y.; Qin, B.; Yao, W.; Cao, Q. Landslide Susceptibility Evaluation of Machine Learning Based on Information Volume and Frequency Ratio: A Case Study of Weixin County, China. Sensors 2023, 23, 2549. [Google Scholar] [CrossRef]
- Huang, C.; Yan, X.; Mei, H.; Zhou, C.; Huang, G. Geological hazard susceptibility assessment based on a random forest weighted information model: A case study of Shidian County, Yunnan Province. Chin. J. Geol. Hazard Control 2025, 36, 151–159. [Google Scholar]
- Wei, W.; Jia, Y.; Sheng, Y.; Xu, G.; Yang, Y.; Zhang, D. Research on Landslide Disaster Susceptibility Evaluation Models Based on I, SVM, and I-SVM. Saf. Environ. Eng. 2023, 30, 136–144. [Google Scholar]
- Kong, J.; Zhuang, J.; Peng, J.; Zhan, J.; Ma, P.; Mou, J. Landslide Susceptibility Evaluation in the Loess Plateau Based on Information Quantity and Convolutional Neural Network. Earth Sci. 2023, 48, 1711–1729. [Google Scholar]
- Wang, W.D.; Xie, C.M.; Du, X.G. Landslides susceptibility mapping based on geographical information system, GuiZhou, south-west China. Environ. Geol. 2008, 58, 33–43. [Google Scholar] [CrossRef]
- Wang, W.-D.; Guo, J.; Fang, L.-G.; Chang, X.-S. A subjective and objective integrated weighting method for landslide susceptibility mapping based on GIS. Environ. Earth Sci. 2011, 65, 1705–1714. [Google Scholar] [CrossRef]
- Liu, T.; Tan, J.; Guo, F.; Pan, Y.; Wang, L. Research on the weight correction method in the evaluation of landslide susceptibility of artificial cut slopes—Taking Shadi Town, Ganzhou City as an example. J. Nat. Disasters 2021, 30, 217–225. [Google Scholar]
- Chelgani, S.C.; Fatahi, R.; Pournazari, A.; Nasiri, H. Modeling energy consumption indexes of an industrial cement ball mill for sustainable production. Sci. Rep. 2025, 15, 18514. [Google Scholar] [CrossRef]
- Chen, X.; Zuo, H.; Liao, B.; Sun, R. Coronary Heart Disease Prediction and Its Feature Analysis Model Combining XGBoost and SHAP. Appl. Res. Comput. 2022, 39, 1796–1804. [Google Scholar]
- Yu, H.; Wei, L.; Jing, C.; Fangqing, D. Temporal and Spatial Distribution Characteristics and Trends of Geological Hazards in Guizhou. J. Geol. 2022, 46, 291–299. [Google Scholar]
- Yang, Z. Population Growth and Ecological Environment in Guizhou. Environ. Prot. Sci. Technol. 1989, 2, 7–10. [Google Scholar]
- Dang, P. Developmental Characteristics and Genesis Analysis of Collapse (Dangerous Rock Mass) Geological Hazards in Wudang District, Guiyang City. Min. Equip. 2024, 8, 103–105. [Google Scholar]
- Zhangli, J.; Gaopeng, L.; Mingtao, Z.; Wennian, X. Altitude Characteristics of Grassland Community Diversity and Soil Physical and Chemical Property Characteristics in Karst Mountains. J. Ecol. Environ. 2019, 28, 661–668. [Google Scholar]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian optimization of machine learning algorithms. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; Curran Associates Inc.: Red Hook, NY, USA, 2012; pp. 2951–2959. [Google Scholar]
- Chen, B. Research on Fine Risk Assessment Method of Landslide Disasters Based on the Coupling of Information Quantity Model and Machine Learning. Master’s thesis, East China University of Technology, Nanchang, China, 2023. [Google Scholar] [CrossRef]
- Wang, J.J.; Yin, K.L.; Xiao, L.L. Evaluation of landslide hazard susceptibility based on GIS and information volume—Taking Wanzhou district in the Three Gorges reservoir area as an example. Chin. J. Rock Mech. Eng. 2014, 33, 797–808. [Google Scholar]
- Shao, C. Risk Assessment of Shallow Soil Landslide Geological Disasters. Master’s thesis, Guizhou University, Guiyang, China, 2021. [Google Scholar]
- Zhao, Z.; Zhang, F.; Zheng, J. Evaluation of landslide susceptibility by multiple adaptive regression spline method. Geom. Inf. Sci. Wuhan Univ. 2021, 46, 442–450. [Google Scholar]
- Zhu, A.; Miao, Y.; Wang, R.; Zhu, T.; Deng, Y.; Liu, J.; Yang, L.; Qin, C.; Hong, H. A comparative study of an expert knowledge-based model and two data-driven models for landslide susceptibility mapping. CATENA 2018, 166, 317–327. [Google Scholar] [CrossRef]
- Pan, W.; Gao, W. Geological Hazard Susceptibility Prediction Based on Decision Tree Algorithm. In Proceedings of the 2024 IEEE 6th Advanced Information Management, Communications, Electronic, and Automation Control Conference (IMCEC), Chongqing, China, 24–26 May 2024; pp. 811–814. [Google Scholar]
- Zhao, Z.; Liu, Z.Y.; Xu, C. Slope Unit-Based Landslide Susceptibility Mapping Using Certainty Factor, Support Vector Machine, Random Forest, CF-SVM and CF-RF Models. Front. Earth Sci. 2021, 9, 589630. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Z.; Guo, J.; Jiang, S.-H.; Li, S.; Guo, Z. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. CATENA 2020, 191, 104580. [Google Scholar] [CrossRef]
- Orhan, O.; Bilgilioglu, S.S.; Kaya, Z.; Ozcan, A.K.; Bilgilioglu, H. Assessing and mapping landslide susceptibility using different machine learning methods. Geocarto Int. 2020, 37, 2795–2820. [Google Scholar] [CrossRef]
- Huang, F.; Hu, S.; Yan, X.; Li, M.; Wang, J.; Li, W.; Guo, Z.; Fan, W. Prediction Modeling of Landslide Susceptibility Based on Machine Learning and Identification of Its Main Controlling Factors. Bull. Geol. Sci. Technol. 2022, 41, 79–90. [Google Scholar]
- Pyakurel, A.; Dahal, B.K.; Gautam, D. Does machine learning adequately predict earthquake-induced landslides? Soil Dyn. Earthq. Eng. 2023, 171, 107994. [Google Scholar] [CrossRef]
- Abdelkader, M.M.; Csámer, Á. Comparative assessment of machine learning models for landslide susceptibility mapping: A focus on validation and accuracy. Nat. Hazards 2025, 121, 10299–10321. [Google Scholar] [CrossRef]
- Zhang, A.; Zhao, X.; Zhao, X.; Zheng, X.; Zeng, M.; Huang, X.; Wu, P.; Jiang, T.; Wang, S.; He, J.; et al. Comparative study of different machine learning models in landslide susceptibility assessment: A case study of Conghua District, Guangzhou, China. China Geol. 2024, 7, 104–115. [Google Scholar]
- Sheridan, R.P.; Wang, W.M.; Liaw, A.; Ma, J.; Gifford, E.M. Extreme Gradient Boosting as a Method for Quantitative Structure-Activity Relationships. J. Chem. Inf. Model. 2016, 56, 2353–2360. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhou, C.; Liang, X.; Yuan, P.; Yu, L. Assessment of landslide susceptibility mapping based on XGBoost model: A case study of Yanshan Township. Chin. J. Geol. Hazard Control 2023, 34, 141–152. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Zhang, W.G.; He, Y.W.; Wang, L.Q.; Liu, S.L.; Chen, B.L. A machine learning analysis method for landslide susceptibility based on river basin division: A case study of Fengjie County, Chongqing Municipality. Earth Sci. 2023, 48, 2024–2038. [Google Scholar]
- Lihao, D.; Yanhui, L.; Junbao, H.; Haining, L. A regional landslide disaster early warning model for Fujian Province based on a convolutional neural network. Hydrogeol. Eng. Geol. 2024; in press. [Google Scholar]
- Hu, Q.; Wang, Y. Landslide Disaster Susceptibility Evaluation in the Geomorphic Transition Zone of Western Sichuan Based on GIS. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2018, 45, 746–753. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 4765–4774. [Google Scholar]
- Kannangara, K.K.P.M.; Zhou, W.H.; Ding, Z.; Hong, Z. Investigation of feature contribution to shield tunneling-induced settlement using Shapley Additive Explanations method. J. Rock Mech. Geotech. Eng. 2022, 14, 1052–1063. [Google Scholar] [CrossRef]
- Niandong, D.; Yuxin, L.; Yangyang, C.; Hui, S.; Yalei, G. Landslide susceptibility assessment based on a hybrid machine learning model. Sci. Technol. Eng. 2022, 22, 5539–5547. [Google Scholar]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Liu, H.; Sun, J.; Wang, X.; Zhang, S. Identification of collapse and landslide disasters and analysis of main controlling factors based on fine DEM—Taking the Jiacha—Langxian section of the Yarlung Zangbo River suture zone as an example. J. Eng. Geol. 2019, 27, 1146–1152. [Google Scholar]
- Liu, S.; Zhu, J.; Yang, D.; Ma, B. Hazard assessment of collapse and landslide geological disasters under different rainfall conditions. Bull. Geol. Sci. Technol. 2024, 43, 253–267. [Google Scholar]
- Liu, R.; Shi, S.; Sun, D.; Xu, J. Landslide susceptibility zoning in Wushan County based on GIS and random forest. J. Chongqing Norm. Univ. (Nat. Sci. Ed.) 2020, 37, 86–96. [Google Scholar]
- Ahmed, N.; Firoze, A.; Rahman, R.M. Machine learning for predicting landslide risk of Rohingya refugee camp infrastructure. J. Inf. Telecommun. 2020, 4, 175–198. [Google Scholar] [CrossRef]
Data Name | Data Source | Data Content and Processing |
---|---|---|
Geological Hazard Hidden Danger Points | Chinese Academy of Sciences Resource and Environmental Science Data Platform (https://www.resdc.cn/data.aspx?DATAID=290) | Obtain the geological hazard hidden danger point data of Guizhou Province, containing longitude and latitude information of disaster points as of 2019 |
Topographic Data | Geospatial Data Cloud (https://www.gscloud.cn/) | Based on the provided ASTER GDEM V3 digital elevation model with a 30 m resolution, extract topographic factors, including elevation, slope, aspect, and curvature |
Land Use | U.S. Geological Survey (USGS) (https://www.usgs.gov/) | Obtain GlobalLand30 2020 global land cover data through the Geosciences and Environmental Change Science Center and reclassify it into six land use types |
Rainfall | PANGAEA Data Publisher for Earth & Environmental Science (https://www.pangaea.de/) | Obtain multiyear average rainfall data from 1981 to 2020 |
Human Activities | OpenStreetMap (https://www.openstreetmap.org/) | Based on the road network and water system vector data in 2023, calculate the road density and water system density within 1 km2 grids |
Vegetation Index | Google Earth Engine (GEE) platform (https://earthengine.google.com/) | Calculate the annual average normalized difference vegetation index (NDVI) based on Landsat 8 OLI images from 2020 to 2022 |
Model | Parameter Ranges | Best Parameters |
---|---|---|
RF | n_estimators: [50, 500] max_depth: [3, 50] min_samples_split: [2, 20] min_samples_leaf: [1, 10] | n_estimators: 189 max_depth: 37 min_samples_split: 5 min_samples_leaf: 7 max_features: None bootstrap: true class_weight: “balanced” |
SVM | C: [0.001, 1000] degree: [2, 5] | C: 21.08 kernel: “linear” gamma: “scale” degree: 4 class_weight: none |
DT | max_depth: [3, 50] min_samples_split: [2, 20] min_samples_leaf: [1, 10] | max_depth: 50 min_samples_split: 10 min_samples_leaf: 6 max_features: “sqrt” class_weight: “balanced” |
XGBoost | n_estimators: [50, 500] max_depth: [3, 15] learning_rate: [0.001, 0.3] subsample: [0.5, 1.0] colsample_bytree: [0.5, 1.0] gamma: [0, 10] reg_alpha: [0, 10] reg_lambda: [1, 10] | n_estimators: 456 max_depth: 5 learning_rate: 0.109 subsample: 0.595 colsample_bytree: 0.948 gamma: 1.231 reg_alpha: 3.049 reg_lambda: 7.304 |
Goal Layer | Criterion Layer | Alternative Layer |
---|---|---|
Geohazard susceptibility assessment | Topography and geomorphology | Slope; aspect; elevation (DEM); curvature |
Climatic conditions | Precipitation (prep) | |
Eco-environment | Normalized difference vegetation index (NDVI); land use type (LU) | |
Geology and hydrology | River density (river-density) | |
Basic data | Road density (road-density) |
Model | Accuracy | Recall | Precision | F1 | AUC |
---|---|---|---|---|---|
IV | 0.640 | 0.638 | 0.644 | 0.641 | 0.6912 |
DT | 0.588 | 0.595 | 0.59 | 0.593 | 0.5899 |
LR | 0.611 | 0.600 | 0.618 | 0.609 | 0.6619 |
RF | 0.653 | 0.674 | 0.651 | 0.662 | 0.7059 |
SVM | 0.655 | 0.671 | 0.654 | 0.663 | 0.708 |
XGB | 0.670 | 0.676 | 0.671 | 0.674 | 0.7267 |
IV-DT | 0.774 | 0.832 | 0.854 | 0.843 | 0.881 |
IV-LR | 0.796 | 0.825 | 0.904 | 0.863 | 0.8656 |
IV-RF | 0.798 | 0.836 | 0.890 | 0.862 | 0.9301 |
IV-SVM | 0.802 | 0.840 | 0.890 | 0.865 | 0.9018 |
IV-XGB | 0.796 | 0.814 | 0.924 | 0.865 | 0.9448 |
Model | Susceptibility Class | Area (sq km) | Pixel Percentage (%) | Disaster Count | Disaster Percentage (%) |
---|---|---|---|---|---|
IV | Extremely Low | 5706.71 | 3.46 | 149 | 1.63 |
Low | 59,458.11 | 36.01 | 2200 | 24.02 | |
Medium | 67,613.06 | 40.95 | 3782 | 41.29 | |
High | 39,823.49 | 24.12 | 2684 | 29.3 | |
Extremely High | 3293.95 | 1.99 | 345 | 3.77 | |
DT | Extremely Low | 93,233.44 | 49.09 | 4244 | 46.33 |
Low | 188.46 | 0.1 | 10 | 0.11 | |
Medium | 2294.18 | 1.21 | 86 | 0.94 | |
High | 31.62 | 0.02 | 4 | 0.04 | |
Extremely High | 80,147.62 | 42.17 | 4816 | 52.58 | |
LR | Extremely Low | 459.18 | 0.25 | 21 | 0.23 |
Low | 56,501.98 | 30.33 | 2125 | 23.2 | |
Medium | 84,483.85 | 45.35 | 4608 | 50.31 | |
High | 32,285.41 | 17.33 | 2202 | 24.04 | |
Extremely High | 2164.91 | 1.16 | 204 | 2.23 | |
RF | Extremely Low | 27,178.68 | 15.49 | 795 | 8.68 |
Low | 43,823.41 | 24.97 | 1837 | 20.05 | |
Medium | 50,404.46 | 28.72 | 2657 | 29.01 | |
High | 40,159.38 | 22.88 | 2650 | 28.93 | |
Extremely High | 14,329.39 | 8.16 | 1221 | 13.33 | |
SVM | Extremely Low | 1157.45 | 0.7 | 17 | 0.19 |
Low | 76,648.76 | 46.41 | 2756 | 30.09 | |
Medium | 44,320.62 | 26.83 | 2498 | 27.27 | |
High | 53,234.1 | 32.23 | 3850 | 42.03 | |
Extremely High | 534.39 | 0.32 | 39 | 0.43 | |
XGB | Extremely Low | 25,655 | 14.61 | 717 | 7.83 |
Low | 49,258.33 | 28.06 | 1950 | 21.29 | |
Medium | 49,072.22 | 27.95 | 2559 | 27.94 | |
High | 36,222.72 | 20.63 | 2449 | 26.73 | |
Extremely High | 15,687.05 | 8.93 | 1485 | 16.21 | |
IV-DT | Extremely Low | 53,524.25 | 25.92 | 1572 | 17.16 |
Low | 38,048 | 18.43 | 1717 | 18.74 | |
Medium | 11,722.25 | 5.68 | 712 | 7.77 | |
High | 15,034.5 | 7.28 | 870 | 9.5 | |
Extremely High | 88,140.5 | 42.69 | 4289 | 46.82 | |
IV-LR | Extremely Low | 20,065.25 | 9.72 | 599 | 6.54 |
Low | 26,693.5 | 12.93 | 896 | 9.78 | |
Medium | 32,304.25 | 15.65 | 1229 | 13.42 | |
High | 43,027.25 | 20.84 | 1916 | 20.92 | |
Extremely High | 84,379.25 | 40.87 | 4520 | 49.34 | |
IV-RF | Extremely Low | 23,410.25 | 11.34 | 516 | 5.63 |
Low | 29,718.5 | 14.4 | 937 | 10.23 | |
Medium | 31,444.75 | 15.23 | 1463 | 15.97 | |
High | 33,216.75 | 16.09 | 1692 | 18.47 | |
Extremely High | 88,679.25 | 42.95 | 4552 | 49.69 | |
IV-SVM | Extremely Low | 26,805.5 | 12.98 | 611 | 6.67 |
Low | 24,255.25 | 11.75 | 806 | 8.8 | |
Medium | 27,389 | 13.27 | 1084 | 11.83 | |
High | 35,227.25 | 17.06 | 1780 | 19.43 | |
Extremely High | 92,792.5 | 44.94 | 4879 | 53.26 | |
IV-XGB | Extremely Low | 22,936.25 | 11.11 | 510 | 5.57 |
Low | 29,633.75 | 14.35 | 899 | 9.81 | |
Medium | 32,233.25 | 15.61 | 1404 | 15.33 | |
High | 41,553 | 20.13 | 1927 | 21.04 | |
Extremely High | 80,113.25 | 38.8 | 4420 | 48.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wu, F.; Hu, H. Geohazard Susceptibility Assessment in Karst Terrain: A Novel Coupling Model Integrating Information Value and XGBoost Machine Learning in Guizhou Province, China. Appl. Sci. 2025, 15, 10077. https://doi.org/10.3390/app151810077
Chen J, Wu F, Hu H. Geohazard Susceptibility Assessment in Karst Terrain: A Novel Coupling Model Integrating Information Value and XGBoost Machine Learning in Guizhou Province, China. Applied Sciences. 2025; 15(18):10077. https://doi.org/10.3390/app151810077
Chicago/Turabian StyleChen, Jiao, Fufei Wu, and Hongyin Hu. 2025. "Geohazard Susceptibility Assessment in Karst Terrain: A Novel Coupling Model Integrating Information Value and XGBoost Machine Learning in Guizhou Province, China" Applied Sciences 15, no. 18: 10077. https://doi.org/10.3390/app151810077
APA StyleChen, J., Wu, F., & Hu, H. (2025). Geohazard Susceptibility Assessment in Karst Terrain: A Novel Coupling Model Integrating Information Value and XGBoost Machine Learning in Guizhou Province, China. Applied Sciences, 15(18), 10077. https://doi.org/10.3390/app151810077