Knowledge Graphs and Artificial Intelligence for the Implementation of Cognitive Heritage Digital Twins
Abstract
1. Introduction
2. Digital Twins: From Conceptual Models to Operational Systems
2.1. Digital Twins and Artificial Intelligence
2.2. Ontologies: Illuminating Artificial Intelligence
2.3. Towards the Cognitive Heritage Digital Twins
3. Digital Twins and the Modelling of Knowledge
4. From Fragments to Knowledge
4.1. Natural Language Processing of Textual Documentation
“Given a set of vector values and a vector query, attention is a technique to compute a weighted sum of the values, dependent on the query.” [54]
- named entity recognition
- semantic enrichment
- machine-assisted transcription
- cross-document linking
4.2. LLMs for Identification and Semantic Extraction of Relevant Entities and Relationships
4.3. Building Semantic Knowledge Graphs from Extracted Information
5. From Knowledge to Intelligence
5.1. Using Knowledge Graphs to Build Knowledge-Enriched AI Agents
5.2. Embedding Cultural Heritage Knowledge Graphs
5.3. Access to Heritage Data in Natural Language
- pieces that belong to the same object,
- different objects that were excavated at the same site but from different locations,
- different objects that were crafted in the same workshop,
- different objects made of material originating from the same place; inferred from the data of scientific analysis reports,
- different objects made by the same artist.
6. Case Study: Enriching Digital Twins with Heritage Science Data
6.1. Application of AI-Driven Semantic Pipelines
- PDF parsing and image extraction: text and images extraction has been performed with PyMuPDF [107], a Python (Python 3.12.7, PyMuPDF 1.25.5) library able to handle even complex textual layout. Images from PDFs were also extracted and kept separately for further experiments.
- Text preprocessing: SpaCy [108] library has been used to perform tokenisation, sentence segmentation, and syntactic parsing to reduce noise and generally improve the handling of textual data by machines.
- Sentence-aware chunking: to enable efficient processing by Transformer-based LLMs, the texts were then segmented into smaller, semantically coherent units called “chunks”. Sentences were aggregated sequentially until the token limit ( in this experiment the limit was 300 token) was reached to avoid splitting syntactically or semantically dependent clauses. This size has been chosen to balance the model’s context window constraints with our need to have meaningful textual context. This segmentation allows the model to focus on localised contexts, ensuring that the extracted knowledge is specific and grounded in the source material.
- Text normalisation: lowercased all text, removed punctuation, standardised whitespace, and ensured consistent character encoding for compatibility with embedding models.
- a validated list of ontology-relevant terms, stored in JSON format,
- a collection of RDF triples, structured and domain ontology-aligned,
- a mapping between each term and its original context, ensuring interpretability and traceability.
artemis:LeoX_Portrait_Study_Object a rhdto:HC3_Tangible_Entity ; rdfs:label "Portrait of Leo X" ; owl:sameAs <http://www.wikidata.org/entity/Q5597> ; crm:P102_has_title "Portrait of Leo X with Cardinals" ; rhdto:HP11_was_made_by artemis:Artist_Raffaello ; crm:P45_consists_of "Oil on wood" ; rhdto:HP12_was_made_within artemis:LeoX_Portrait_Period ; crm:P55_has_current_location artemis:LeoX_Portrait_Place .
artemis:Analysis_MA_XRF_LeoX a crmhs:HS3_Analysis ; rdfs:label "Macro X-ray fluorescence analysis" ; crm:P2_has_type "MA-XRF" ; crmhs:HSP1_has_activity_title "MA-XRF analysis on Leo X Portrait" ; crm:P3_has_note "Macro X-ray fluorescence analysis" ; crmhs:HSP4_analysed artemis:LeoX_Portrait_Study_Object ; crmhs:HSP6_used_method artemis:XRF_Method ; crmhs:HSP8_used_instrument artemis:Device_INFN_CHNET_Scanner ; crmhs:HSP9_used_component artemis:Component_XRay_Tube_Moxtek , artemis:Component_SDD_Amptek , artemis:Component_Telemeter_Keyence ; crmhs:HSP10_used_software artemis:INFN-CHnet_Software ; crmhs:HSP13_used_settings artemis:Settings_001 ; crmhs:HSP16_produced_dataset artemis:XRF_LeoX_Resulting_Paper ; crm:P14_carried_out_by artemis:Group_INFN ; crm:P11_had_participant artemis:Person_Lorenzo_Giuntini ; crm:P4_has_time-span artemis:Analysis_Time_Frame ; crm:P7_took_place_at artemis:Analysis_Place .
6.2. Populating and Querying the ARTEMIS Knowledge Graph
{ "id": "obj_0001", "label": "Mona Lisa", "type": "E22_Man-Made_Object", "features": { "label_embedding": [0.23, 0.78, ...], "type_embedding": [0.12, -0.09, ...] }
6.3. Message Passing in CompGCN for Cultural Heritage Knowledge Graphs
6.4. Similarity Computation Between the Query and KG Embeddings
6.5. Design and Implementation of the Prompt-Based Interface
6.6. Presenting Complex Query Results in User-Comprehensible Formats
7. Discussion: Taming the Wild Beast
7.1. The Indispensable Role of Human Expertise in AI-Assisted Processes
7.2. Ethical Implications and the Pursuit of Transparent AI in Cultural Heritage
8. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Graves, R. The Greek Myths; Penguin Books: London, UK, 1955; Volume 2, pp. 274–275. [Google Scholar]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Semeraro, C.; Lezoche, M.; Panetto, H.; Dassisti, M. Digital twin paradigm: A systematic literature review. Comput. Ind. 2021, 130, 103469. [Google Scholar] [CrossRef]
- Schrotter, G.; Hürzeler, C. The Digital Twin of the City of Zurich for Urban Planning. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 99–112. [Google Scholar] [CrossRef]
- Caprari, G.; Castelli, G.; Montuori, M.; Camardelli, M.; Malvezzi, R. Digital Twin for Urban Planning in the Green Deal Era: A State of the Art and Future Perspectives. Sustainability 2022, 14, 6263. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches; Kahlen, F.J., Flumerfelt, S., Alves, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar] [CrossRef]
- Li, L.; Aslam, S.; Wileman, A.; Perinpanayagam, S. Digital Twin in Aerospace Industry: A Gentle Introduction. IEEE Access 2022, 10, 9543–9562. [Google Scholar] [CrossRef]
- Alfaro-Viquez, D.; Zamora-Hernandez, M.; Fernandez-Vega, M.; Garcia-Rodriguez, J.; Azorin-Lopez, J. A Comprehensive Review of AI-Based Digital Twin Applications in Manufacturing: Integration Across Operator, Product, and Process Dimensions. Electronics 2025, 14, 646. [Google Scholar] [CrossRef]
- Bunea, A.A.; Dobre, C.M. Developing an Immersive Virtual Reality Interface for Urban Digital Twins: Integrating CAVE and HMD Systems for Enhanced Urban Analysis. In Proceedings of the 2024 23rd RoEduNet Conference: Networking in Education and Research (RoEduNet), Bucharest, Romania, 19–20 September 2024; pp. 1–5. [Google Scholar] [CrossRef]
- European Commission. Destination Earth. Available online: https://destination-earth.eu (accessed on 15 July 2025).
- Nikolinakos, N.T. EU Policy and Legal Framework for Artificial Intelligence, Robotics and Related Technologies—The AI Act, 1st ed.; Number v.53 in Law, Governance and Technology Series; Springer International Publishing AG: Cham, Switzerland, 2023. [Google Scholar]
- Niccolucci, F.; Felicetti, A.; Hermon, S. Populating the Data Space for Cultural Heritage with Heritage Digital Twins. Data 2022, 7, 105. [Google Scholar] [CrossRef]
- Niccolucci, F.; Markhoff, B.; Theodoridou, M.; Felicetti, A.; Hermon, S. The Heritage Digital Twin: A bicycle made for two. The integration of digital methodologies into cultural heritage research. Open Res. Eur. 2023, 3, 64. [Google Scholar] [CrossRef]
- Niccolucci, F.; Felicetti, A. Digital Twin Sensors in Cultural Heritage Ontology Applications. Sensors 2024, 24, 3978. [Google Scholar] [CrossRef]
- Hedrick, E.; Hatch, D.; Oliver, E. Digital Twins in the Ancient and Historical World. In Proceedings of the 2025 Intermountain Engineering, Technology and Computing (IETC), Orem, UT, USA, 9–10 May 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Luther, W.; Baloian, N.; Biella, D.; Sacher, D. Digital Twins and Enabling Technologies in Museums and Cultural Heritage: An Overview. Sensors 2023, 23, 1583. [Google Scholar] [CrossRef]
- Menaguale, O. Digital Twin and Cultural Heritage—The Future of Society Built on History and Art. In The Digital Twin; Crespi, N., Drobot, A.T., Minerva, R., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1081–1111. [Google Scholar] [CrossRef]
- Amelio, A.; Zarri, G.P. Cultural heritage digital twin: Modeling and representing the visual narrative in Leonardo Da Vinci’s Mona Lisa. Neural Comput. Appl. 2024, 36, 11859–11876. [Google Scholar] [CrossRef]
- Gros, A.; Guillem, A.; De Luca, L.; Baillieul, É.; Duvocelle, B.; Malavergne, O.; Leroux, L.; Zimmer, T. Faceting the post-disaster built heritage reconstruction process within the digital twin framework for Notre-Dame de Paris. Sci. Rep. 2023, 13, 5981. [Google Scholar] [CrossRef]
- Ni, Z.; Eriksson, P.; Liu, Y.; Karlsson, M.; Gong, S. Improving energy efficiency while preserving historic buildings with digital twins and artificial intelligence. IOP Conf. Ser. Earth Environ. Sci. 2021, 863, 012041. [Google Scholar] [CrossRef]
- Ni, Z.; Hupkes, J.; Eriksson, P.; Leijonhufvud, G.; Karlsson, M.; Gong, S. Parametric Digital Twins for Preserving Historic Buildings: A Case Study at Löfstad Castle in Östergötland, Sweden. IEEE Access 2025, 13, 3371–3389. [Google Scholar] [CrossRef]
- Zhang, Z.; Dang, A.; Huang, J.; Chen, Y. Advancing Conservation Methods of the Great Wall Cultural Heritage Through Digital Twin. IEEE Internet Comput. 2025, 29, 48–55. [Google Scholar] [CrossRef]
- Brandt, A.K. Beethoven’s Ninth and AI’s Tenth: A comparison of human and computational creativity. J. Creat. 2023, 33, 100068. [Google Scholar] [CrossRef]
- Rizk, R.; Rizk, D.; Rizk, F.; Kumar, A. A Hybrid Capsule Network-based Deep Learning Framework for Deciphering Ancient Scripts with Scarce Annotations: A Case Study on Phoenician Epigraphy. In Proceedings of the 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Lansing, MI, USA, 9–11 August 2021; pp. 617–620. [Google Scholar] [CrossRef]
- Vats, S.; Mehta, S. Revolutionizing Archaeological Discoveries: The Role of Artificial Intelligence and Machine Learning in Site Analysis. In Proceedings of the 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kamand, India, 24–28 June 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Cobb, P.J. Large Language Models and Generative AI, Oh My!: Archaeology in the Time of ChatGPT, Midjourney, and Beyond. Adv. Archaeol. Pract. 2023, 11, 363–369. [Google Scholar] [CrossRef]
- Leong, W.Y. Revitalizing Historical Paintings through Artificial Intelligence. In Proceedings of the 2025 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON), Nan, Thailand, 29 January–1 February 2025; pp. 141–145. [Google Scholar] [CrossRef]
- Pisu, F.A.; Porcu, S.; Carboni, R.; Mameli, V.; Cannas, C.; Naitza, S.; Melis, R.T.; Mussi, M.; Chiriu, D. Innovative method for provenance studies in cultural heritage: A new algorithm based on observables from high-resolution Raman spectra of red ochre. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 329, 125581. [Google Scholar] [CrossRef]
- Mishra, M.; Barman, T.; Ramana, G. Artificial intelligence-based visual inspection system for structural health monitoring of cultural heritage. J. Civ. Struct. Health Monit. 2024, 14, 103–120. [Google Scholar] [CrossRef]
- Ararat, M.B.; Yenice, T.K. The use of artificial intelligence in damage assessment of historical buildings. In Frontiers of Architectural Research; Elsevier: Amsterdam, The Netherlands, 2025. [Google Scholar]
- Gaber, J.A.; Youssef, S.M.; Fathalla, K.M. The role of artificial intelligence and machine learning in preserving cultural heritage and art works via virtual restoration. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 10, 185–190. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Mayer, A.; Greif, L.; Häußermann, T.M.; Otto, S.; Kastner, K.; El Bobbou, S.; Chardonnet, J.R.; Reichwald, J.; Fleischer, J.; Ovtcharova, J. Digital Twins, Extended Reality, and Artificial Intelligence in Manufacturing Reconfiguration: A Systematic Literature Review. Sustainability 2025, 17, 2318. [Google Scholar] [CrossRef]
- Charalabidis, Y.; Kontos, G.; Zitianellis, D. Local Digital Twins for Cities and Regions: The Way Forward. In Decide Better: Open and Interoperable Local Digital Twins; Raes, L., Ruston McAleer, S., Croket, I., Kogut, P., Brynskov, M., Lefever, S., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2025; pp. 233–259. [Google Scholar] [CrossRef]
- Tampère, C.; Ortmann, P.; Jedlička, K.; Lohman, W.; Janssen, S. Future Ready Local Digital Twins and the Use of Predictive Simulations: The Case of Traffic and Traffic Impact Modelling. In Decide Better: Open and Interoperable Local Digital Twins; Raes, L., Ruston McAleer, S., Croket, I., Kogut, P., Brynskov, M., Lefever, S., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2025; pp. 203–230. [Google Scholar] [CrossRef]
- Arsalan, H.; Heesom, D.; Moore, N. From Heritage Building Information Modelling Towards an ‘Echo-Based’ Heritage Digital Twin. Heritage 2025, 8, 33. [Google Scholar] [CrossRef]
- Fan, C.; Zhang, C.; Yahja, A.; Mostafavi, A. Disaster City Digital Twin: A vision for integrating artificial and human intelligence for disaster management. Int. J. Inf. Manag. 2021, 56, 102049. [Google Scholar] [CrossRef]
- Lucchi, E. Digital twins, artificial intelligence and immersive technologies for heritage preservation and cultural tourism in smart cities. In Digital Twin, Blockchain, and Sensor Networks in the Healthy and Mobile City; Elsevier: Amsterdam, The Netherlands, 2025; pp. 507–520. [Google Scholar]
- Pavlidis, G. Agentic AI for Cultural Heritage: Embedding Risk Memory in Semantic Digital Twins. Computers 2025, 14, 266. [Google Scholar] [CrossRef]
- Singh, M.; Fuenmayor, E.; Hinchy, E.; Qiao, Y.; Murray, N.; Devine, D. Digital Twin: Origin to Future. Appl. Syst. Innov. 2021, 4, 36. [Google Scholar] [CrossRef]
- Leipnitz, M.T.; Petry, R.H.; Rodrigues, F.H.; De Souza Silva, H.R.; Correia, J.B.; Becker, K.; Wickboldt, J.A.; Carbonera, J.L.; Netto, J.C.; Abel, M. Architecting Digital Twins: From Concept to Reality. Procedia Comput. Sci. 2025, 256, 530–537. [Google Scholar] [CrossRef]
- Rathore, M.M.; Shah, S.A.; Shukla, D.; Bentafat, E.; Bakiras, S. The Role of AI, Machine Learning, and Big Data in Digital Twinning: A Systematic Literature Review, Challenges, and Opportunities. IEEE Access 2021, 9, 32030–32052. [Google Scholar] [CrossRef]
- Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. Towards a semantic Construction Digital Twin: Directions for future research. Autom. Constr. 2020, 114, 103179. [Google Scholar] [CrossRef]
- Karabulut, E.; Pileggi, S.F.; Groth, P.; Degeler, V. Ontologies in digital twins: A systematic literature review. Future Gener. Comput. Syst. 2024, 153, 442–456. [Google Scholar] [CrossRef]
- Xhani, D.; Moreira, J.L.R.; van Sinderen, M.; Pires, L.F. XMLPO: An Ontology for Explainable Machine Learning Pipeline. In Frontiers in Artificial Intelligence and Applications; IOS Press: Amsterdam, The Netherlands, 2024; pp. 193–206. ISSN 0922-6389. [Google Scholar] [CrossRef]
- Albers, L.; Große, P.; Wagner, S. Semantic Data-Modeling and Long-Term Interpretability of Cultural Heritage Data—Three Case Studies. In Digital Cultural Heritage; Springer International Publishing: Cham, Switzerland, 2020; pp. 239–253. [Google Scholar] [CrossRef]
- Felicetti, A.; Meghini, C.; Richards, J.; Theodoridou, M. The AO-Cat Ontology. Technical Report, Zenodo, 2025. Version Number: 1.2. [CrossRef]
- CIDOC CRM. Available online: https://cidoc-crm.org (accessed on 10 July 2025).
- ISO 21127:2023; Information and documentation—A Reference Ontology for the Interchange of Cultural Heritage Information. ISO: Geneva, Switzerland, 2023.
- CRMsci—Scientific Observation Model. Available online: https://cidoc-crm.org/crmsci (accessed on 11 July 2025).
- CRMdig—Model for Provenance Metadata. Available online: https://cidoc-crm.org/crmdig (accessed on 14 July 2025).
- Castelli, L.; Felicetti, A.; Proietti, F. Heritage Science and Cultural Heritage: standards and tools for establishing cross-domain data interoperability. Int. J. Digit. Libr. 2021, 22, 279–287. [Google Scholar] [CrossRef]
- Felicetti, A.; Niccolucci, F. Artificial Intelligence and Ontologies for the Management of Heritage Digital Twins Data. Data 2024, 10, 1. [Google Scholar] [CrossRef]
- Alammar, J.; Grootendorst, M. Hands-On Large Language Models: Language Understanding and Generation, 1st ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2024. [Google Scholar]
- Chua, L.; Ghazi, B.; Huang, Y.; Kamath, P.; Kumar, R.; Manurangsi, P.; Sinha, A.; Xie, C.; Zhang, C. Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models. arXiv 2025, arXiv:2406.16135. [Google Scholar]
- Yang, H.; Zhang, Y.; Xu, J.; Lu, H.; Heng, P.A.; Lam, W. Unveiling the Generalization Power of Fine-Tuned Large Language Models. arXiv 2024, arXiv:2403.09162. [Google Scholar] [CrossRef]
- Schick, T.; Schütze, H. Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference. arXiv 2021, arXiv:2001.07676. [Google Scholar] [CrossRef]
- Tudor, C.; Megyesi, B.; Östling, R. Prompting the Past: Exploring Zero-Shot Learning for Named Entity Recognition in Historical Texts Using Prompt-Answering LLMs. In Proceedings of the 9th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2025), Albuquerque, NM, USA, 3–4 May 2025; Kazantseva, A., Szpakowicz, S., Degaetano-Ortlieb, S., Bizzoni, Y., Pagel, J., Eds.; pp. 216–226. [Google Scholar] [CrossRef]
- Brown, N.B. Enhancing Trust in LLMs: Algorithms for Comparing and Interpreting LLMs. arXiv 2024, arXiv:2406.01943. [Google Scholar] [CrossRef]
- Cullhed, E. Instruct-Tuning Pretrained Causal Language Models for Ancient Greek Papyrology and Epigraphy. arXiv 2024, arXiv:2409.13870. [Google Scholar]
- Ignatowicz, J.; Kutt, K.; Nalepa, G.J. Position Paper: Metadata Enrichment Model: Integrating Neural Networks and Semantic Knowledge Graphs for Cultural Heritage Applications. arXiv 2025, arXiv:2505.23543. [Google Scholar] [CrossRef]
- Meoded, E. Handwritten Text Recognition of Historical Manuscripts Using Transformer-Based Models. arXiv 2025, arXiv:2508.11499. [Google Scholar] [CrossRef]
- Zhang, X.; Bos, J. Multi-Modal Semantic Parsing for the Interpretation of Tombstone Inscriptions. arXiv 2025, arXiv:2507.04377. [Google Scholar] [CrossRef]
- Schweter, S.; März, L.; Schmid, K.; Çano, E. hmBERT: Historical Multilingual Language Models for Named Entity Recognition. arXiv 2022, arXiv:2205.15575. [Google Scholar] [CrossRef]
- ArchaeoBERT. Available online: https://huggingface.co/alexbrandsen/ArchaeoBERT (accessed on 20 August 2025).
- Ehrmann, M.; Hamdi, A.; Pontes, E.L.; Romanello, M.; Doucet, A. Named Entity Recognition and Classification in Historical Documents: A Survey. ACM Comput. Surv. 2023, 56, 1–47. [Google Scholar] [CrossRef]
- Sprugnoli, R.; Tonelli, S. Novel Event Detection and Classification for Historical Texts. Comput. Linguist. 2019, 45, 229–265. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, X.; Chen, J.; Qiao, S.; Ou, Y.; Yao, Y.; Deng, S.; Chen, H.; Zhang, N. LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities. arXiv 2024, arXiv:2305.13168. [Google Scholar] [CrossRef]
- Yang, L.; Chen, H.; Li, Z.; Ding, X.; Wu, X. Give Us the Facts: Enhancing Large Language Models with Knowledge Graphs for Fact-aware Language Modeling. arXiv 2024, arXiv:2306.11489. [Google Scholar] [CrossRef]
- Tang, N.; Fan, J.; Li, F.; Tu, J.; Du, X.; Li, G.; Madden, S.; Ouzzani, M. RPT: Relational Pre-trained Transformer Is Almost All You Need towards Democratizing Data Preparation. arXiv 2021, arXiv:2012.02469. [Google Scholar] [CrossRef]
- Amer-Yahia, S.; Bonifati, A.; Chen, L.; Li, G.; Shim, K.; Xu, J.; Yang, X. From Large Language Models to Databases and Back: A discussion on research and education. arXiv 2023, arXiv:2306.01388. [Google Scholar] [CrossRef]
- Choi, Y.; Asif, M.A.; Han, Z.; Willes, J.; Krishnan, R.G. Teaching LLMs How to Learn with Contextual Fine-Tuning. arXiv 2025, arXiv:2503.09032. [Google Scholar] [CrossRef]
- Pyrih, V.; Rebmann, A.; van der Aa, H. LLMs that Understand Processes: Instruction-tuning for Semantics-Aware Process Mining. arXiv 2025, arXiv:2508.16270. [Google Scholar]
- Jiménez-Ruiz, E.; Grau, B. LogMap: Logic-Based and Scalable Ontology Matching; Springer: Berlin/Heidelberg, Germany, 2011; pp. 273–288. [Google Scholar] [CrossRef]
- He, Y.; Chen, J.; Antonyrajah, D.; Horrocks, I. BERTMap: A BERT-based Ontology Alignment System. arXiv 2022, arXiv:2112.02682. [Google Scholar] [CrossRef]
- Fensel, D.; Şimşek, U.; Angele, K.; Huaman, E.; Kärle, E.; Panasiuk, O.; Toma, I.; Umbrich, J.; Wahler, A. How to Build a Knowledge Graph. In Knowledge Graphs: Methodology, Tools and Selected Use Cases; Springer International Publishing: Cham, Switzerland, 2020; pp. 11–68. [Google Scholar] [CrossRef]
- Maree, M. Quantifying Relational Exploration in Cultural Heritage Knowledge Graphs with LLMs: A Neuro-Symbolic Approach for Enhanced Knowledge Discovery. Data 2025, 10, 52. [Google Scholar] [CrossRef]
- Bruns, O. The Persistence of Temporality: Representation of Time in Cultural Heritage Knowledge Graphs. In Proceedings of the Doctoral Consortium at ISWC 2023, co-located with 22nd International Semantic Web Conference (ISWC 2023), Athens, Greece, 7 November 2023; ISWC 2023. Volume 3678. [Google Scholar]
- Faralli, S.; Lenzi, A.; Velardi, P. A Large Interlinked Knowledge Graph of the Italian Cultural Heritage. In Proceedings of the LREC, Marseille, France, 20–25 June 2022; pp. 6280–6289. [Google Scholar]
- Carriero, V.A.; Gangemi, A.; Mancinelli, M.L.; Marinucci, L.; Nuzzolese, A.G.; Presutti, V.; Veninata, C. ArCo: The Italian Cultural Heritage Knowledge Graph. arXiv 2019, arXiv:1905.02840. [Google Scholar] [CrossRef]
- Barzaghi, S.; Moretti, A.; Heibi, I.; Peroni, S. CHAD-KG: A Knowledge Graph for Representing Cultural Heritage Objects and Digitisation Paradata. arXiv 2025, arXiv:2505.13276. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar] [CrossRef]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language Models are Few-Shot Learners. arXiv 2020, arXiv:2005.14165. [Google Scholar] [CrossRef]
- Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al. LLaMA: Open and Efficient Foundation Language Models. arXiv 2023, arXiv:2302.13971. [Google Scholar] [CrossRef]
- Gekhman, Z.; Yona, G.; Aharoni, R.; Eyal, M.; Feder, A.; Reichart, R.; Herzig, J. Does Fine-Tuning LLMs on New Knowledge Encourage Hallucinations? arXiv 2024, arXiv:2405.05904. [Google Scholar] [CrossRef]
- Pan, S.; Luo, L.; Wang, Y.; Chen, C.; Wang, J.; Wu, X. Unifying Large Language Models and Knowledge Graphs: A Roadmap. IEEE Trans. Knowl. Data Eng. 2024, 36, 3580–3599. [Google Scholar] [CrossRef]
- Agrawal, A.; Suzgun, M.; Mackey, L.; Kalai, A.T. Do Language Models Know When They’re Hallucinating References? arXiv 2023, arXiv:2305.18248. [Google Scholar] [CrossRef]
- Sui, Y.; He, Y.; Ding, Z.; Hooi, B. Can Knowledge Graphs Make Large Language Models More Trustworthy? An Empirical Study Over Open-ended Question Answering. arXiv 2025, arXiv:2410.08085. [Google Scholar] [CrossRef]
- Sun, J.; Du, Z.; Chen, Y. Knowledge Graph Tuning: Real-time Large Language Model Personalization based on Human Feedback. arXiv 2024, arXiv:2405.19686. [Google Scholar] [CrossRef]
- Doerr, M. The CIDOC Conceptual Reference Module: An Ontological Approach to Semantic Interoperability of Metadata. AI Mag. 2003, 24, 75–92. [Google Scholar]
- Binding, C.; May, K.; Tudhope, D. Semantic interoperability in archaeological datasets: Data mapping and extraction via the CIDOC CRM. In Proceedings of the Research and Advanced Technology for Digital Libraries: 15th International Conference on Theory and Practice of Digital Libraries (TPDL 2011), Berlin, Germany, 23–26 September 2011; Springer: Berlin, Germany, 2011; pp. 280–291. [Google Scholar]
- Doerr, M.; Kritsotaki, A.; Rousakis, Y. CIDOC2VEC: Extracting Information from Atomized CIDOC-CRM Humanities Knowledge Graphs. Information 2021, 12, 503. [Google Scholar]
- Vashishth, S.; Sanyal, S.; Nitin, V.; Talukdar, P. Composition-based multi-relational graph convolutional networks. In Proceedings of the International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; van den Berg, R.; Titov, I.; Welling, M. Modeling relational data with graph convolutional networks. In Proceedings of the European Semantic Web Conference (ESWC), Crete, Greece, 3–7 June 2018; Springer: Berlin, Germany, 2018; pp. 593–607. [Google Scholar]
- El Vaigh, C.B.; Garcia, N.; Renoust, B.; Chu, C.; Nakashima, Y.; Nagahara, H. GCNBoost: Artwork Classification by Label Propagation through a Knowledge Graph. arXiv 2021, arXiv:2105.11852. [Google Scholar] [CrossRef]
- Meroño-Peñuela, A.; Sack, H. Move Cultural Heritage Knowledge Graphs in Everyone’s Pocket. Semant. Web J. 2020, 14, 323–359. [Google Scholar]
- Yuan, H.; Li, Y.; Wang, B.; Liu, K.; Zhang, J. Knowledge Graph-Based Intelligent Question Answering System for Ancient Chinese Costume Heritage. NPJ Herit. Sci. 2025, 13, 198. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, S.; Chu, J.; Fan, H.; Du, B. Using Knowledge Graphs and Deep Learning Algorithms to Enhance Digital Cultural Heritage Management. Herit. Sci. 2023, 11, 204. [Google Scholar] [CrossRef]
- Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; Yu, P.S. A Survey on Knowledge Graphs: Representation, Acquisition, and Applications. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 494–514. [Google Scholar] [CrossRef]
- Majumder, E.A. Injecting Knowledge Graphs into Large Language Models. arXiv 2025, arXiv:2505.07554. [Google Scholar] [CrossRef]
- Zhang, B.; Meroño Peñuela, A.; Simperl, E. Towards Explainable Automatic Knowledge Graph Construction with Human-in-the-loop. Semant. Web J. 2023, 274–289. [Google Scholar] [CrossRef]
- Arazzi, M.; Ligari, D.; Nicolazzo, S.; Nocera, A. Augmented Knowledge Graph Querying leveraging LLMs. arXiv 2025, arXiv:2502.01298. [Google Scholar]
- Wang, J.; Cui, Z.; Wang, B.; Pan, S.; Gao, J.; Yin, B.; Gao, W. IME: Integrating Multi-curvature Shared and Specific Embedding for Temporal Knowledge Graph Completion. arXiv 2024, arXiv:2403.19881. [Google Scholar] [CrossRef]
- Gaşi, A.; Ensari, T.; Dağtekin, M. Ontology supported semantic based image retrieval. Semant. Web. 2024, 15, 2125–2137. [Google Scholar] [CrossRef]
- Castellano, G.; Sansaro, G.; Vessio, G. Integrating Contextual Knowledge to Visual Features for Fine Art Classification. arXiv 2021, arXiv:2105.15028. [Google Scholar] [CrossRef]
- ARTEMIS. Applying Reactive Twins to Enhance Monument Information Systems. Available online: https://www.artemis-twin.eu (accessed on 12 July 2025).
- PyMuPDF. Available online: https://pymupdf.readthedocs.io/en/latest/ (accessed on 20 August 2025).
- SpaCy. Available online: https://spacy.io/ (accessed on 20 August 2025).
- All-MiniLM-L6-v2. Available online: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 (accessed on 20 August 2025).
- Mistral 7B Instruct. Available online: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3 (accessed on 20 August 2025).
- FAISS. Available online: https://faiss.ai/index.html (accessed on 20 August 2025).
- The AO-Cat Ontology. Available online: https://zenodo.org/records/7818375 (accessed on 14 July 2025).
- ARIADNE Research Infrastructure. Available online: https://www.ariadne-research-infrastructure.eu (accessed on 12 July 2025).
- Mazzinghi, A.; Ruberto, C.; Giuntini, L.; Mandò, P.A.; Taccetti, F.; Castelli, L. Mapping with Macro X-ray Fluorescence Scanning of Raffaello’s Portrait of Leo X. Heritage 2022, 5, 3993–4005. [Google Scholar] [CrossRef]
- Leboef, P.; Doerr, M. CIDOC Conceptual Reference Model: A Standard for Cultural Heritage Information. J. Comput. Cult. Herit. 2017, 10, 1–20. [Google Scholar]
- Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-relational Data. Adv. Neural Inf. Process. Syst. 2013, 26. [Google Scholar]
- Xu, D.; Cheng, W.; Luo, D.; Chen, H.; Zhang, X. InfoGCL: Information-Aware Graph Contrastive Learning. arXiv 2021, arXiv:2110.15438. [Google Scholar]
- Liang, K.; Liu, Y.; Zhou, S.; Tu, W.; Wen, Y.; Yang, X.; Dong, X.; Liu, X. Knowledge Graph Contrastive Learning Based on Relation-Symmetrical Structure. arXiv 2022, arXiv:2211.10738. [Google Scholar] [CrossRef]
- Füßl, A.; Nissen, V. Design of Explanation User Interfaces for Interactive Machine Learning. Requir. Eng. 2025. [Google Scholar] [CrossRef]
- Barzaghi, S.; Colitti, S.; Moretti, A.; Renda, G. From Metadata to Storytelling: A Framework For 3D Cultural Heritage Visualization on RDF Data. arXiv 2025, arXiv:2505.14328. [Google Scholar] [CrossRef]
- Emonet, V.; Bolleman, J.; Duvaud, S.; de Farias, T.; Sima, A.C. LLM-based SPARQL Query Generation from Natural Language over Federated Knowledge Graphs. arXiv 2025, arXiv:2410.06062. [Google Scholar]
- Manzoor, E.; Tong, J.; Vijayaraghavan, S.; Li, R. Expanding Knowledge Graphs with Humans in the Loop. arXiv 2023, arXiv:2212.05189. [Google Scholar] [CrossRef]
- Celino, I. Who is this Explanation for? Human Intelligence and Knowledge Graphs for eXplainable AI. arXiv 2020, arXiv:2005.13275. [Google Scholar] [CrossRef]
- Kamar, E. Directions in Hybrid Intelligence: Complementing AI Systems with Human Intelligence. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016. [Google Scholar]
- Te’eni, D.; Yahav, I.; Zagalsky, A.; Schwartz, D.G.; Silverman, G. Reciprocal Human—Machine Learning: A Theory and an Instantiation for the Case of Message Classification. Manag. Sci. 2023. [Google Scholar] [CrossRef]
- Foka, A.; Griffin, G.; Ortiz Pablo, D.; Rajkowska, P.; Badri, S. Tracing the bias loop: AI, cultural heritage and bias-mitigating in practice. Ai Soc. 2025. [Google Scholar] [CrossRef]
- Tóth, G.M.; Albrecht, R.; Pruski, C. Explainable AI, LLM, and digitized archival cultural heritage: A case study of the Grand Ducal Archive of the Medici. AI Soc. 2025. [Google Scholar] [CrossRef]
- Peters, U.; Carman, M. Cultural Bias in Explainable AI Research: A Systematic Analysis. J. Artif. Intell. Res. 2024. [Google Scholar] [CrossRef]
- Mitchell, M. AI Is Spreading Old Stereotypes to New Languages and Cultures. Wired 2025. [Google Scholar]
- Upmann, P. What Role Does Cultural Context Play in Defining Ethical Standards for AI? AI Glob. 2024. [Google Scholar]
- Prabhakaran, V.; Qadri, R.; Hutchinson, B. Cultural Incongruencies in Artificial Intelligence. arXiv 2022, arXiv:2211.13069. [Google Scholar] [CrossRef]
- Inuwa-Dutse, I. FATE in AI: Towards Algorithmic Inclusivity and Accessibility. arXiv 2023, arXiv:2301.01590. [Google Scholar] [CrossRef]
- Kukutai, T.; Taylor, J. Indigenous Data Sovereignty: Towards an Agenda; ANU Press: Canberra, Australia, 2020. [Google Scholar]
- Cherti, M.; Beaumont, R.; Wightman, R.; Wortsman, M.; Ilharco, G.; Gordon, C.; Schuhmann, C.; Schmidt, L.; Jitsev, J. Reproducible Scaling Laws for Contrastive Language-Image Learning. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 2818–2829. [Google Scholar] [CrossRef]
- Tooth, J.M.; Tuptuk, N.; Watson, J.D.M. A Systematic Survey of the Gemini Principles for Digital Twin Ontologies, 2024. Version Number: 1. [CrossRef]
- D’Amico, R.D.; Sarkar, A.; Karray, M.H.; Addepalli, S.; Erkoyuncu, J.A. Knowledge transfer in Digital Twins: The methodology to develop Cognitive Digital Twins. CIRP J. Manuf. Sci. Technol. 2024, 52, 366–385. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felicetti, A.; Himmiche, A.; Somenzi, M. Knowledge Graphs and Artificial Intelligence for the Implementation of Cognitive Heritage Digital Twins. Appl. Sci. 2025, 15, 10061. https://doi.org/10.3390/app151810061
Felicetti A, Himmiche A, Somenzi M. Knowledge Graphs and Artificial Intelligence for the Implementation of Cognitive Heritage Digital Twins. Applied Sciences. 2025; 15(18):10061. https://doi.org/10.3390/app151810061
Chicago/Turabian StyleFelicetti, Achille, Aida Himmiche, and Miriana Somenzi. 2025. "Knowledge Graphs and Artificial Intelligence for the Implementation of Cognitive Heritage Digital Twins" Applied Sciences 15, no. 18: 10061. https://doi.org/10.3390/app151810061
APA StyleFelicetti, A., Himmiche, A., & Somenzi, M. (2025). Knowledge Graphs and Artificial Intelligence for the Implementation of Cognitive Heritage Digital Twins. Applied Sciences, 15(18), 10061. https://doi.org/10.3390/app151810061