Generalization-Capable PINNs for the Lane–Emden Equation: Residual and StellarNET Approaches
Abstract
1. Introduction
2. Theoretical Fundamentals
2.1. Lane–Emden Equation
2.2. Physics-Informed Neural Networks (PINNs)
3. Proposed Method
3.1. Networks and Architectures
3.1.1. Residual PINN
3.1.2. StellarNET
3.2. Loss Function and Training
4. Experiments and Results
4.1. Residual PINN
4.2. StellarNET
4.3. Supplementary Case Study: MEMS Linear Resonator
- Analytical reference: The closed-form solution of (37) is with .
- Variational method: We construct a weighted-residual trial expansion on normalized time , enforcing , . The coefficients are determined by the Galerkin orthogonality of the ODE residual to the trial space (integrals by Gauss–Legendre quadrature, multi-element partition for stability). This corresponds to the compact variational treatment widely used in MEMS modeling.
- PINN (StellarNet): We augment StellarNet with inputs and enforce the hard ansatz to satisfy the initial conditions. The physics loss is the mean squared residual of (37) under the chain rule . We train on eight values with and test on five unseen values , with fixed damping .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Lagaris, I.; Likas, A.; Fotiadis, D. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 1998, 9, 987–1000. [Google Scholar] [CrossRef]
- Lee, H.; Kang, I.S. Neural algorithm for solving differential equations. J. Comput. Phys. 1990, 91, 110–131. [Google Scholar] [CrossRef]
- Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A deep learning library for solving differential equations. SIAM Rev. 2021, 63, 208–228. [Google Scholar] [CrossRef]
- Raissi, M.; Yazdani, A.; Karniadakis, G. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 2020, 367, eaaw4741. [Google Scholar] [CrossRef]
- Mathews, A.; Francisquez, M.; Hughes, J.W.; Hatch, D.R.; Zhu, B.; Rogers, B.N. Uncovering turbulent plasma dynamics via deep learning from partial observations. Phys. Rev. E 2021, 104, 025205. [Google Scholar] [CrossRef]
- Costabal, F.S.; Yang, Y.; Perdikaris, P.; Hurtado, D.E.; Kuhl, E. Physics-Informed Neural Networks for Cardiac Activation Mapping. Front. Phys. 2020, 8, 42. [Google Scholar] [CrossRef]
- Fang, Z.; Zhan, J. Deep Physical Informed Neural Networks For Metamaterial Design. IEEE Access 2019, 8, 24506–24513. [Google Scholar] [CrossRef]
- Kovacs, A.; Exl, L.; Kornell, A.; Fischbacher, J.; Hovorka, M.; Gusenbauer, M.; Breth, L.; Özelt, H.; Yano, M.; Sakuma, N.; et al. Conditional physics informed neural networks. arXiv 2021, arXiv:2104.02741. [Google Scholar] [CrossRef]
- Smith, J.; Ross, Z.; Azizzadenesheli, K.; Muir, J. HypoSVI: Hypocenter inversion with Stein variational inference and Physics Informed Neural Networks. Geophys. J. Int. 2021, 228, 698–710. [Google Scholar] [CrossRef]
- Wang, S.; Teng, Y.; Perdikaris, P. Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM J. Sci. Comput. 2021, 43, A3055–A3081. [Google Scholar] [CrossRef]
- Wang, S.; Yu, X.; Perdikaris, P. When and why PINNs fail to train: A neural tangent kernel perspective. J. Comput. Phys. 2022, 449, 110768. [Google Scholar] [CrossRef]
- Wang, S.; Sankaran, S.; Perdikaris, P. Respecting causality is all you need for training physics-informed neural networks. arXiv 2022, arXiv:2203.07404. [Google Scholar] [CrossRef]
- Wang, S.; Li, B.; Chen, Y.; Perdikaris, P. PirateNets: Physics-informed Deep Learning with Residual Adaptive Networks. J. Mach. Learn. Res. 2024, 25, 1–51. [Google Scholar]
- Abdolvand, R.; Bahreyni, B.; Lee, J.; Nabki, F. Micromachined Resonators: A Review. Micromachines 2016, 7, 160. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J. Stochastic Memristor Modeling Framework Based on Physics-Informed Neural Networks. Appl. Sci. 2024, 14, 9484. [Google Scholar] [CrossRef]
- Nguyen, B.H.; Torri, G.; Rochus, V. Physics-informed neural networks with data-driven in modeling and characterizing piezoelectric micro-bender. J. Micromech. Microeng. 2024, 34, 115004. [Google Scholar] [CrossRef]
- Chandrasekhar, S. An Introduction to the Study of Stellar Structure; Dover Publications, Inc.: New York, NY, USA, 1957. [Google Scholar]
- Lane, J.H. On the theoretical investigation of the internal constitution of stars. Am. J. Sci. 1870, 50, 57–74. [Google Scholar] [CrossRef]
- Emden, R. Gaskugeln: Anwendungen der Mechanischen Wärmetheorie auf Kosmologische und Meteorologische Probleme; Teubner: Leipzig, Germany, 1907. [Google Scholar]
- Pleyer, J. Zero Values of the TOV Equation. arXiv 2024, arXiv:2411.15264. Available online: http://arxiv.org/abs/2411.15264 (accessed on 4 September 2025). [CrossRef]
- Horedt, G. Polytropes: Applications in astrophysics and related fields. Astrophys. Space Sci. 1986, 126, 357–408. [Google Scholar] [CrossRef]
- Shawagfeh, N. Non-perturbative solution of Lane–Emden equation using Adomian decomposition method. Appl. Math. Comput. 1993, 77, 81–88. [Google Scholar]
- Wazwaz, A.M. A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl. Math. Comput. 2001, 111, 33–51. [Google Scholar] [CrossRef]
- Ramos, J. Series solution of the Lane–Emden equation with a non-linear term by Adomian’s method. J. Comput. Appl. Math. 2008, 214, 223–228. [Google Scholar]
- Nouh, M.I. On the Lane–Emden equation and its solutions. Astrophys. Space Sci. 2004, 291, 47–56. [Google Scholar]
- Dehghan, M.; Shakeri, F. Solution of Lane–Emden type equations using the variational iteration method. Phys. Lett. A 2008, 372, 3921–3925. [Google Scholar]
- Wei, C.-F. Application of the homotopy perturbation method for solving fractional Lane–Emden type equation. Therm. Sci. 2019, 23, 2237–2244. [Google Scholar] [CrossRef]
- Ramos, J. Piecewise-adaptive decomposition methods. Chaos Solitons Fractals 2009, 40, 1623–1636. [Google Scholar] [CrossRef]
- Mukherjee, S. Solution of Lane–Emden type equations by Differential Transform Method. Appl. Math. Model. 2011, 35, 544–554. [Google Scholar]
- El-Essawy, S.H.; Nouh, M.I.; Soliman, A.A.; Abdel Rahman, H.I.; Abd-Elmougod, G.A. Monte Carlo Simulation of Lane–Emden Type Equations Arising in Astrophysics. Comput. Astrophys. J. 2021, 42, 56–67. [Google Scholar] [CrossRef]
- Nouh, M.I.; Azzam, Y.A.; Abdel-Salam, E. Modeling fractional polytropic gas spheres using artificial neural network. Neural Comput. Appl. 2021, 33, 7000–7015. [Google Scholar] [CrossRef]
- Mall, S.; Chakraverty, S. Chebyshev neural network based model for solving Lane–Emden type equations. Appl. Math. Comput. 2014, 247, 100–114. [Google Scholar] [CrossRef]
- Baty, H. Modelling Lane–Emden type equations using Physics-Informed Neural Networks. J. Comput. Phys. 2021, 452, 110–122. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Tancik, M.; Srinivasan, P.P.; Mildenhall, B.; Fridovich-Keil, S.; Raghavan, N.; Singhal, U.; Ramamoorthi, R.; Barron, J.T.; Ng, R. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Virtual, 6–12 December 2020; Curran Associates, Inc.: Nice, France, 2020. [Google Scholar]
- Savarese, P.H.P.; Mazza, L.O.; Figueiredo, D.R. Learning Identity Mappings with Residual Gates. arXiv 2016, arXiv:1611.01260. [Google Scholar] [CrossRef]
- Iftikhar, A.; Raja, M.A.Z.; Bilal, M.; Farooq, A. Neural network methods to solve the Lane–Emden type equations arising in thermodynamic studies of the spherical gas cloud model. Neural Comput. Appl. 2017, 28, 929–944. [Google Scholar] [CrossRef]
- Lewis, R.; Torczon, V. Pattern search methods for linearly constrained minimization. SIAM J. Optim. 2000, 10, 917–941. [Google Scholar] [CrossRef]
- Ahmad, I.; Raja, M.A.Z.; Bilal, M.; Ashraf, F. Bio-inspired computational heuristics to study Lane–Emden systems arising in astrophysics model. SpringerPlus 2016, 5, 1866. [Google Scholar] [CrossRef] [PubMed]
t | Residual PINN Error | FC PINN Error [35] | Monte Carlo Error |
---|---|---|---|
0.00 | 4.2 × 10−7 | 1.4 × 10−6 | 0.0 × 100 |
0.30 | 1.0 × 10−8 | 1.6 × 10−5 | 1.0 × 10−4 |
0.60 | 4.1 × 10−7 | 8.0 × 10−6 | 2.0 × 10−4 |
0.90 | 1.3 × 10−6 | 1.8 × 10−5 | 3.0 × 10−4 |
1.20 | 8.2 × 10−7 | 1.1 × 10−5 | 4.0 × 10−4 |
1.50 | 4.8 × 10−7 | 1.4 × 10−5 | 5.0 × 10−4 |
1.80 | 9.2 × 10−7 | 1.7 × 10−5 | 9.0 × 10−4 |
2.10 | 1.2 × 10−6 | 1.1 × 10−5 | 7.0 × 10−4 |
2.40 | 1.2 × 10−6 | 1.3 × 10−5 | 8.0 × 10−4 |
0.00 | 1.1 × 10−6 | 3.1 × 10−6 | 0.0 × 100 |
0.40 | 1.1 × 10−6 | 3.3 × 10−5 | 1.0 × 10−4 |
0.80 | 4.5 × 10−7 | 2.7 × 10−5 | 3.0 × 10−4 |
1.20 | 1.7 × 10−6 | 1.9 × 10−5 | 4.0 × 10−4 |
1.60 | 5.0 × 10−8 | 2.5 × 10−5 | 4.0 × 10−4 |
2.00 | 3.4 × 10−6 | 1.1 × 10−5 | 4.0 × 10−4 |
2.40 | 3.2 × 10−6 | 1.3 × 10−5 | 3.0 × 10−4 |
2.80 | 1.9 × 10−6 | 3.3 × 10−5 | 3.0 × 10−4 |
0.00 | 4.8 × 10−7 | 2.1 × 10−5 | 0.0 × 100 |
1.00 | 2.7 × 10−6 | 4.7 × 10−6 | 2.0 × 10−4 |
2.00 | 4.7 × 10−6 | 2.1 × 10−5 | 1.0 × 10−4 |
3.00 | 7.8 × 10−6 | 2.2 × 10−5 | 3.0 × 10−4 |
4.00 | 8.3 × 10−6 | 2.1 × 10−5 | 3.0 × 10−4 |
5.00 | 9.5 × 10−6 | 2.4 × 10−5 | 7.0 × 10−4 |
6.00 | 9.9 × 10−6 | 1.5 × 10−5 | 1.0 × 10−4 |
PINN | Variational | |||
---|---|---|---|---|
MAE | RMSE | MAE | RMSE | |
0.80 | ||||
0.85 | ||||
0.90 | ||||
0.95 | ||||
1.00 | ||||
1.05 | ||||
1.10 | ||||
1.15 | ||||
1.20 | ||||
1.25 | ||||
1.30 | ||||
1.40 | ||||
1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohuț, A.-I.; Popa, C.-A. Generalization-Capable PINNs for the Lane–Emden Equation: Residual and StellarNET Approaches. Appl. Sci. 2025, 15, 10035. https://doi.org/10.3390/app151810035
Mohuț A-I, Popa C-A. Generalization-Capable PINNs for the Lane–Emden Equation: Residual and StellarNET Approaches. Applied Sciences. 2025; 15(18):10035. https://doi.org/10.3390/app151810035
Chicago/Turabian StyleMohuț, Andrei-Ionuț, and Călin-Adrian Popa. 2025. "Generalization-Capable PINNs for the Lane–Emden Equation: Residual and StellarNET Approaches" Applied Sciences 15, no. 18: 10035. https://doi.org/10.3390/app151810035
APA StyleMohuț, A.-I., & Popa, C.-A. (2025). Generalization-Capable PINNs for the Lane–Emden Equation: Residual and StellarNET Approaches. Applied Sciences, 15(18), 10035. https://doi.org/10.3390/app151810035